
Research Challenges and Opportunities in Multi-Agent Path
Finding and Multi-Agent Pickup and Delivery Problems

Blue Sky Ideas Track

Oren Salzman
Technion Israel Institute of Technology

Haifa, Israel
osalzman@cs.technion.ac.il

Roni Stern
Ben Gurion University of the Negev

Be’er Sheva, Israel
Palo Alto Research Center (PARC)

Palo Alto, USA
sternron@post.bgu.ac.il,rstern@parc.com

ABSTRACT
Recent years have shown a large increase in applications and re-
search of problems that include moving a fleet of physical robots.
One particular application that is currently a multi-billion industry
led by tech giants such as Amazon robotics and Alibaba is ware-
house robots. In this application, a large number of robots operate
autonomously in the warehouse picking up, carrying, and putting
down the inventory pods. In this paper, we outline several key re-
search challenges and opportunities that manifest in this warehouse
application. The first challenge, known as the Multi-Agent Path
Finding (MAPF) problem, is the problem of finding a non-colliding
path for each agent. While this problem has been well-studied in
recent years, we outline several open questions, including under-
standing the actual hardness of the problem, learning thewarehouse
to improve online computations, and distributing the problem. The
second challenge is known as the Multi-Agent Package and Deliv-
ery (MAPD) problem, which is the problem of moving packages in
the warehouse. This problem has received some attention, but with
limited theoretical understanding or exploitation of the incoming
stream of requests. Finally, we highlight a third, often overlooked
challenge, which is the challenge of designing the warehouse in a
way that will allow efficient solutions of the two above challenges.

KEYWORDS
Path planning, Warehouse environments, Task allocation, MAPF,
MAPD
ACM Reference Format:
Oren Salzman and Roni Stern. 2020. Research Challenges and Opportunities
in Multi-Agent Path Finding andMulti-Agent Pickup and Delivery Problems.
In Proc. of the 19th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2020), Auckland, New Zealand, May 9–13, 2020,
IFAAMAS, 5 pages.

1 INTRODUCTION
Coordinating the movement of a fleet of agents or robots1 is a
decades-old family of problems that has been intensively studied by
1Here we use the terms agents and robots to distinguish between the setting that the
planning problem is discrete and continuous, respectively. Unless stated otherwise,
here we limit ourselves to the study of the discrete setting.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

the robotics and artificial intelligence communities [7, 8, 11, 15, 21,
30, 47, 50, 51, 55, 56, 62, 69, 70, 72, inter alia]. Applications of this
family of problems can be found in diverse settings including assem-
bly [22, 40], evacuation [44], formation [5, 41, 60], localization [17],
micro-droplet manipulation [20], object transportation [45], search-
and-rescue [27], and air-traffic management [54].

One specific application of this general problem that gained
significant interest in the research community is the warehouse
domain, which we will use as a motivating running example. Here,
storage locations host inventory pods that hold one or more kinds
of goods. A large number (several hundreds and some times even
several thousands) of robots operate autonomously in the ware-
house picking up, carrying, and putting down the inventory pods.
The robots move the pods from their storage locations to designated
dropoff locations where the needed goods are manually removed
from the inventory pods (to be packaged and then shipped to cus-
tomers). Each pod is then carried back by a robot to a (possibly
different) storage location [67]. The robots operate on a shared
infrastructure, and thus may be directed by a central controller. The
successful use of such robots in warehouse applications is currently
a multi-billion industry led by tech giants such as Amazon robotics
and Alibaba [1]. For a visualization, see Fig. 1.

Here, we are interested in two types of problems that can be
used to model this application (as well as many others). In the first,
called Multi Agent Path Finding (MAPF), we are given a graph G =
(V , E) which, in our motivating example, is a discretization of the
warehouse into cells where each cell represents a graph vertex and
two vertices are connected in the graph if their corresponding cells
are adjacent and do not contain pods. In addition, we are given s :
[1, . . . ,k] → V and t : [1, . . . ,k] → V which map each one of the k
agents to a start and target vertex, respectively. Time is typically
discretized as well and at each time step an agent performs one of
two actions: it can either wait in its cell or move to an adjacent cell.2
An action is considered conflict free or valid if two agents do not
occupy the same vertex or the same edge at a given timestep. The
objective is to find conflict-free paths for the agents from their start
to their target locations that minimize some objective. Typically,
we wish to minimize the makespan which is the latest arrival time

2While some works plan in the continuous space to account for continuous time and
robot kinematics (see e.g., [25, 26, 35]), the discretized model is considered realistic
enough to model many applications, including warehouse domains.

