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ABSTRACT
The next exciting step for large-scaled, data-driven, agent-based
simulations is to make them live. In this article we describe what is
meant by a live simulation, how this concept goes beyond the state
of the art, why this would be transformative in multiple domains,
and a path for achieving this vision. We discuss the major chal-
lenges to building live simulations covering aspects such as (i) data
integration and unification, (ii) time scales and spatial resolutions,
and (iii) simulation model scalability covering both computational
tractability and sparse data, all with an eye on progress on various
fronts that can be integrated towards realizing this vision.
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1 INTRODUCTION
By “live simulations” we mean large-scale, agent-based simulations
that are coupled with real-time data feeds. Supporting this has many
implications, challenges, and applications which we detail using
three application domains ordered by their increased complexity
for creating live simulations:

• Disaster response
• Real-time epidemiology
• Computational social science

In each case, a live simulation would involve live data feeds as
well as a simulation, i.e., models that allows forward projection
from current conditions. In this paper we discuss the challenges in
more detail, as well as ongoing research threads across domains
that together can help realize the vision of live simulations. We
consider this a blue sky idea since (a) it is well beyond the state of
the art, (b) if achieved, it would be transformative, and (c) the path
to achievement is possible but very challenging.

1.1 Disaster Response
The state of the art: Traditionally, it has been hard to obtain data
about population behaviors and mobility during disasters, and con-
sequently, the field of disaster response has largely been driven by
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prospective- and retrospective surveys. In recent years, there have
been attempts at data mining of mobility traces [5] and social media
feeds [40] to enable some real-time tracking of people’s movements
and areas of need. Simulations of disasters have generally focused
on hypothetical scenarios, even in cases of very detailed data-driven
simulations [2]. This has limited the applicability of agent-based
simulations to proofs-of-concept or simple policy evaluations [10].
Why live simulations would be transformative: Live simula-
tions would be transformative in our approach to relief and rescue
efforts. We envision a scenario in which an agent-based simula-
tion could be rapidly “spun-up” when a disaster occurs, would
integrate data from multiple live feeds passively or actively, and
would be used to continually generate short-term possible worlds
based on the latest data updates. Such a platform could be used by
first-responders, incident managers, and policy-makers informing
decisions about where to allocate resources and effort, when to
order evacuations and how to stage them, and how to minimize
harm. They would also be transformative as a research platform for
developing and evaluating theories of behavior and its interaction
with physical processes and physical infrastructure.
Path to achievement: The kinds of data to be gathered include
data about physical conditions (e.g., flooding levels in a hurricane
and conditions of infrastructures such as bridge and building safety)
and data about locations of people. Supporting data collection tech-
nologies include physical sensors such as satellite images, drones,
cellphones, street cameras, which are already in use, and sensors
installed directly on infrastructure. The models needed for the simu-
lation are mainly behavioral models that influence human mobility,
such as when people choose to evacuate. These behaviors are well-
studied in the transportation literature [27]. The timescales of such
simulations would be on the order of hours and days, which high-
lights the need for high-performance computing, but also limits the
scope of variability (as compared to scenarios which last for weeks
or months).

However, there is an enormous amount of work to be done on
the methodological- and the engineering front. New methods are
needed for data fusion to combine data from multiple feeds into a
consistent state estimate, data assimilation to integrate the state
estimate into an agent-based model, risk assessment and active
allocation of resources for further sensing, real-time discovery of
implementable interventions, course of action analysis, and expla-
nation of results. Engineering challenges include building robust
platforms that allow interfacing with a variety of hardware, soft-
ware, and data formats. Sensors can be noisy, unreliable, and can
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break in harsh conditions. Usability and usefulness also need to be
emphasized so that the simulation can easily be run with results
presented in an understandable and actionable way.

1.2 Real-time Epidemiology
The state of the art: Mathematical and computational modeling
in epidemiology has a long history. In the Big Data age, digital
epidemiology has come to the fore, with many kinds of disease
surveillance systems, including sentinel systems [8], participatory
surveillance [6], and social media-based systems [21]. Large-scale,
agent-based simulation also has a long history in this field and
is well-known in the MAS community [36]. However, as in the
case of disaster response, the use of agent-based simulations has
been largely restricted to hypothetical scenarios, with the goal of
policy evaluation or technical/methodological development. Even
in cases of real epidemics where simulations were widely used, such
as the H1N1 outbreak of 2009 [3], setting up the simulations and
generating initial conditions in the right format, etc., were done
manually.
Why live simulations would be transformative: We envision a
scenario where highly spatio-temporally resolved disease surveil-
lance would feed into a continually-running simulation platform
that would allow projection of outbreaks, risk assessment, and
generation of action recommendations, such as rankings of inter-
ventions. The surveillance can include an active or participatory
component, in which case the platform itself can trigger sensing
in areas where more information is judged necessary. This would
work on a global scale, allowing rapid and efficient mobilization
of resources. Simulations are necessary to understand which cases
are likely to turn into large outbreaks, thus allowing appropriate al-
location of scarce resources. They are also necessary to understand
which kinds of interventions will work best for which cases. Done
correctly, this kind of live simulation platform has the potential to
greatly reduce the risk of pandemics and epidemics, and thereby
greatly alleviate the burden of infectious diseases in the world.
Path to achievement: Despite the large amount of research into
disease surveillance systems and into large-scale agent-based sim-
ulations of epidemics, the path to a live simulation platform as
outlined above is considerably more complex than the case of dis-
asters, for several reasons.

