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ABSTRACT
We consider the Contextual Multi-Armed Bandit (ConMAB) prob-

lem for sponsored search auction (SSA) in the presence of strategic

agents. The problem has two main dimensions: i) Need to learn

unknown click-through rates (CTR) for each agent and context

combination and ii) Elicit true bids from the agents. Thus, we ad-

dress the problem to design non-exploration-separated truthful

MAB mechanism in the presence of contexts (aka side information).

Towards this, we first design an elimination-based ex-post mono-

tone algorithm ELinUCB-SB, thus leading to an ex-post incentive

compatible mechanism. M-ELinUCB-SB outperforms the existing

mechanisms available in the literature; however, theoretically, the

mechanism may incur linear regret in some instances. We next de-

sign SupLinUCB-based allocation rule SupLinUCB-S which obtains

a worst-case regret of 𝑂 (𝑛2
√
𝑑𝑇 log𝑇 ) as against 𝑂 (𝑛

√
𝑑𝑇 log𝑇 )

for non-strategic settings; 𝑂 (𝑛) is price of truthfulness. We demon-

strate the efficacy of both of our mechanisms via simulation and

establish superior performance over the existing literature.
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1 INTRODUCTION
The probability of an ad gets clicked, referred to as click-through
rate (CTR), plays a crucial role in SSA. The CTR of an ad is unknown

to the center (auctioneer), but it can learn CTRs by displaying the

ad repeatedly over a period of time. Each agent 𝑖 also has a private

valuation of 𝑣𝑖 for its ad, which represents its willingness to pay for

a click. This valuation needs to be elicited from the agents truthfully.

In the absence of contexts, if the agents report their real valua-

tions, we can model the problem as a Multi-Armed Bandit (MAB)

problem [9] with agents as arms. To elicit truthful bids from the

agents, we can use Mechanism Design [2, 11]. Such mechanisms

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

are oblivious to the learning requirements and fail to avoid manip-

ulations by the agents when learning is involved. In such cases,

the researchers have modeled this problem as a MAB mechanism
[4–8, 10, 12]. The authors designed ex-post truthful (–incentive-
compatible) (EPIC) mechanisms wherein the agents are not able to

manipulate even when the random clicks are known to them. To the

best of our knowledge, contextual information in SSA is considered

only in [6]. The authors proposed a deterministic, exploration-

separated mechanism (we call it M-Reg) that offers strong game-

theoretic properties. However, it faces multiple practical challenges

like high regret, prior knowledge of the number of rounds, and

exploration-separateness, which can cause agents to drop off after

some rounds. We resolve in this paper in the next section.

2 MODEL AND ALGORITHMS
Consider a fixed set of agents N = {1, 2, . . . , 𝑛}, with each agent

having exactly one ad competing for a single slot available to the

center. Before the start of the auction, each agent 𝑖 submits the

valuation of getting a click on its ad as bid 𝑏𝑖 . A contextual 𝑛−armed

MAB mechanismM proceeds in discrete rounds 𝑡 = 1, 2, . . . ,𝑇 . At

each round 𝑡 :

(1) M observes a context 𝑥𝑡 ∈ [0, 1]𝑑 which summarizes the

profile of the user arriving at round 𝑡 .

(2) Based on the history, ℎ𝑡 , of allocations, observed clicks, and

the context 𝑥𝑡 ,M chooses an agent 𝐼𝑡 ∈ N .

(3) M observes 𝑟𝐼𝑡 which is 1 if it gets clicked and 0 otherwise.

No feedback on the other agents.

(4) M determines payment 𝑝𝐼𝑡 ,𝑡 ≥ 0 that 𝐼𝑡 pays to the center.

The payments of other agents are 0.

(5) Update ℎ𝑡 = ℎ𝑡−1 ∪ {𝑥𝑡 , {𝐼𝑡 }, {𝑟𝐼𝑡 }}.
(6) M improves arm-selection strategy with new observation.

To capture contextual information, we assume that the CTR of an

agent 𝑖 is linear in 𝑑-dimensional context 𝑥𝑡 with some unknown

coefficient vector 𝜃𝑖 . Thus CTR for agent 𝑖 at given round 𝑡 is:

𝜇𝑖 (𝑥𝑡 ) = P[𝑟𝑖,𝑡 |𝑥𝑡 ] = 𝜃
⊺
𝑖
𝑥𝑡 . The objective of M is to minimize

social welfare regret which is given as:

R𝑇 (M) =
𝑇∑
𝑡=1

[𝜃𝑇
𝑖∗𝑡
𝑥𝑡 · 𝑏𝑖∗𝑡 − 𝜃

𝑇
𝐼𝑡
𝑥𝑡 · 𝑏𝐼𝑡 ] (1)

Here, 𝑖∗𝑡 (𝑥𝑡 ) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 {𝑏𝑘 · (𝜃𝑇𝑘 𝑥𝑡 )}.
We next present our algorithms, namely ELinUCB-SB and SupLinUCB-

S satisfying ex-post monotonicity, i.e., each agent’s number of clicks

increases with the increase in bid irrespective of the contextual

information and random realization of clicks.
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Algorithm 1 ELinUCB-SB

1: Inputs: 𝑛,𝑇 , 𝛼 ∈ R+, bid vector 𝑏, batch size 𝑏𝑠

2: Initialization: 𝑆𝑎𝑐𝑡 = N, 𝑥 ′ ← 0𝑑×1,𝑇
′
= ⌊ 𝑇

𝑏𝑠
⌋

3: for all 𝑖 ∈ N do
4: 𝐴𝑖 ← 𝐼𝑑 (d-dimensional identity matrix)