Blue Sky Idea Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1711

(a)

(b)

Figure 1: Warehouse robots. (a) Amazon robots (orange)
moving pods (yellow) containing goods in a warehouse envi-
ronment. Figure adapted from http://tiny.cc/ief6cz. (b) Typ-
ical layout of pods in a warehouse. Pods and dropoff loca-
tions are depicted by green and purple squares, respectively.
Agents are depicted using orange circles. Notice that some
agents carry the pods and some don’t.

of an agent at its target location or the flowtime which is the sum
of the arrival times of all agents at their target locations.3

The second problem, which can be viewed as an extension to
the MAPF problem, is called the multi-agent pickup and delivery
(MAPD) problem or lifelong MAPF. In this problem, agents have to
attend to a stream of delivery tasks in an online setting.4 Here, we
need to assign each delivery task to an agent. Subsequently, each
agent has to move to its given pickup location and then to its given
delivery location while avoiding collisions with other agents.

To a layman, it may seem that the wide use of fleets of robots in
warehouse applications implies that the MAPF and MAPD problem
have already been solved. This is far from true. From a theoretical
point of view, the general MAPF problem is computationally hard
for a wide range of optimization criteria [6, 18, 43, 58, 68, 71]. This
implies that computing optimal solutions to the MAPF problem for
instances involving a large number of robots is computationally
intractable in many settings. From an application point of view,
3For a complete taxonomy of different MAPF problems, including conflict types,
objective functions and more, see [57].
4An offline version of this problem has been discussed [33].

deployed systems use planning algorithms that have no guarantees
on the quality of the solution, relying on a large amount of human
experience and intuition with little-to-no scientific grounding.

In this paper, we list open challenges and possible research di-
rections that the community may take in order to address these
challenges as well as propose new research questions that arise for
this domain.

2 RELATEDWORK
To address the inherent hardness of MAPF and MAPD, the re-
search community designed general centralized and decentralized
MAPD algorithms that use MAPF algorithms as underlying build-
ing blocks. Centralized approaches typically allow for optimal or
bounded suboptimal algorithms by reducing the MAPF problem to
other well-known problems such as network flow [70], satisfiabil-
ity [59], Answer Set Programming [14] or by using search-based
methods [7, 8, 24, 50, 51, 63]. Unfortunately these methods fail to
scale to more than several hundreds of agents—still an order of
magnitude less than what is required by many real-world applica-
tions. Decentralized algorithms can scale to thousands of agents
but provide no guarantees on the quality (i.e., throughput) of the
solution [34, 36].

3 MAPF: CHALLENGES & OPPORTUNITIES
3.1 Hardness of MAPF in warehouse domains
Solving the MAPF problem without accounting for path quality (i.e.,
addressing the feasibility problem) can be done efficiently. Specif-
ically, variants of the problem can be solved in O(n3) where n is
the number of vertices in the graph (see, e.g., [4, 19, 73]). How-
ever, optimally solving the MAPF problem is computationally in-
tractable [18, 43, 58, 71] for different optimization criteria. Similar
results can be shown even in the planar setting [68] and when
restricting the problem to grids [6]. While variants of this problem
are NP-hard to approximate within any factor less than 4/3 [37], it is
not clear whether solving the MAPF problem optimally is APX-hard
or if polynomial-time approximation schemes (PTAS) exist.

Interestingly, for specific cases this optimal-efficiency gap can
be narrowed down. Recently, Yu [69] presented a MAPF algorithm
that exhibits a constant-time approximation in the average case
for the setting where the environment is well connected. Roughly
speaking, a (grid-like) environment is said to be well connected if it
is composed of small cycles and in two adjacent rows (or columns)
multiple swapping of agent locations can be done in constant time.

