
META-Learning State-based Eligibility Traces for More
Sample-Efficient Policy Evaluation∗

Mingde Zhao
∗

Mila, McGill University

mingde.zhao@mail.mcgill.ca

Sitao Luan
∗

Mila, McGill University

sitao.luan@mail.mcgill.ca

Ian Porada
∗

Mila, McGill University

ian.porada@mail.mcgill.ca

Xiao-Wen Chang

McGill University

chang@cs.mcgill.ca

Doina Precup

DeepMind, Mila, McGill University

dprecup@cs.mcgill.ca

ABSTRACT
Temporal-Difference (TD) learning is a standard and very success-

ful reinforcement learning approach, at the core of both algorithms

that learn the value of a given policy, as well as algorithms which

learn how to improve policies. TD-learning with eligibility traces

provides a way to boost sample efficiency by temporal credit assign-

ment, i.e. deciding which portion of a reward should be assigned to

predecessor states that occurred at different previous times, con-

trolled by a parameter λ. However, tuning this parameter can be

time-consuming, and not tuning it can lead to inefficient learning.

For better sample efficiency of TD-learning, we propose a meta-

learning method for adjusting the eligibility trace parameter, in a

state-dependent manner. The adaptation is achieved with the help

of auxiliary learners that learn distributional information about the

update targets online, incurring roughly the same computational

complexity per step as the usual value learner. Our approach can be

used both in on-policy and off-policy learning. We prove that, under

some assumptions, the proposed method improves the overall qual-

ity of the update targets, by minimizing the overall target error. This

method can be viewed as a plugin to assist prediction with func-

tion approximation by meta-learning feature (observation)-based

λ online, or even in the control case to assist policy improvement.

Our empirical evaluation demonstrates significant performance

improvements, as well as improved robustness of the proposed

algorithm to learning rate variation.

KEYWORDS
Reinforcement Learning; Meta Learning; Hyperparameter Adapta-

tion; Machine Learning; Temporal Difference Learning

1 INTRODUCTION
Eligibility trace-based policy evaluation (prediction) methods, e.g.,
TD(λ), use geometric sequences, controlled by a parameter λ, to
weight multi-step returns and assemble compound update targets

[10]. Given a properly set λ, using λ-returns as update targets low-
ers the sample complexity (e.g., the number of steps to achieve

certain precision of policy evaluation) or equivalently, improves

the learning speed and accuracy.

∗
The first three authors contributed equally to this paper.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Sample complexity in Reinforcement Learning (RL) is sensitive

to the choice of the hyperparameters [10, 14]. To address this, meta-

learning has been proposed as an approach for adapting the learning

rates [1]. However, the design of principle approaches and mainte-

nance of low computational complexity yield difficulties to tackle

the problem [3, 6]. Some Bayesian offlinemethod has been proposed

to address this problem [2]. Some methods have been proposed for

online meta-learning, with high extra computational complexities

that are intolerable for practical use [4]. Some methods seek to

create replacements of TD(λ) with better properties, mixing only

the Monte-Carlo return and 1-step TD return [5]. To summarize, a

principled method for adapting λs online and efficiently is in need.

TD(λ) with different λ values for different states has been pro-

posed as a more general formulation of trace-based prediction

methods. While preserving good mathematical properties such

as convergence to fixed points, this generalization also unlocks

significantly more degrees of freedom than only adapting a con-

stant λ for every state. It is intuitively clear that using state-based

values of λ provides more flexibility than using a constant for all

states. [14] investigated the use of state-based λs, while outper-

forming constant λ values on some prediction tasks. The authors

implicitly conveyed the idea that better update targets lead to better

sample efficiency, i.e., update targets with smaller Mean Squared

Error (MSE) lead to smaller MSE in learned values. Their proposed

online adaptation is achieved via efficient incremental estimation

of statistics about the return targets, gathered by some auxiliary

learners. Yet, such method does not seek to improve the overall

sample efficiency, because the meta-objectives does not align with

the overall target quality.

The contribution of this paper is a principled method for meta-

learning state- or feature-based parametric λs 1 which aims directly

at the sample efficiency. Under some assumptions, the method has

the following properties:

(1) Meta-learns online and uses only incremental computations,

incurring the same computational complexity as usual value-

based eligibility-trace algorithms, such as TD(λ).
(2) Optimizes the overall quality of the update targets.

(3) Works in off-policy cases.

(4) Works with function approximation.

(5) Works with adaptive learning rate.

1
State-based for tabular case, and feature-based for function approximation case.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1647

2 PRELIMINARIES
TD(λ) [9] uses geometric sequences of weights controlled by a pa-

rameter λ ∈ [0, 1] to compose a compound return as the update

target, which is called the λ-return. When used online, the updates

towards the λ-return can be approximated with incremental up-

dates using buffer vectors called the “eligibility traces” with linear

spacetime complexity.

2.1 The Trace Adaptation Problem
We aim to find an online meta-learning method for the adaptation

of state- or feature-based λs to achieve higher sample efficiency

(faster and more accurate prediction in terms of MSE of the value

estimate) in unknown environments.

2.2 Background Knowledge
Before everything, we first present all the notations in Table 1.

Definition 2.1 (Update Target). When an agent is conducting pol-

icy evaluation, the update target (or target) is a random variable

towards whose observed value the agent updates its value estimates.

Fixed-step update targets are also random variables. For example,

the update target for 1-step TD is rt+1+γt+1V (st+1) and the update
target for TD(λ) with state-based λs is the (generalized) λ-return,
as defined below.

Definition 2.2 (λ-return). The generalized state-basedλ-return
Gλ
t , where λ ≡ [λ1, . . . , λi ≡ λ(si), . . . , λ |S |]

T
, for one state st in a

trajectory τ is recursively defined as

Gλ
t ≡ Gλ (st) = rt+1 + γt+1[(1 − λt+1)V (st+1) + λt+1G

λ
t+1]

where Gλ
t = 0 for t > |τ |.