One fundamental problem is that disease states cannot be ac-
cessed directly in the way that, e.g., mobility traces can. Diagno-
sis of a disease requires lab tests which may be expensive, time-
consuming to administer and report to a data platform. Even symp-
toms cannot be accessed directly. Thus methods are needed to infer
the true burden of the disease from sparse data, but the lack of
ground truth makes this very difficult. However, at the very least,
we can imagine that current global disease surveillance platforms
can be extended to provide high-resolution spatiotemporal data.
New methods are also needed to do active sensing using such plat-
forms, where the sensing is driven by the model.

On the modeling and simulation front, we need to be able to
build meaningful simulations for regions of the world where the
data collection and availability is very poor. For example, when the
Ebola crisis hit West Africa in 2014, Liberia was the only country
which had a recent population census (dated 2008) with Guinea

and Sierra Leone not having any up-to-date official population
data. If we make the effort to develop a global representation of
the population and their activities in advance, we would be much
better prepared for the next major outbreak. There are various
efforts in this direction, with multiple data sources about popula-
tions [39]and activities [9]becoming available. Much work needs
to be done, however, to create an automatically-updating data re-
source that integrates data from such sources to create synthesized
data sets appropriate for a simulation model.

Since the scale of resources available to respond to pandemics
does not match the scale of the problem, new methods are also
needed for discovering interventions under very tight budget con-
straints. Methodological development is also needed for creating
simulations that take into account human behavior, which is start-
ing to be addressed [32]. However, live data about behaviors is
very hard to obtain, and the challenge of modeling behavior also
includes socio-cultural modeling in a broader sense [25].

The timescale of pandemics generally are on the order of weeks
to months, and there is less of a need for interfacing with physical
hardware for sensing, so the engineering challenges are different
from the ones for disaster simulations. However, there is still the
same need for robustness, interfacing, usability and usefulness, and
simulation analytics.

1.3 Computational Social Science
The state of the art: Agent-based modeling in social science has a
long history, and is a very broad domain, which includes a diverse
range of phenomena such as online discourse, crime, collective
action, opinion dynamics, and more. However, we discuss it here
as one domain because it is generally recognized as such [12] and
because agent-based modeling is recognized as a broadly appli-
cable technology in this domain [24]. This also helps highlight
the breadth of application of live simulations as well as show the
difficulty of applying simulation-based technology to sociological
phenomena. It has also been theorized that many of these phenom-
ena can be understood as facets of an underlying process of social
interaction [17], which could be investigated with precisely the
kind of platform we are proposing.

Recent years have seen increasingly successful application of
computational methods. In particular machine learning and data
mining have been applied to modeling civil unrest and other forms
of collective action [28]and agent-basedmodeling has found success
in multiple applications, including modeling crime [30], incarcera-
tion [23], and technology adoption.

On the whole, however, large-scale agent-based simulations have
not been applied to computational social science at the same scale
as for disaster modeling and epidemiology. This is not surprising be-
cause computational social science, and social science more broadly,
deals with more abstract and nebulous concepts like collective iden-
tity [14], misinformation [11], and social change.The relevant soci-
ological theories can be hard to operationalize into computational
models, and correspondingly hard to validate, which has largely
limited the application of agent-based models to explanation rather
than forecasting or response.

Why live simulations would be transformative: We envision
a scenario in which a live simulation platform would continually
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integrate information about events around the world in combina-
tion with sentiment and opinion from social media and other open
source indicators, with a model of the population and their activity
patterns. This would allow a highly spatiotemporally-resolved anal-
ysis of unfolding events and offer feedback and insight into policy
implementation and its effects on population welfare in real-time.

Such a platform would undoubtedly be very hard to build, but
we argue that its benefits would be unprecedented through mak-
ing democracy and governance more data-driven and transparent,
thereby making it more robust and resilient. We are living in times
of very rapid physical, social, and technological change. This kind
of platform would help us to better prepare for and rapidly adapt
to these changes by providing an ability to assess consequences
of policies in real-time and to optimize allocation of resources for
social good.