A major open challenge is to deepen the understanding of why
and when the problem is computationally hard. Specifically, if we
narrow down the MAPF problem to the specific setting of grid-
like domains with rectangular obstacles (the storage locations, in
our running example) and if we restrict the set of start and tar-
gets to non-pathological cases is the problem still computationally
hard? Both positive and negative answers to this question may be
invaluable in progressing the state-of-the-art.

The entire problem may still be computationally hard (just as
the general MAPF), but this requires new hardness results. Alter-
natively, it may be solvable in polynomial time. A third option
exists, which we conjecture to be the truth, where the problem can
be solved by algorithms that are exponential only in the size of a

Blue Sky Idea Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1712

http://tiny.cc/ief6cz

fixed parameter while polynomial in the size of the input. Such an
algorithm is called a fixed-parameter tractable (FPT-) algorithm [12].

This research direction draws inspiration from recent results
in multi-robot motion planning [29].5 This well-studied problem
(see, e.g., [55, 62, 70]) is also computationally hard (see [23] and
references within). However, it was recently shown that a slight
relaxation of the problem, requiring a limited amount of spacing
among robots in their initial and final placements, lends itself to
very efficient polynomial solutions [2].

3.2 Faster MAPF by learning from experience
MAPF problems are typically defined as a one-shot problem where
a query is provided to the algorithm and it is tasked with computing
a collision-free path for the fleet of agents between their respective
start and target locations. However, in many cases the environment
is known in advance (e.g., in our motivating warehouse application,
the layout of the pods is known in advance). While this layout is
constantly changing (e.g., as agents move from place to place, with
and without pods), at any given point of time, the vast majority
of the environment remains unchanged (e.g., in terms of pod loca-
tion), when compared to the original layout. Thus, when solving
the MAPF problem, we often have the additional flexibility of pre-
processing the environment to efficiently answer multiple MAPF
problems in a query phase. This was shown to be extremely useful
for the continuous motion-planning problem [28, 42, 46, 48, 49, 55].
An immediate question that follows is “how can the query phase
benefit from preprocessing the environment”?

We suggest to explore how learning from experience can help
to solve computationally-hard problems. Here, experience may be
obtained in a preprocessing phase or throughout the lifetime of the
system. Such an experience-based approach may integrate with
other techniques that pre-process and use the physical and virtual
environment to improve planning [65, 66].

3.3 Dec. MAPF with quality guarantees
Interestingly, much of the work on decentralized algorithms for
MAPF has actually been done on a single computer [53, 64]. This
avoids the need to address communication overhead and synchro-
nization issues. This is surprising because the MAPF problem is
inherently a multi-agent problem,6 and thus one could gain effi-
ciency by performing the problem-solving by the multiple agents
in parallel. On the other hand, there has been much work on dis-
tributed motion planning for robots, which can often scale elegantly
but lacks solution quality guarantees. A major open challenge is
how can existing centralized and decentralized MAPF algorithms
be distributed in practice over multiple machines while maintaining
their advantageous properties (e.g., completeness and optimality).

One can distribute the process of solving large-scale MAPF prob-
lems in more than one way. A promising approach for distributing
MAPF is to split the graph to regions and have a planning agent per
region. That agent will then interact with other planning agents
to find a path for all agents, even if it crosses multiple regions.

5A similar problem to the MAPF where the robots operate in a continuous space and
have kinematic constraints.
6By multi-agent we mean that there are multiple entities that perform actions, and
not necessarily in a distributed manner.

Distributing MAPF raises several interesting challenges such as lim-
iting the communication overhead and balancing the computational
load. Addressing these challenges can allow elegant scaling of cur-
rent MAPF algorithms to thousands of agents while providing some
notion of solution quality. The vast literature on agent-oriented pro-
gramming [52] and distributed AI [13] addressed similar challenges,
and thus may provide the foundation for scalable distributed MAPF
solutions.