Prediction using the generalized λ-return has well-defined fixed

points [14]. However, when using trace-based updates online, such

convergence can only be achieved with the true online algorithms

[12, 13]. With the equivalence provided by the true online methods,

we will also have the full control of the bias-variance tradeoff of

the update targets via λ even if learning online.

The quality of the update targets, which we aim to enhance, has

important connections to the quality of the learned value function

[8], which we ultimately pursue in policy evaluation tasks.

Definition 2.3 (Overall Value Error & State Value Error). Given
the true value v and an estimate V of target policy π , the overall
value error for V is defined as:

J (V) ≡ 1/2 · ∥D1/2 · (V −v)∥
2

2

where

D ≡ diaд(dπ (s1),dπ (s2), · · · ,dπ (s |S |)) (1)

For a particular state s , the state value error is defined as

J (V (s)) ≡ 1/2 · (V (s) −v(s))2

The weights favor the states that will be met with higher fre-

quency under policy π . We often use the overall value error to

evaluate the performance of value learners in prediction tasks [8].

Definition 2.4 (Overall Target Error & State Target Error). Given
v and the collection of the update targets

ˆG for all states, the over-
all mean squared target error or overall target error for ˆG is

defined as:

J (ˆG) ≡ 1/2 · ∥D1/2 · (E[ˆG] −v)∥
2

2

where D is defined in (1). For a particular state s , the state target
error or target error is defined as

J (Ĝ(s)) ≡ 1/2 · (Ĝ(s) −v(s))2

Updates are never conducted for the terminal states. Thus, the

target error and value error for terminal states should be set 0, as

these states are always identifiable from the terminal signals. The

errors of the values and the targets are strongly connected.

Proposition 2.5. Given suitable learning rates, value estimates
using targets with lower overall target error asymptotically achieve
lower overall value error.

Though it can easily be proved, the conclusion is very powerful:

sample efficiency can be enhanced by using better update targets,

which in the trace-based prediction means optimizing the difference

between the update target and the true value function. This is the

basis for the λ-greedy algorithm which we are about to discuss as

well as our proposed method.

2.3 λ-Greedy [14]: An Existing Work
λ-greedy is a meta-learning method that can achieve online adapta-

tion of state-based λs with the help of auxiliary learners that learn

additional statistics about the returns. The idea is to minimize the

error between a pseudo target G̃(st) and the true valuev(st), where
the pseudo target is defined as:

G̃(st) ≡ G̃t ≡ rt+1 + γt+1[(1 − λt+1)V (st+1) + λt+1Gt+1]

where λt+1 ∈ [0, 1] and λk = 1,∀k ≥ t + 2. With this we can

find that J̃ (st) ≡ E[(G̃t − E[Gt])
2

] is a function of only λt+1 (given
the value estimate V (st+1)). The greedy objective corresponds to

minimizing the error of the pseudo target G̃t :

Fact 1 ([14]). Let t be the current timestep and st be the current
state. If the agent takes action at st s.t. it will transition into st+1 at
t + 1. Given the pseudo update target G̃t of st , the minimizer λ∗t+1 of

the target error of the state J̃ (st) ≡ E[(G̃t − E[Gt])
2

] w.r.t. λt+1 is:

λ∗t+1 =
(V (st+1) − E[Gt+1])

2

(E[V (st+1) −Gt+1])2 +Var [Gt+1]
(2)

where Gt+1 is the Monte Carlo return.

The adaptation of λ in λ-greedy needs auxiliary learners, that

run in parallel with the value learner, for the additional distribu-

tional information needed, more specifically the expectation and

the variance of the MC return, preferably in an incremental manner.

The solutions for learning these have been contributed in [7, 14].

These methods learn the variance of λ-return in the same way TD

methods learn the value function, however with different “rewards”

and “discount factors” for each state, that can be easily obtained

from the known information without incurring new interactions

with the environment.

λ-greedy gives strong boost for sample efficiency in some predic-

tion tasks. However, there are two reasons that λ-greedy has much

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1648

Table 1: Notations

Notation Meaning

xt Feature vector or observation for the state st met at time-step t .
Vπ (st) or V (st) Estimated value function or estimated values for st .

vπ (st), v(st) or E[Gt] True expectation of Gt for st , also recognized as the true value.

λ Enumeration vector of λ’s for all states.
Gt Cumulative discounted return since time-step t .
ρt Importance sampling ratio for the action at taken at time-step t .
γt Discount factor for returns after meeting the state st at time-step t [11].

dπ (s) The frequency of meeting the state s among all states, when carrying out policy π infinitely in the environment.

space to be improved. The first is that the pseudo target G̃t used for

optimization is not actually the target used in TD(λ) algorithms: we

will show that it is rather a compromise for a harder optimization

problem; The second is that setting the λs to the minimizers does

not help the overall quality of the update target: the update tar-

gets for every state is controlled by the whole λ, thus unbounded
changes of λ for one state will inevitably affect the other states as

well as the overall target error.

From the next section, we build upon the mindset provided in

[14] to propose our method META.

3 META ELIGIBILITY TRACE ADAPTATION
In this section, we propose our method META, whose goal is to

find an off-policy compatible way for optimizing the overall target

error while keeping all the computations online and incremental.

Our approach is intuitively straight-forward: optimizing overall

target error via optimizing the “true” target error for every state,

i.e., the errors of λ-returns, properly.
We first investigate how the goal of optimizing overall target

error can be achieved online. A key to solving this problem is to

acknowledge that the states that the agent meets when carrying out

the policy π follows the distribution of dπ . Since the overall target
error is a weighted mix of the state target errors according to dπ ,
this infers the possibility of decomposing the optimization of the

overall target error to the optimizations of the state target errors,

for which we optimize each state target error to the same extent

and then the state distribution could mix our sub-optimizations

together to form a joint optimization of the overall target error. We

develop the following theorem to construct this process.