Path to achievement:Multiple relevant data sources already exist,
e.g., projects like GDELT, ICEWS,and EventRegistryprovide up to
date news from around theworld, coded inmachine-understandable
forms. Methodology is also progressing for understanding the
spread of information in various online social media [26], for how
these social networks grow, and for relating online and offline
events [29]. Social media analysis is a big research area, far beyond
what we can summarize here, and will evolve as information and
communication technologies themselves change, but these data
sets and insights are important components of a live simulation
research program.

New methods are needed, though, for integration of data from
anonymous platforms such as social media into agent-based simu-
lations. Typically, data-driven agent-based models rely on demo-
graphic matching to integrate data from multiple sources.While
some demographic attributes can be inferred on some platforms,there
are multiple other obstacles to creating a consistent representation
for a simulation. For example, users can have multiple accounts
on the same platform, can assume different roles on different plat-
forms, and can exhibit significantly different opinions and behavior
online and offline. It has also been argued that multi-scale modeling,
integrating cognitive science and social science, is essential to the
proper simulation of human behavior.This is an active area of re-
search from a scientific perspective, so we are quite far from having
well-accepted models of how such integration is to be achieved. An
ongoing challenge in both cognitive science and sociology is how to
operationalize theories in way that allows computational modeling.
Operationalization broadly refers to making a theoretical variable
measurable. A computational simulation, however, requires speci-
fying the cognitive/sociological process algorithmically so that it
can be implemented as an agent, even if only some aspects of this
process are directly measurable. This kind of computational opera-
tionalization is a step beyond what is typically done in cognitive
science and sociology and requires methodological advancement at
the intersection of those fields and the field of multi-agent modeling.

From an engineering perspective, live simulation in computa-
tional social science is challenging because of the range of scales.
It can span multiple timescales because of the range of phenomena.
For example, people can tweet in seconds, but opinions percolate
on Twitter over hours and days; they can lead to social movements

that span weeks or months, or possibly years in the case of sus-
tained social and political efforts. It can also span multiple spatial
scales, from small groups to cities, countries, and the entire world.
Finally, it can span multiple scales of complexity, from simple voter
model-like simulations to very complex reasoning agents. Creating
a live simulation platform that can function at all these scales will
require especially robust, HPC-based designs, sophisticated data
and information management architectures, and real-time analytics
capabilities to complement the live simulations.

2 CHALLENGES
The discussion of three domains in the previous section has high-
lighted some common, general challenges. Before we address those,
there is one very important, overarching challenge: can live simu-
lations be done in a value-sensitive way?

By “value-sensitivity” [15], we mean designing tools in a manner
that is ethical, moral, and respectful of a broad range of human
values, including security, privacy, dignity, fairness, accountability,
and transparency. Values are embedded into every stage of the
design and use of computational tools, whether we are explicitly
aware of them or not. There is a range of potential biases in big data
and numerous “ethical tensions” in their use. When biased data are
uncritically incorporated into response procedures, outcomes can
exacerbate inequality. Live simulations, incorporating streaming
data, are going to require a novel methodology for removing or
compensating for biases. Similarly, great care must be taken with
respect to their use. Over-reliance on any one tool can lead to a
reduction in critical thinking. Privacy is another important issue,
since it is well known that deidentification is not enough. Synthetic
data, combined with differential privacy, may offer a solution in
this regard [4], but much work remains to be done on this front.

Technical challenges. Live simulations face several challenges,
one broad class being efficient, scalable data collection operating
close to real-time. Additionally, sensors providing data feeds may
operate under adverse conditions, and may have inherent uncer-
tainties due to engineering limitations. A computational platform
integrating data collection and simulation models must handle data
volume, variety, velocity, and veracity (the four Vs) in a robust
manner. Naturally, the simulation models residing in this platform
must be designed to flexibly adapt to the scale or resolution of each
V-dimension in a manner that is meaningful for simulations to be
considered live. Designing such an ecosystem of models, data, and
analytical tools in a way that supports, for example, realistic policy
formation is no small task, in particular when one adds the need for
complete provenance tracking of data. The latter may be possible
in constrained environments (e.g., within Python or R) but is a seri-
ous undertaking for more flexible combinations of computational
tools. Naturally, it is desirable that new data sources and suitably
designed simulation models and analytic tools can be integrated
with relative ease in an HCI-sensible manner.