4 MAPD: CHALLENGES & OPPORTUNITIES
4.1 Realistic MAPD models
A first step in analyzing a MAPD instance is to argue if it can
be solved or not. Čáp et al. [10] introduced the notion of a well
formed environment which gives a sufficient (though not necessary)
condition for aMAPD instance to be solvable. Here, an environment
is said to be well formed if (i) the number of tasks is finite and
(ii) each agent can wait indefinitely at its start and target vertices
without blocking any other agent.

In practice, however, we are interested in infinite streams of tasks.
Therefore, a MAPD is an online algorithm [3], and can be analyzed
in terms of competitive ratio (overhead over an offline-optimal
algorithm) and worst-case behavior. Further analysis can be done
by modeling how the stream of tasks arrives to the system. This
includes both the rate at which tasks arrive and the distribution of
start and target placements of each task. Such models are beneficial
not only from a theoretic point of view but also from a practical
one—if a MAPD algorithm is given a model of how the stream of
tasks arrive to the system, it can leverage this additional knowledge
e.g., by preprocessing the environment.

4.2 Lifelong learning in MAPD
Deployed MAPD systems often see similar queries across local time
periods (for example, before the school year, school supplies will be
in high demand causing the pods storing them in our running exam-
ple to be accessed frequently). This calls for online local adaptation
of a MAPD algorithm. Here, we will need to learn or estimate the
distribution of queries that arrive in an online manner and adapt
the system accordingly.

4.3 Dec. MAPD as a distributed AI problem
Performing the MAPD computation over multiple machines poses
similar challenges and opportunities as discussed in Sec. 3.3 for
MAPF, such as how to distribute the problem solving in an effective
way and how to minimize communication overhead. In addition,
since MAPD is fundamentally a multi-agent planning problem, one
can build on existing work on distributed multi-agent planning [31,
32, 39].

For example, research in multi-agent STRIPS [9, 16] includes
methods to identify actions that are private to specific agents, and
thus agents do not need to coordinate their application. Then, one
can distribute the planning process and have the agent only com-
municate about planned actions that are not public. Several such
frameworks have been proposed for multi-agent-STRIPS [38, 61].
Using these frameworks directly for MAPD is challenging, since it

Blue Sky Idea Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1713

(a) (b)
Figure 2: Pods and drop-off locations are depicted by green and purple squares, respectively. In both figures, there are almost
the same number of pods. However, the different layout has a dramatic effect on solution quality.

is not clear how to identify private actions. But, weaker forms of pri-
vacy may be of use in MAPD. In general, bridging between MAPD
and the literature on multi-agent planning suggests potential gains.

5 CHALLENGES BEYOND MAPF AND MAPD
In theMAPD problem, our ultimate goal is to maximize the system’s
efficiency. In the warehouse domain, a key efficiency measure is
throughput. Namely, the number of tasks completed per unit of
time. Given a MAPD algorithm, the throughput can be increased
by (i) changing the layout of the environment—here the layout
is defined as the number and positions of designated pickup and
dropoff locations (pods in our running example—see also Fig. 2)
and (ii) changing the number of agents.

Intuitively, given a layout ℓ in a given environment, gradually
increasing the number of agents from a single agent will result
in higher throughput as the agents can service more tasks simul-
taneously. However, after a certain number of agents is reached,
coordination becomes a limiting factor and the throughput will
decrease. This will be either because planning times are larger than
execution times (and the agents need to wait for future plans to be
computed) or because the execution time increases dramatically (for
example when some agents will have to make large detours to avoid
other agents). Similarly, given a fixed number of agents and a given
environment, adding pods increases throughput as the probability
that a given pod will contain a required item increases. This, in
turn, results in shorter paths for the agents to execute. However,
after a certain number of pods is reached, the agents have less space
to maneuver and higher coordination is required (resulting both in
longer planning times as well as longer execution times).

Thus, given an environment which contains static obstacles
(walls, pillars in the room etc.), an immediate question that should
be addressed (and surprisingly has not been asked to the extent of
our knowledge) is what is the optimal layout and optimal number of
agents to maximize the expected throughput of the system? Here we
propose to algorithmically design the environment in a way that the
pathological cases that cause the problem to be computationally
hard will not appear (or will appear as little as possible).