Theorem 3.1. Given an MDP, target and behavior policies π and
b, let D be diagonalized state frequencies dπ (s1), · · · ,dπ (s |S |) and
ˆG ≡ [Gs1 (λ), · · · ,Gs |S|

(λ)]T be the vector assembling the state up-
date targets, in which the targets are all parameterized by a shared
parameter vector λ. The gradient of the overall target error J (ˆG,S) ≡

1/2 ·Eπ

[
∥D1/2 · (ˆG −v)]∥

2

2

]
can be assembled from 1-step gradients

on the target error J (Ĝs , s) ≡ 1/2 · (Ĝs (λ) − vs)
2 of update target

Ĝs for every state s the agent is in when acting upon behavior pol-
icy b, where weights are the cumulative product ρacc of importance
sampling ratios from the beginning of the episode until s . Specifically:

∇λ J (
ˆG,S) ∝

∑
s∼b

ρacc · ∇λ J (Ĝs , s)

where b is the behavior policy.

Proof. According to the definition of overall target error,

J (λ) ≡
∑
s ∈S

dπ (s) · Js (λ)) =
∑
s ∈S

dπ (s) · E[G
λ (s) −v(s)]2

If we take the gradient w.r.t. λ(t+1) we can see that:

∇J (ˆG, S) =
∑
s∈S

dπ (s) · ∇J (Ĝs , s)

push the gradient inside

=
∑
s∈S

∞∑
k=0

P{s0 → s, k, π , s0 ∼ d (s0)} · ∇J (Ĝs , s)

P{· · · } is the prob. of s0 → · · · → s in k steps,

s0 is sampled from the starting distribution d (s0).

=
∑
s∈S

∞∑
k=0

∑
τ
P{s0

τ
−→ s, k, π , s0 ∼ d (s0)} · ∇J (Ĝs , s)

τ = s0, a0, s1, a1, . . . , ak−1, sk = s is a trajectory starting from s0,

following π and transitioning to s in k steps.

=
∑
s∈S

∞∑
k=0

∑
τ
d(s0) · · ·p(τk−1, ak−1, s)π (ak−1 |τk−1) · ∇J (Ĝs , s)

τi is the i + 1-th state of τ and p(s, a, s
′
) is the prob. of s

a
−→ s

′
in the MDP

=
∑
s∈S

∞∑
k=0

∑
τ
d (s0) · · ·p(τk−1, ak−1, s)

π (ak−1 |τk−1)
b(ak−1 |τk−1)

b(ak−1 |τk−1) · ∇J (Ĝs , s)

for the convenience of injecting importance sampling ratios

=
∑
s∈S

∞∑
k=0

∑
τ
d (s0) · · ·p(τk−1, ak−1, s)ρk−1b(ak−1 |τk−1) · ∇λ Js (λ))

ρi ≡
π (ai |τi)
b(ai |τi)

is the importance sampling (IS) ratio

=
∑
s∈S

∞∑
k=0

∑
τ

ρ
0:k−1 · d (s0) · · ·p(τk−1, ak−1, s)b(ak−1 |τk−1) · ∇J (Ĝs , s)

ρ0:i ≡
i∏

v=0
ρv is the product of IS ratios of τ from τ0 to τi

=

∞∑
k=0

∑
τ

ρ
0:k−1

∑
s∈S

·d (s0) · · ·p(τk−1, ak−1, s)b(ak−1 |τk−1) · ∇J (Ĝs , s)

= Eτ∼b
[
]ρτ ∇J (Ĝs , s)

]
≈
∑
s∼b

ρacc · ∇J (Ĝs , s)

equivalent to summing over the experienced states under b

□

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1649

The on-policy case is easily proved with b = π . The theorem
applies for general parametric update targets including λ-return.
Optimizing λ for each state will inevitably affect the other states,

i.e., decreasing target error for one state may increase the others.

The theorem shows if we can do gradient descent on the target error

of the states according to dπ , we can achieve optimization on the

overall target error, assuming the value function is changing slowly.

The problem left for us is to find a way to calculate or approximate

the gradients of λ for the state target errors.

The exact computation of this gradient is infeasible in the online

setting: in the state-based λ setting, the λ-return for every state is

interdependent on every λ of every state. These states are unknown
before observation. However, we propose a method to estimate this

gradient by estimating the partial derivatives in the dimensions

of the gradient vector, which are further estimated online using

auxiliary learners that estimates the distributional information of

the update targets. The method can be interpreted as optimizing a

bias-variance tradeoff.

Proposition 3.2. Let t be the current timestep and st be the cur-
rent state. The agent takes action at at st and will transition into
st+1 at t + 1 while receiving reward rt+1. Suppose that rt+1 andGλ

t+1
are uncorrelated, given the update target Gλ

t for state st , the (semi)-
partial derivative of the target error Jst (λ) ≡ E[(G

λ
t − E[Gt])

2] of
the state st w.r.t. λt+1 ≡ λ(st+1) is:

∂Jst (λ)

∂λt+1
=γ 2t+1[λt+1

[
(V (st+1) − E[G

λ
t+1])

2 +Var [Gλ
t+1]

]
+ (E[Gλ

t+1] −V (st+1))(E[Gt+1] −V (st+1))]

And its minimizer w.r.t. λt+1 is:

argmin

λt+1
Jst (λ) =

(V (st+1) − E[G
λ
t+1])(V (st+1) − E[Gt+1])

(V (st+1) − E[G
λ
t+1])

2 +Var [Gλ
t+1]

Proof.