3 RELEVANT RESEARCH
There are number of disparate streams of research that need to be
brought together to create live simulation technology. We discuss
these briefly below, covering data collection, integration, modeling,
system engineering, use, and privacy.
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Data collection, curation, annotation, feature extraction: There
are a number of efforts underway to collect data from multiple
sources during disasters, epidemics, and more broadly about world
events. The sources include social media, news, satellite imagery,
GPS traces, call detail records, and more. These complement data
collection efforts related to population estimation, such as World-
Pop and LandScan, and regular large-scale survey efforts such as
national censuses in many countries, national and multi-national
surveys of activities, health conditions, and attitudes, beliefs, and
behaviors [13].
Data synthesis: Some kinds of data are simply not available, yet
highly relevant to the application domains we have described. An
example is detailed models of the population representing every
individual. In this case, data are collected, e.g., by national censuses,
but are disclosed only at some level of aggregation. Another exam-
ple is the physical contact networks of people which are needed for
simulating disease transmission at high resolution. In this case, data
are impossible to collect through survey methods because most
people do not know all the people they contact during a typical
day. For these scenarios, synthetic population methods have been
developed to create estimates [1]. However, integrating synthetic
population data with live data streams such as above needs both
methodological and engineering innovation. We believe this is an
open area of research that can provide immediate benefits, such as
improving disease forecasting, while also creating a stepping stone
to the broader challenge of creating live simulations.
Data assimilation: New methods are being developed for assim-
ilating data from observations into multi-agent simulations [22].
These methods include filtering-based approaches for state esti-
mation and calibration of agent-based models, as well as visual
environments that allow humans to participate in the situation
assessment process. Scalability and real-time performance are on-
going challenges for these systems, where parallel and distributed
simulation platforms should find immediate application.
Active learning and state estimation: A live simulation could, in
principle, actively trigger information collection efforts where more
information is needed to improve the accuracy of state estimates
and forward projections. In disaster situations, this might require
interfacing with sensing hardware, such as drones, in order to
gather data in areas where communication infrastructure may be
damaged. Research in low-power drone technology for extended
sensing applications is progressing [31].
Prediction and simulation of mobility: In many applications,
the agent model for the simulation requires predicting human mo-
bility (e.g., disaster evacuation, population mixing for epidemics,
and migration in social science). Examples of work include [34],
where methods rely on digital traces, such as GPS or cellphone data,
though possibly anonymized and aggregated. Clearly, methods are
needed for integrating these with a population model for locations
where not everyone has a device generating such a signal, or where
signal detection is limited due to lack of access to data or damaged
infrastructure.
Behavior modeling and inference: Behaviors can vary greatly
across scenarios. For example, disaster behaviors such as evacua-
tion, looking for family members, and aiding and assisting others,
are quite different from behaviors during epidemics (e.g., staying
at home, getting vaccinated.) Simulating behaviors requires both

modeling and inference from data streams in order to accurately
estimate and predict state. There have been several efforts at be-
havior modeling in multi-agent simulations. Evacuation behaviors
have long been studied in the transportation literature. More re-
cently, deep learning methods and inverse reinforcement learning
are being applied to learning behavior models [33]. However, there
is little work that combines behavior modeling in a simulation with
behavior inference from data. This is a promising direction for
methodological advancement.
Platforms for scalable simulation: Platforms for simulation can
be designed with various conceptions of scalability, e.g., computa-
tional scalability, scalability in the scope of data and models that
can be integrated, and scalability in terms of rapid development
and model composability, to name just a few. All these properties
are relevant to a platform for live simulations, and there are lessons
to be learned from each perspective on scalability in the design of
the proposed kind of platform.

There are several computational frameworks and workflow sys-
tems that address parts of the challenges faced by live simulations
(e.g. [38]). Examples of factors limiting these frameworks include
specialization to particular scientific domains, omission of rigorous
provenance tracking, or simply having had design goals that do not
include all the facets needed for live simulation. Other approaches
include Notebook environments, however these have inherent lim-
itations regarding the required scale. Data integration and data
fusion represent a serious challenge with respect to management
and automation. Approaches such as Frictionless Data provide a
clean way to standardize data declarations, in particular for tabular
data.
Simulation analytics: Simulations can produce more data than
they consume. Sense-making with complex simulations can be hard.
New methods for analytics are needed that can exploit the repeata-
bility and completeness of the data generated by a simulation to
generate insights into, e.g., causality [37]. Tools for doing analyt-
ics can also be integrated into the simulation platform to enable
end-to-end analysis in real time. Applications of machine learning
to create response surfaces or surrogate models [20] can also be
integrated into simulation platforms.

4 CONCLUSION
Though the challenges are significant, the opportunities in these
domains are just beginning to be realized [7, 16, 18]. In all these do-
mains, policies and human factors drive outcomes through dynam-
ical interactions. Thus it is important to have a means of “putting
the data into motion” and answering what-if questions [19]. At
the same time, we are not advocating building a simulation of ev-
erything. A notion of adequacy for use is very important [35]. We
believe that live simulations will greatly expand the scope and value
of application of MABS technology in the world.
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