6 CONCLUSION
In this paper, we described several algorithmic open challenges in
MAPF and MAPD research, with an effort to scale to fleets of thou-
sands of agents while maintaining theoretic guarantees both on the
running time as well as the quality of the solution obtained. These
challenges include a deeper understanding of the complexity of
these problems and mapping it to applicable algorithms, exploiting
the ability to preprocess the environment and past execution, and
distributing the planning process. In addition, we outline the design
challenge of how to structure the environment in a way that will
enable efficient planning. With the growing number of large-scale
multi-agent systems of this type, advances in solving MAPF, MAPD,
and the corresponding design problem, holds the potential to be
one of the great successes of multi-agent AI research.

ACKNOWLEDGMENTS
Author #2 is partially funded by ISF grant #210/17 to Roni Stern.

REFERENCES
[1] [n. d.]. Three Ways Amazon, Alibaba, and Ocado Benefit from

Warehouse Robots. https://www.innovecs.com/ideas-portfolio/
amazon-alibaba-ocado-use-warehouse-robots/. Accessed: 19-07-19.

[2] Aviv Adler, Mark De Berg, Dan Halperin, and Kiril Solovey. 2014. Efficient
multi-robot motion planning for unlabeled discs in simple polygons. InWAFR.
1–17.

[3] Susanne Albers. 2003. Online algorithms: a survey. Mathematical Programming
97, 1-2 (2003), 3–26.

[4] Vincenzo Auletta, Angelo Monti, Mimmo Parente, and Pino Persiano. 1999. A
linear-time algorithm for the feasibility of pebble motion on trees. Algorithmica
23, 3 (1999), 223–245.

[5] Tucker Balch and Ronald C Arkin. 1998. Behavior-based formation control for
multirobot teams. IEEE Trans. on Robotics & Auto. 14, 6 (1998), 926–939.

[6] Jacopo Banfi, Nicola Basilico, and Francesco Amigoni. 2017. Intractability of
time-optimal multirobot path planning on 2d grid graphs with holes. IEEE Robot.
Autom. Lett. 2, 4 (2017), 1941–1947.

[7] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. 2014. Suboptimal Variants
of the Conflict-Based Search Algorithm for the Multi-Agent Pathfinding Problem.
In ECAI, Vol. 263. 961–962.

[8] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betza-
lel, and Solomon Eyal Shimony. 2015. ICBS: Improved Conflict-Based Search
Algorithm for Multi-Agent Pathfinding. In IJCAI. 740–746.

[9] Ronen I Brafman and Carmel Domshlak. 2008. From One to Many: Planning for
Loosely Coupled Multi-Agent Systems.. In ICAPS. 28–35.

[10] Michal Čáp, Peter Novák, Alexander Kleiner, andMartin Seleckỳ. 2015. Prioritized
planning algorithms for trajectory coordination of multiple mobile robots. IEEE
Trans. on Aut. Sci. & Eng. 12, 3 (2015), 835–849.

[11] Liron Cohen, Tansel Uras, and Sven Koenig. 2015. Feasibility study: Using
highways for bounded-suboptimal multi-agent path finding. In SOCS. 2–8.

Blue Sky Idea Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1714

https://www.innovecs.com/ideas-portfolio/amazon-alibaba-ocado-use-warehouse-robots/
https://www.innovecs.com/ideas-portfolio/amazon-alibaba-ocado-use-warehouse-robots/

[12] Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. 2015. Parameterized
algorithms. Vol. 4. Springer.

[13] Edmund H Durfee and Jeffrey S Rosenschein. 1994. Distributed problem solving
and multi-agent systems: Comparisons and examples. In International Distributed
Artificial Intelligence Workshop. 94–104.

[14] Esra Erdem, Doga Gizem Kisa, Umut Oztok, and Peter Schüller. 2013. A general
formal framework for pathfinding problems with multiple agents. In AAAI.