Jst (λ) ≡ E[(G
λ
t − E[Gt])

2] = E2[Gλ
t −Gt] +Var [G

λ
t]

E[Gλ
t −Gt]

= E[rt+1 + γt+1((1 − λt+1)V (st+1) + λt+1G
λ
t+1)

− (rt+1 + γt+1Gt+1)]

= γt+1(1 − λt+1)V (st+1) + γt+1λt+1E[G
λ
t+1] − γt+1E[Gt+1]

Var [Gλ
t] = Var [rt+1 + γt+1[(1 − λt+1)V (st+1) + λt+1G

λ
t+1]]

= Var [rt+1] + γ
2

t+1λ
2

t+1Var [G
λ
t+1]

(assuming rt+1 & Gλ
t+1 uncorrelated)

Assuming negligible effects of λt+1 on the statistics, i.e. not
taking the partial derivatives of the expectation or the variance, we

can obtain the semi-partial derivative

∂Jst (λ)

∂λt+1
≡
∂

∂λt+1

(
E[(Gλ

t − E[Gt])
2]

)
=
∂

∂λt+1
((γt+1(1 − λt+1)V (st+1)

+ γt+1λt+1E[G
λ
t+1] − γt+1E[Gt+1])

2

+Var [rt+1] + γ
2

t+1λ
2

t+1Var [G
λ
t+1])

= γ 2t+1[λt+1
(
(V (st+1) − E[G

λ
t+1])

2 +Var [Gλ
t+1]

)
+ (E[Gλ

t+1] −V (st+1))(E[Gt+1] −V (st+1))]

The minimizer is achieved by setting the partial derivative 0. □

This proposition constructs a way to estimate the partial deriva-

tive that corresponds to the dimension of λt+1 in ∇λ, if we know

or can effectively estimate the statistics of E[Gt+1], E[G
λ
t+1] and

Var [Gλ
t+1]. This proposition also provides the way for finding a

whole series of partial derivatives and also naturally yields a multi-

step method of approximating the full gradient ∇λE[(G
λ
t −E[Gt])

2].

The partial derivative in the proposition is achieved by looking 1-

step into the future. We can also look more steps ahead, and get the

partial derivatives w.r.t. λ(t+2), · · · . These partial derivatives can be

computed with the help of the auxiliary tasks as well. The more we

assemble the partial derivatives, the closer we get to the full gradi-

ent. However, in our opinion, 1-step is still the most preferred not

only because it can be obtained online every step without the need

of buffers but also for its dominance over other dimensions of λ:
the more steps we look into the future, the more the corresponding

λs of the states are discounted by the earlier γ s and λs. This also
enables the computation of the whole gradient if we were to do

the adaptations offline, in which case everything would be more

precise and easier, though more computationally costly.

It is interesting to observe that the minimizer is a generalization

of (2): the minimizer of the greedy target error can be achieved

by setting Gλ
t+1 = Gt+1. In practice, given an unknown MDP, the

distributional information of the targets, e.g. E[Gt+1], E[G
λ
t+1] and

Var [Gλ
t+1], can only be estimated. However, such estimation has

been proved viable in both offline and online settings of TD(λ) and
the variants, using supervised learning and auxiliary tasks using

the direct VTD method [7], respectively. This means the optimiza-

tion for the “true” target error is as viable as the λ-greedy method

proposed in [14], while it requires more complicated estimations

than that for the “greedy” target error: we need the estimates of

E[Gt+1], E[G
λ
t+1] and Var [Gλ

t+1], while for (2) we only need the

estimation of E[Gt+1] and Var [Gt+1].

The optimization of the true state target error, i.e. the MSE be-

tween λ-return and the true value, together with the auxiliary esti-

mation, brings new challenges: the auxiliary estimates are learnt

online and requires the stationarity of the update targets. This

means if a λ for one state is changed dramatically, the auxiliary

estimates of E[Gλ
t+1] and Var [G

λ
t+1] will be destroyed, since they

depend on each element in λ (whereas in λ-greedy, the pseudo

targets require no λ-controlled distributional information). If we

cannot handle such challenge, either we end up with a method that

have to wait for some time after some change of λ or we end up

with λ-greedy, bearing the high bias towards the MC return and

disconnection from the overall target error.

Adjusting λ without destroying the auxiliary estimates is a core

problem. We tackle such optimization by noticing that the expecta-

tion and variance of the update targets are continuous and differen-

tiable w.r.t. λ. Thus, a small change on λt+1 only yields a bounded

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1650

Environment

action

Fixed λ

Policy

λ

observation
&

discount

reward
Environment

action

Feature-
based λ

Policy

λ

λ

observation
&

discount

reward

∇

N
or

m
al

 T
ra

ce
-b

as
ed

 P
ol

ic
y

Ev
al

ua
tio

n

M
ET

A
-a

ss
is

te
d

Tr
ac

e-
ba

se
d

Po
lic

y
Ev

al
ua

tio
n

Figure 1: Mechanisms for META-assisted trace-based policy evaluation: the auxiliary learners learn the distributional infor-
mation in parallel to the value learner and provide the approximated gradient for the adjustments of λ.

shift of the estimates of the auxiliary tasks. If we use small enough

steps of the estimated gradients to change λ, we can stabilize the

auxiliary estimates since they will not deviate far and will be cor-

rected by the TD updates quickly. This method inherits the ideas

of trust region methods used in optimizing the dynamic systems.

Combining the approximation of gradient and the decomposed

1-step optimization method, we now have an online method to

optimizeλ to achieve approximate optimization of the overall target

error, which we name META. This method can be jointly used with

value learning, serving as a plugin, to adapt λ in real-time. Before

we present the whole algorithm, we would like to first discuss the

properties, potentials as well as limitations of META.

4 DISCUSSIONS AND INSIGHTS
4.1 Hyperparameter Search
META trades the search for λ with κ, the step size of META-

optimization. However, κ gives the algorithm the ability to have

state-based λs: state or feature (observation) based λ can lead to

better convergence compared to fixing λ for all states. Such poten-

tial may never be achieved by searching a fixed λ. Let us consider
the tabular case, where the search for constant λ = λ1 is equivalent
to searching along the diagonal direction inside a |S|-dimensional

unit box [0, 1] |S |
. By replacing λ with κ, we extend the search di-

rection of λ into the whole unit box. The new degrees of freedom

are crucial to the performance.

4.2 Reliance on Auxiliary Tasks
META updates assume that

ˆE[Gt], ˆE[G
λ
t] and V̂ ar [G

λ
t] can be well

estimated by the auxiliary tasks. This is very similar to the idea

of actor changing the policy upon the estimation of the values of

the critic in the actor-critic methods. To implement this, we can

add a buffer period for the estimates to be stable before doing any

adaptation; Additionally, we should set the learning rates of the

auxiliary learners higher than the value learner s.t. the auxiliary
tasks are learnt faster, resembling the guidelines for setting learning

rates of actor-critic. With the buffer period, we can also view META

as approximately equivalent to offline hyperparameter search of λ,
where with META we first reach a relatively stable accuracy and

then adjust λ to slowly slide to fixed points with lower errors. Also,

META is compatible with fancier settings of learning rate, since

the meta-adaptation is independent of its values.

4.3 Function Approximation
With function approximation, themeta-learning ofλ-greedy cannot
make use of the state features directly but through the bottlenecks

of the estimates. Whereas in META, λ can be parameterized and

optimized with gradient descent. This enables better generalization

and can be effectivewhen the state features contain rich information

(good potential to be used with deep neural networks). This is to

be demonstrated in the experiments.

4.4 From Prediction to Control
Within the control tasks where the quality of prediction is crucial to

the policy improvement, it is viable to apply META to enhance the

policy evaluation process. META is a trust region method, which

requires the policy to be also changing smoothly, s.t. the shift of
values can be bounded. This constraint leads us naturally to the

actor-critic architectures, where the value estimates can be used to

improve a continuously changed parametric policy. We provide the

pseudocode of META-assisted actor-critic control in Algorithm 2.

4.5 Overview & Limitations
META can be injected as a plugin for accelerating (improving the

sample efficiency of) TD-based policy evaluation processes. This is

illustrated in Figure 1: by adding 3 auxiliary learners to the system,

better feature-based λ can be achieved using only the existing in-

formation. In Algorithm 1, META is injected to a TD-based baseline

as the additional two lines that are with purple comments. The first

is for the 3 auxiliary learners estimating the statistics with trace-

based online updates, using either VTD [14] or DVTD [7] methods.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1651

Algorithm 1: META-assisted Online Policy Evaluation

Initialize weights for the value learner and those for the auxiliary learners that learns
ˆE[Gt], ˆE[G

λ
t] and V̂ ar [G

λ
t]

for episodes do
ρacc = 1; //initialize cumulative product of importance sampling ratios

Set traces for value learner and auxiliary learners to be 0;
x0 = initialize(E); //Initialize the environment E and get the initial feature (observation) x0
while t ∈ {0, 1, . . . } until terminated do

//INTERACT WITH ENVIRONMENT

at ∼ b(xt); //sample at from behavior policy b
ρt = π (at ,xt)/b(at ,xt); ρacc = ρacc · ρt ; //get and accumulate importance sampling ratios

xt+1,γt+1 = step(at); //take action at , get feature (observation) xt+1 and discount factor γt+1
//AUXILIARY TASKS

learn
ˆE[Gt], ˆE[G

λ
t] and V̂ ar [G

λ
t]; //using direct VTD [7] with trace-based TD methods, e.g., true online GTD(λ) [12]

//APPROXIMATE SGD ON OVERALL TARGET ERROR

λt+1 = λt+1 − κγ 2t+1ρacc
[
λt+1

(
(V (xt+1) − ˆE[Gλ

t+1])
2 + V̂ ar [Gλ

t+1]
)
+ (ˆE[Gλ

t+1] −V (xt+1))(ˆE[Gt+1] −V (xt+1))
]
; // change

λt+2, · · · when using multi-step approximation of the gradient

//LEARN VALUE

learn V (xt) using a trace-based TD method;

Algorithm 2: META-assisted Online Actor-Critic

Initialize weights for the value learner and those for the auxiliary learners that learns
ˆE[Gt], ˆE[G

λ
t] and V̂ ar [G

λ
t]

Initialize parameterized policies π (·|θπ) and b(·|θb);
for episodes do

Set traces for value learner and auxiliary learners to be 0;
x0 = initialize(E);

while t ∈ {0, 1, . . . } until terminated do
at ∼ b(xt); ρt = π (at ,xt)/b(at ,xt); ρacc = ρacc · ρt ;
xt+1,γt+1 = step(at);
//AUXILIARY TASKS and SGD ON OVERALL TARGET ERROR

learn
ˆE[Gt], ˆE[G

λ
t] and V̂ ar [G

λ
t];

λt+1 = λt+1 − κγ 2t+1ρacc
[
λt+1

(
(V (xt+1) − E[Gλ

t+1])
2 +Var [Gλ

t+1]
)
+ (E[Gλ

t+1] −V (xt+1))(E[Gt+1] −V (xt+1))
]
;

learn V (xt) using a trace-based TD method;

//LEARN POLICY

One (small) step of policy gradient (actor-critic) on θπ ;

The second is the 1-step update approximating the 1-step gradient

descent. The injected process uses additional computational costs

approximately 3 times that of the baseline yet incurring no higher

order complexities. In Algorithm 2, META is injected to assist the

critic update for value estimation with the same mechanisms.