[15] Ariel Felner, Roni Stern, Solomon Eyal Shimony, Eli Boyarski, Meir Goldenberg,
Guni Sharon, Nathan Sturtevant, GlennWagner, and Pavel Surynek. 2017. Search-
based optimal solvers for the multi-agent pathfinding problem: Summary and
challenges. In SOCS.

[16] Richard E Fikes and Nils J Nilsson. 1971. STRIPS: A new approach to the applica-
tion of theorem proving to problem solving. AIJ 2, 3-4 (1971), 189–208.

[17] Dieter Fox, Wolfram Burgard, Hannes Kruppa, and Sebastian Thrun. 2000. A
probabilistic approach to collaborative multi-robot localization. Rob. Res. 8, 3
(2000), 325–344.

[18] Oded Goldreich. 2011. Finding the shortest move-sequence in the graph-
generalized 15-puzzle is NP-hard. In Studies in Complexity and Cryptography.
Miscellanea on the Interplay between Randomness and Computation. Springer, 1–5.

[19] Gilad Goraly and Refael Hassin. 2010. Multi-color pebble motion on graphs.
Algorithmica 58, 3 (2010), 610–636.

[20] Eric J Griffith and Srinivas Akella. 2005. Coordinating multiple droplets in planar
array digital microfluidic systems. Int. J. of Rob. Res. 24, 11 (2005), 933–949.

[21] Yi Guo and Lynne E Parker. 2002. A distributed and optimal motion planning
approach for multiple mobile robots. In ICRA, Vol. 3. 2612–2619.

[22] Dan Halperin, J-C Latombe, and Randall H Wilson. 2000. A general framework
for assembly planning: The motion space approach. Algorithmica 26, 3-4 (2000),
577–601.

[23] Dan Halperin, Oren Salzman, and Micha Sharir. 2017. Algorithmic motion
planning. In Handbook of Discrete and Computational Geometry (3rd ed.), Jacob
E. Goodman Csaba D. Toth, Joseph O’Rourke (Ed.). CRC Press, Inc., Chapter 50,
1307–1338.

[24] Shuai D. Han and Jingjin Yu. 2019. DDM*: Fast Near-Optimal Multi-Robot Path
Planning using Diversified-Path and Optimal Sub-Problem Solution Database
Heuristics. CoRR abs/1904.02598 (2019).

[25] Wolfgang Hönig, Scott Kiesel, Andrew Tinka, Joseph W Durham, and Nora Aya-
nian. 2019. Persistent and Robust Execution of MAPF Schedules in Warehouses.
IEEE Robot. Autom. Lett. 4, 2 (2019), 1125–1131.

[26] Wolfgang Hönig, T. K. Satish Kumar, Liron Cohen, Hang Ma, Hong Xu, Nora
Ayanian, and Sven Koenig. 2016. Multi-Agent Path Finding with Kinematic
Constraints. In ICAPS. 477–485.

[27] James S Jennings, Greg Whelan, and William F Evans. 1997. Cooperative search
and rescue with a team of mobile robots. In International Conference on Advanced
Robotics (ICAR). 193–200.

[28] Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark H. Overmars.
1996. Probabilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Trans. on Robotics & Auto. 12, 4 (1996), 566–580.

[29] Steven M. LaValle. 2006. Planning Algorithms. Cambridge University Press.
[30] Steven M LaValle and Seth A Hutchinson. 1998. Optimal motion planning for

multiple robots having independent goals. IEEE Trans. on Robotics & Auto. 14, 6
(1998), 912–925.

[31] Victor R Lesser. 1995. Multiagent systems: An emerging subdiscipline of AI. ACM
Computing Surveys (CSUR) 27, 3 (1995), 340–342.

[32] Sejoon Lim and Daniela Rus. 2012. Stochastic distributed multi-agent planning
and applications to traffic. In ICRA. 2873–2879.

[33] Minghua Liu, HangMa, Jiaoyang Li, and Sven Koenig. 2019. Planning, Scheduling
and Monitoring for Airport Surface Operations. In AAMAS. 1152–1160.

[34] Minghua Liu, Hang Ma, Jiaoyang Li, and Sven Koenig. 2019. Task and Path
Planning for Multi-Agent Pickup and Delivery. In AAMAS. 1152–1160.