Meaningful as it is, META has its limitations. First, though the

trust region optimization enabled the optimization of joint error,

it also brought trouble: the adaptation is bound to be slow. In pre-

diction, given the changing V , the “optimal” λ also changes, pre-

sumably fast. Therefore, META may not able to catch up with the

need for fast adaptation, even if it is always chasing the “optimal”

λ; Second, being a gradient method, the stepsize parameter κ is

inevitably sensitive to the feature structures. For example, if the

features are large in norm then κ must be set tiny; Third, when used

with actor-critic control, it further requires that the policy to be

changing slowly. We will leave these problems for future research.

5 EXPERIMENTS
We examine the empirical behavior of META by comparing it to the

baselines true online TD(λ) [13] or true online GTD(λ) [12] as well
as the λ-greedy method [14]

2
. For all sets of tests, λ start adapting

from 13, which is the same as λ-greedy [14].

5.1 RingWorld: Tabular-Case Prediction
This set of experiments focuses on a low-variance environment,

the 11-state “ringworld” [14], in which the agent move either left

or right in a ring of states. The state transitions are deterministic

and rewards only appear in the terminal states. In this set of experi-

ments, we stick to the tabular setting and use true online TD(λ) [12]

2
Source code is available at: https://github.com/PwnerHarry/META

3
Such setting is enabled by using λ(x) = 1 −wT

λ x as the function approximator of

the parametric λ and the weights initialized as 0.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1652

https://github.com/PwnerHarry/META

10-5 10-4 10-3 10-2 10-1

learning rate

10-4

10-2

M
S

E

td(0)
td(.4)
td(.8)
td(.9)
td(.95)

td(.975)
td(.99)
td(1)
greedy
M*

(a) RingWorld, γ = 0.95

10-5 10-4 10-3 10-2 10-1

learning rate

10-2

100

M
S

E

gtd(0)
gtd(.4)
gtd(.8)
gtd(.9)
gtd(.95)
gtd(.975)

gtd(.99)
gtd(1)
greedy
M*np
M*

(b) FrozenLake, γ = 0.95

10-6 10-4 10-2

-450

-400

-350

-300

-250

-200

-150

re
tu

rn

gtd(0)
gtd(.4)
gtd(.8)
gtd(.9)
gtd(.95)
gtd(.975)
greedy
META

(c) MountainCar, γ = 1, η = 1

105 3 105

steps

10-4

10-3

10-2

10-1

M
S

E

td(0)
td(.4)
td(.8)
td(.9)
td(.95)

td(.975)
td(.99)
td(1)
greedy
META

(d) RingWorld, α = 0.01, κ = 0.01

105 106

steps

1

1.5

2

2.5
M

S
E

10-3

gtd(0)
gtd(.4)
gtd(.8)
gtd(.9)
gtd(.95)
gtd(.975)

gtd(.99)
gtd(1)
greedy
META(np)
META

(e) FrozenLake, α = β = 0.0001, κ = 10
−5 , κnp = 10

−4

25000 50000

steps

-450

-400

-350

-300

-250

-200

-150

re
tu

rn

gtd(0)
gtd(.4)
gtd(.8)
gtd(.9)
gtd(.95)
gtd(.975)
greedy
META

(f) MountainCar, α = β = 10
−5 , η = 1, κ = 10

−5

Figure 2: U-shaped curves and learning curves forMETA, λ-greedy and the baselines on RingWorld, FrozenLake andMountain-
Car. For (a), (b) and (c), x-axes represent the values of the learning rate α for prediction (or the critic), while y-axes represent
the overall value error for RingWorld and FrozenLake, or the cumulative discounted return for MountainCar. Each point in
the graphs is featured with the mean (solid) and standard deviation (shaded) collected from 240 independent runs, with 10

6

steps for prediction and 50000 steps for control. The blue curves, either with legend “META” or “M*”, represent the results of
META; For (d), (e), and (f), the x-axes represent the steps. We choose one representative case for each of the corresponding
U-shaped curve for better demonstration of the empirical performance of META. In these learning curves, the best known
hyperparameters are used. The buffer periods are 105 steps (10%) for prediction and 25000 steps (50%) for control, respectively.

as the learner
4
, for the value estimate as well as all the auxiliary esti-

mates. As discussed in 4.2, for the accuracy of the auxiliary learners,

we double their learning rate s.t. they can adapt to the changes of

the estimates faster. We select a pair of behavior-target policies:

the behavior policy goes left with 0.4 probability while the target

policy goes with 0.35. The baseline true online TD has 2 hyperpa-

rameters (α & λ) and so does META (α & κ), excluding those for the
auxiliary learners. For these two methods, we test them on grids

of hyperparameter pairs. More specifically, for the baseline true

online TD, we test it on ⟨α , λ⟩ ∈ {10−5, . . . , 5 × 10
−5, 10−4, . . . , 5 ×

10
−4, . . . , 5×10−2, 10−1}×{0, 0.4, 0.8, 0.9, 0.95, 0.975, 0.99, 1} while

for META, ⟨α ,κ⟩ ∈ {10−5, . . . , 5× 10
−5, 10−4, . . . , 5× 10

−4, . . . , 5×

10
−2, 10−1} × {10−7, . . . , 10−1}. The results are presented as the U-

shaped curves in Figure 2 (a), in which we demonstrate the curves

of the baseline under different λs and the best performance that

META could get under each learning rate.

The best performance of fine-tuned baselines can be extracted

from the figures by combining the lowest points of the set of the

4
We prefer true online algorithms since they achieve the exact equivalence of the

bi-directional view of λ-returns.

baseline curves under different λs. Fine-tunedMETA provides better

performance, especially when the learning rate is relatively high.