[35] Hang Ma, Wolfgang Hönig, T. K. Satish Kumar, Nora Ayanian, and Sven Koenig.
2019. Lifelong Path Planning with Kinematic Constraints for Multi-Agent Pickup
and Delivery. In AAAI. 7651–7658.

[36] Hang Ma, Jiaoyang Li, TK Kumar, and Sven Koenig. 2017. Lifelong multi-agent
path finding for online pickup and delivery tasks. In AAMAS. 837–845.

[37] HangMa, Craig A. Tovey, Guni Sharon, T. K. Satish Kumar, and Sven Koenig. 2016.
Multi-Agent Path Finding with Payload Transfers and the Package-Exchange
Robot-Routing Problem. In AAAI. 3166–3173.

[38] ShlomiMaliah, Guy Shani, and Roni Stern. 2017. Collaborative privacy preserving
multi-agent planning. JAAMAS 31, 3 (2017), 493–530.

[39] Raz Nissim and Ronen Brafman. 2014. Distributed heuristic forward search for
multi-agent planning. J. Artif. Intell. Res. 51 (2014), 293–332.

[40] BartholomewONnaji. 1993. Theory of automatic robot assembly and programming.
Springer Science & Business Media.

[41] Sameera Poduri and Gaurav S Sukhatme. 2004. Constrained coverage for mobile
sensor networks. In ICRA, Vol. 1. 165–171.

[42] Vinitha Ranganeni, Oren Salzman, andMaxim Likhachev. 2018. Effective Footstep
Planning for Humanoids Using Homotopy-Class Guidance. In ICAPS. 500–508.

[43] Daniel Ratner and Manfred Warmuth. 1990. The (n2 − 1)-puzzle and related
relocation problems. Journal of Symbolic Computation 10, 2 (1990), 111–137.

[44] Samuel Rodriguez and Nancy M Amato. 2010. Behavior-based evacuation plan-
ning. In ICRA. 350–355.

[45] Daniela Rus, Bruce Donald, and Jim Jennings. 1995. Moving furniture with teams
of autonomous robots. In IROS, Vol. 1. 235–242.

[46] Oren Salzman and Dan Halperin. 2015. Optimal motion planning for a tethered
robot: Efficient preprocessing for fast shortest paths queries. In ICRA. 4161–4166.

[47] Oren Salzman and Dan Halperin. 2016. Asymptotically Near-Optimal RRT for
Fast, High-Quality Motion Planning. IEEE Transactions on Robotics 32, 3 (2016),
473–483.

[48] Oren Salzman, Doron Shaharabani, Pankaj K. Agarwal, and Dan Halperin. 2014.
Sparsification of motion-planning roadmaps by edge contraction. Int. J. of Rob.
Res. 33, 14 (2014), 1711–1725.

[49] Oren Salzman, Kiril Solovey, and Dan Halperin. 2016. Motion Planning for
Multilink Robots by Implicit Configuration-Space Tiling. IEEE Robot. Autom. Lett.
1, 2 (2016), 760–767.

[50] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. 2012. Conflict-
Based Search For Optimal Multi-Agent Path Finding. In AAAI.

[51] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. 2013. The increasing
cost tree search for optimal multi-agent pathfinding. Artificial intelligence 195
(2013), 470–495.

[52] Yoav Shoham. 1997. An overview of agent-oriented programming. Software
agents 4 (1997), 271–290.

[53] David Silver. 2005. Cooperative Pathfinding. AIIDE 1 (2005), 117–122.
[54] David Sislak, Přemysl Volf, and Michal Pechoucek. 2010. Agent-based coopera-

tive decentralized airplane-collision avoidance. IEEE Transactions on Intelligent
Transportation Systems 12, 1 (2010), 36–46.

[55] Kiril Solovey, Oren Salzman, and Dan Halperin. 2016. Finding a needle in an
exponential haystack: Discrete RRT for exploration of implicit roadmaps in
multi-robot motion planning. Int. J. of Rob. Res. 35, 5 (2016), 501–513.

[56] Trevor Scott Standley. 2010. Finding Optimal Solutions to Cooperative Pathfind-
ing Problems. In AAAI. 173–178.

[57] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T.
Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman
Barták, and Eli Boyarski. 2019. Multi-Agent Pathfinding: Definitions, Variants,
and Benchmarks. In SOCS. 151–159.

[58] Pavel Surynek. 2010. An optimization variant of multi-robot path planning is
intractable. In AAAI. 1261–1263.

[59] Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. 2016. Efficient SAT
approach to multi-agent path finding under the sum of costs objective. In ECAI.
IOS Press, 810–818.

[60] Herbert G Tanner, George J Pappas, and Vijay Kumar. 2004. Leader-to-formation
stability. IEEE Trans. on Robotics & Auto. 20, 3 (2004), 443–455.

[61] Alejandro Torreño, Eva Onaindia, Antonín Komenda, and Michal Stolba. 2017.
Cooperative Multi-Agent Planning: A Survey. CoRR abs/1711.09057 (2017).

[62] Jur van den Berg, Jack Snoeyink, Ming C. Lin, and Dinesh Manocha. 2009. Cen-
tralized path planning for multiple robots: Optimal decoupling into sequential
plans. In RSS.

[63] GlennWagner andHowie Choset. 2015. Subdimensional expansion formultirobot
path planning. Artificial intelligence 219 (2015), 1–24.

[64] Ko-Hsin Cindy Wang, Adi Botea, et al. 2008. Fast and Memory-Efficient Multi-
Agent Pathfinding.. In ICAPS. 380–387.

[65] Danny Weyns, H Van Dyke Parunak, Fabien Michel, Tom Holvoet, and Jacques
Ferber. 2004. Environments for multiagent systems state-of-the-art and research
challenges. In International Workshop on Environments for Multi-Agent Systems.
1–47.

[66] Danny Weyns, Kurt Schelfthout, and Tom Holvoet. 2005. Exploiting a virtual en-
vironment in a real-world application. In International Workshop on Environments
for Multi-Agent Systems. 218–234.

[67] Peter R Wurman, Raffaello D’Andrea, and Mick Mountz. 2008. Coordinating hun-
dreds of cooperative, autonomous vehicles in warehouses. Artificial intelligence
29, 1 (2008), 9–9.

[68] Jingjin Yu. 2016. Intractability of Optimal Multirobot Path Planning on Planar
Graphs. IEEE Robot. Autom. Lett. 1, 1 (2016), 33–40.

[69] Jingjin Yu. 2019. Average Case Constant Factor Time and Distance Optimal
Multi-Robot Path Planning in Well-Connected Environments. Rob. Res. (2019),
1–15.

[70] Jingjin Yu and Steven M. LaValle. 2012. Multi-agent Path Planning and Network
Flow. InWAFR, Vol. 86. Springer, 157–173.

[71] Jingjin Yu and Steven M. LaValle. 2013. Structure and Intractability of Optimal
Multi-Robot Path Planning on Graphs. In AAAI. 1443–1449.

[72] Jingjin Yu and Steven M. LaValle. 2016. Optimal Multirobot Path Planning on
Graphs: Complete Algorithms and Effective Heuristics. IEEE Transactions on
Robotics 32, 5 (2016), 1163–1177.

[73] Jingjin Yu and Daniela Rus. 2014. Pebble motion on graphs with rotations:
Efficient feasibility tests and planning algorithms. InWAFR. 729–746.

Blue Sky Idea Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1715

	Abstract
	1 Introduction
	2 Related work
	3 MAPF: Challenges & opportunities
	3.1 Hardness of MAPF in warehouse domains
	3.2 Faster MAPF by learning from experience
	3.3 Dec. MAPF with quality guarantees

	4 MAPD: Challenges & opportunities
	4.1 Realistic MAPD models
	4.2 Lifelong learning in MAPD
	4.3 Dec. MAPD as a distributed AI problem

	5 Challenges Beyond MAPF and MAPD
	6 Conclusion
	Acknowledgments
	References