We can say that once META is fine-tuned, it provides significantly

better performance that the baseline algorithm cannot possibly

achieve since it meta-learns state-based λ that goes beyond the

scope of the optimization of the baseline. Such results can also be

interpreted as META being less sensitive to the learning rate than

the baseline true online TD.

5.2 FrozenLake: Feature-based Prediction
This set of experiments features on a high-variance environment,

the “4x4” FrozenLake, in which the agent seeks to fetch the frisbee

back on a frozen lake surface with holes from the northwest to the

southeast and the transitions are noisy. There are 4 actions, each

representing taking 1-step towards 1 of the 4 directions. We craft

a behavior policy that takes 4 actions with equal probabilities and

a target policy that has 0.3 probability for going south or east, 0.2

for going north or west. We use the linear function approxima-

tion based true online GTD(λ), with a discrete tile coding (4 tiles,

4 offsets). For the 2nd learning rate β introduced in true online

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1653

GTD(λ), we set them to be the same as α (for the value learners as

well as the auxiliary learners in all the compared algorithms). Addi-

tionally, we remove the parametric setting of λ to get a method as

“META(np)” to demonstrate the potentials of a parametric feature

(observation) based λ. The U-shaped curves, obtained using the

exact same settings as in RingWorld, are provided in Figure 2 (b).

We observe similar patterns as the 1st set of experiments. We

can see that the generalization provided by the parametric λ is

beneficial, as in (b) we observe generally better performance and

in (e) we see that a parametric λ has better sample efficiency, com-

paring with “META(np)”. This suggests that using parametric λ in

environments with relatively smooth dynamics would be generally

beneficial for sample efficiency.

5.3 MountainCar: Actor-Critic Control
In this set of experiments we investigate the use of META to assist

on-policy actor-critic control on a noisy version of the environment

MountainCar with tile-coded state features.We use a softmax policy

parameterized by a |A| × D matrix, where D is the dimension of

the state features with also true online GTD(λ) as the learners

(critics). This time, the U-shaped curves presented in Figure 2(c)

show performance better than the baselines yet significantly better

than λ-greedy assisted actor-critic.

In this set of experiments we intentionally set the stepsize of the

gradient ascent of the policy to be high (η = 1) to emphasize the

quality of policy evaluation. However, typically in actor-critic we

keepη small. In these cases, the assistance ofMETA is expected to be

greatly undermined: the maximization of returns cares more about

the actions chosen rather than the accuracy of the value estimates.

Enhancing the policy evaluation quality may not be sufficient for

increasing the sample efficiency of control problems.

From the curves we can see the most significant improvements

are shown when the learning rate of the critic is small. Typically in

actor-critic, we set the learning rate of the critic to be higher than

the actor to improve the quality of the update of the actor. META

alleviates the requirement for such setting (or we could say a kind

of sensitivity) by boosting the sample efficiency of the critic.

5.4 Technical Details
5.4.1 Environments. The RingWorld environment is reproduced

as described in [14]. Due to limitations of understanding, we cannot

see the difference between it and a random walk environment with

the rewards on the two tails. RingWorld is described as a symmetric

ring of the states with the starting state at the top-middle, for which

we think the number of states should be odd. However, the authors

claimed that they experimented with 10-state and 50-state instances.

We instead used the 11-state instance.

We removed the episode length limit of the FrozenLake environ-

ment (for the environment to be solvable by dynamic programming).

It is modified based on the Gym environment with the same name.

We have used the instance of “4x4”, i.e. with 16 states.

The episode length limit of MountainCar is also removed. We

also added noise to the state transitions: actions will be randomized

at 20% probability. The noise is to prevent the cases in which λ = 1

yields the best performance (to preventMETA from using extremely

small κ’s to get good performance). Additionally, due to the poor

exploration of the softmax policy, we extended the starting location

to be uniformly anywhere from the left to right on the slopes.

5.4.2 State Features. For RingWorld, we used onehot encoding

to get equivalence to tabular case; For FrozenLake, we used a dis-

crete variant of tile coding, for which there are 4 tilings, with each

tile covering one grid as well as symmetric and even offset; For

MountainCar, we adopted the roughly the same setting as Chap.

10.1 pp. 245 in [10], except that we used ordinary symmetric and

even offset instead of the asymmetric offset.

5.4.3 About λ-greedy. We have replaced VTD [14] with direct

VTD [7]. This modification is expected only to improve the stability,

without touching the core mechanisms of λ-greedy [14].

The target used in Whites’ [14] is biased toward λ = 1, as the

λ’s into the future are assumed to be 1. Thus we do not think it is

helpful to conduct tests on environments with very low variance.

This is the reason why we have changed the policies to less greedy.

5.4.4 Learning Rate and Buffer Period. The learning rates of the
auxiliary learners are set to be twice of the value learner. These

settings were not considered in [14], in which there were no buffer

period and identical learning rates were used for all learners; For

the control task of MountainCar, λ-greedy and META will both

perform badly without these additional settings, since they are

adapting λ based on untrustworthy estimates.

5.4.5 Details for Non-Parametric λ(·). To disable the generaliza-

tion of the parametric λ for “META(np)”, we replaced the feature

vectors for each state with onehot-encoded features.

5.4.6 More Policies for Prediction. For RingWorld, we have done

6 different behavior-target policy pairs (3 on-policy & 3 off-policy).

The off-policy pair that we have shown in the manuscript shares the

same patterns as the rest of the pairs. The accuracy improvement

brought by META is significant across these pairs of policies; For

FrozenLake, we have done two pairs of policies (on- and off-policy).

We observe the same pattern as in the RingWorld tests.

5.4.7 Implementation of META. Due to the estimation instabil-

ity, updates could bring state λ values outside [0, 1]. Whenever such

kind of update is detected, it will be canceled.

6 CONCLUSION AND FUTUREWORK
In this paper, we derived a general method META for boosting the

sample efficiency of TD prediction, by approximately optimizing

the overall target error, using meta-learning of state dependent λs.
In the experiments, META demonstrates promising performance

as a way to accelerate learning.

In the future, we aim to benchmark the approach in more envi-

ronments, and in general. We would also like to study further the

issue of improving optimizers for RL specifically.

Acknowledgements
Funding for this research was provided in part by NSERC, through

Discovery grants for Prof. Chang and Precup, and CIFAR, through

a CCAI chair to Prof. Precup. We are grateful to Compute Canada

for providing a shared cluster for experimentation.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1654

REFERENCES
[1] WilliamDabney and Andrew Barto. 2012. Adaptive Step-Size for Online Temporal

Difference Learning. In AAAI Conference on Artificial Intelligence. https://www.

aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5092

[2] Carlton Downey and Scott Sanner. 2010. Temporal Difference Bayesian Model

Averaging: A Bayesian Perspective on Adapting Lambda. In ICML. 311–318.
https://icml.cc/Conferences/2010/papers/295.pdf

[3] Michael J. Kearns and Satinder P. Singh. 2000. Bias-Variance Error Bounds for

Temporal Difference Updates. In Conference on Computational Learning Theory
(COLT ’00). 142–147. http://dl.acm.org/citation.cfm?id=648299.755183

[4] Timothy A. Mann, Hugo Penedones, Shie Mannor, and Todd Hester. 2016. Adap-

tive Lambda Least-Squares Temporal Difference Learning. CoRR abs/1612.09465

(2016). arXiv:1612.09465 http://arxiv.org/abs/1612.09465

[5] Hugo Penedones, Carlos Riquelme, Damien Vincent, Hartmut Maennel, Timo-

thy A. Mann, André Barreto, Sylvain Gelly, and Gergely Neu. 2019. Adaptive

Temporal-Difference Learning for Policy Evaluation with Per-State Uncertainty

Estimates. CoRR abs/1906.07987 (2019). arXiv:1906.07987 http://arxiv.org/abs/

1906.07987

[6] Robert E. Schapire and Manfred K. Warmuth. 1996. On the worst-case analysis of

temporal-difference learning algorithms. Machine Learning 22, 1 (1996), 95–121.

https://doi.org/10.1007/BF00114725

[7] Craig Sherstan, Brendan Bennett, Kenny Young, Dylan Ashley, Adam White,

Martha White, and Richard Sutton. 2018. Directly Estimating the Variance of the

λ-Return Using Temporal-Difference Methods. arXiv abs/1801.08287 (2018).

[8] Satinder Singh and Peter Dayan. 1998. Analytical Mean Squared Error Curves

for Temporal Difference Learning. Machine Learning 32, 1 (1998), 5–40. https:

//doi.org/10.1023/A:1007495401240

[9] Satinder Singh and Richard Sutton. 1996. Reinforcement learning with replacing

eligibility traces. Machine Learning 22, 1 (01 Mar 1996), 123–158.

[10] Richard Sutton and Andrew Barto. 2018. Reinforcement learning - An Introduction.
MIT Press. http://www.worldcat.org/oclc/37293240

[11] Richard Sutton, JosephModayil, Michael Delp, Thomas Degris, PatrickM. Pilarski,

Adam White, and Doina Precup. 2011. Horde: A Scalable Real-time Architec-

ture for Learning Knowledge from Unsupervised Sensorimotor Interaction. In

International Conference on Autonomous Agents and Multiagent Systems. 761–768.
[12] Hado van Hasselt, A Rupam Mahmood, and Richard Sutton. 2014. Off-policy

TD(λ) with a true online equivalence. In Conference on Uncertainty in Artificial
Intelligence. 330–339.

[13] Harm Van Seijen, A. Rupam Mahmood, Patrick M. Pilarski, Marlos C. Machado,

and Richard S. Sutton. 2016. True Online Temporal-difference Learning. Journal
of Machine Learning Research 17, 1 (2016), 5057–5096. http://dl.acm.org/citation.

cfm?id=2946645.3007098

[14] Martha White and Adam White. 2016. A Greedy Approach to Adapting the

Trace Parameter for Temporal Difference Learning. In International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS ’16). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, 557–565.

http://dl.acm.org/citation.cfm?id=2936924.2937006

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1655

https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5092
https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5092
https://icml.cc/Conferences/2010/papers/295.pdf
http://dl.acm.org/citation.cfm?id=648299.755183
http://arxiv.org/abs/1612.09465
http://arxiv.org/abs/1612.09465
http://arxiv.org/abs/1906.07987
http://arxiv.org/abs/1906.07987
http://arxiv.org/abs/1906.07987
https://doi.org/10.1007/BF00114725
https://doi.org/10.1023/A:1007495401240
https://doi.org/10.1023/A:1007495401240
http://www.worldcat.org/oclc/37293240
http://dl.acm.org/citation.cfm?id=2946645.3007098
http://dl.acm.org/citation.cfm?id=2946645.3007098
http://dl.acm.org/citation.cfm?id=2936924.2937006

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The Trace Adaptation Problem
	2.2 Background Knowledge
	2.3 -Greedy white2016greedy: An Existing Work

	3 Meta Eligibility Trace Adaptation
	4 Discussions and Insights
	4.1 Hyperparameter Search
	4.2 Reliance on Auxiliary Tasks
	4.3 Function Approximation
	4.4 From Prediction to Control
	4.5 Overview & Limitations

	5 Experiments
	5.1 RingWorld: Tabular-Case Prediction
	5.2 FrozenLake: Feature-based Prediction
	5.3 MountainCar: Actor-Critic Control
	5.4 Technical Details

	6 Conclusion and Future Work
	References