5: 𝑐𝑖 ← 0𝑑×1 (d-dimensional zero vector)

6: 𝜇+
𝑖
← 𝑏𝑖 ; 𝜇

−
𝑖
← 0

7: for 𝑡
′
= 1, 2, 3, . . . ,𝑇

′
do

8: 𝐼
𝑡
′ ← 1 + (𝑡 ′ − 1) mod 𝑛

9: if 𝐼
𝑡
′ ∈ 𝑆𝑎𝑐𝑡 then

10: for 𝑡 = (𝑡 ′ − 1)𝑏𝑠, . . . , (𝑡 ′ · 𝑏𝑠 − 1) do
11: Observe context as 𝑥𝑡

12: 𝐼𝑡 ← 𝐼
𝑡
′ ,

13: 𝑥
′ ← ((𝑡 − 1)𝑥 ′ + 𝑥𝑡 )/𝑡 (averaging over contexts)

14: Observe click as 𝑟𝐼𝑡 ∈ {0, 1}
15: 𝐴𝐼𝑡 ← 𝐴𝐼𝑡 + 𝑥𝑡𝑥

⊺
𝑡 , 𝑐𝐼𝑡 ← 𝑐𝐼𝑡 + 𝑟𝐼𝑡 𝑥𝑡 , ˆ𝜃𝐼𝑡 ← 𝐴−1

𝐼𝑡
𝑐𝐼𝑡

16: if 𝜇−
𝐼𝑡

< 𝜇+
𝐼𝑡
then

17: (𝛾−
𝐼𝑡
, 𝛾+

𝐼𝑡
) ← 𝑏𝐼𝑡 ( ˆ𝜃

⊺
𝐼𝑡
𝑥
′ ∓ 𝛼

√
(𝑥 ′ )⊺𝐴−1

𝐼𝑡
𝑥
′ )

18: if max(𝜇−
𝐼𝑡
, 𝛾−

𝐼𝑡
) < min(𝜇+

𝐼𝑡
, 𝛾+

𝐼𝑡
) then

19: (𝜇−
𝐼𝑡
, 𝜇+

𝐼𝑡
) ← (max(𝜇−

𝐼𝑡
, 𝛾−

𝐼𝑡
),min(𝜇+

𝐼𝑡
, 𝛾+

𝐼𝑡
))

20: else

21:

(
𝜇−
𝐼𝑡
, 𝜇+

𝐼𝑡

)
←

(
𝜇−
𝐼𝑡
+𝜇+

𝐼𝑡
2

,
𝜇−
𝐼𝑡
+𝜇+

𝐼𝑡
2

)
22: else
23: for 𝑡 = (𝑡 ′ − 1)𝑏𝑠, . . . , (𝑡 ′ · 𝑏𝑠 − 1) do
24: Observe 𝑥𝑡

25: 𝐼𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑏𝑖 · ( ˆ𝜃𝑇𝑖 𝑥𝑡 ) , ∋ 𝐼𝑡 ∈ 𝑆𝑎𝑐𝑡
26: Observe click as 𝑟𝐼𝑡 ∈ {0, 1}
27: for all agent 𝑖 ∈ 𝑆𝑎𝑐𝑡 do
28: if 𝜇+

𝑖
< max𝑘∈𝑆𝑎𝑐𝑡 𝜇

−
𝑘
then

29: Remove 𝑖 from 𝑆𝑎𝑐𝑡

Intuitiion behind ELinUCB-SB: The algorithm maintains a set of

active agents 𝑆𝑎𝑐𝑡 . Once an agent is evicted from 𝑆𝑎𝑐𝑡 , it can not be

added back. At each round 𝑡 , the algorithm observes context 𝑥𝑡 . It

determines the index of agent 𝐼𝑡 ′ whose turn is to display the ad

based on round robin order (line[8]). The algorithm then checks

if 𝐼𝑡 ′ ∈ 𝑆𝑎𝑐𝑡 . If it evaluates to true the algorithm does exploration

(lines[9-21]) else exploitation (lines[23-26]). It is important to note

that no parameter is updated during exploitation, which is crucial

for the ex-post monotonicity property. At the end of each round,

elimination (lines[27-29]) is donewhich removes the agents 𝑗 ∈ 𝑆𝑎𝑐𝑡
from 𝑆𝑎𝑐𝑡 if UCB of agent 𝑗 is less than LCB of any other agent

in 𝑆𝑎𝑐𝑡 . Update on bounds over the average of context after the

completion of batch allocation handles the variance in contexts and

its arrivals, thus reducing the regret significantly. It can be shown

that eventually, ELinUCB-SB will eliminate all but one arm. Even

though ELinUCB-SB incurs linear regret theoretically, it performs

well in simulation and has interesting monotonicity properties.

Similarly, SupLinUCB-S is derived from SupLinUCB to ensure ex-

post monotonicity.

Theorem 2.1. The allocation rules induced by ELinUCB-SB (Algo-
rithm 1) and SupLinUCB-S (Algorithm 2) are ex-post monotone.

Theorem 2.2. SupLinUCB-S has regret𝑂 (𝑛2
√
𝑑𝑇 ln𝑇 ) with prob-

ability at least 1 − 𝜅 if it is run with 𝛼 =

√
1

2
ln

2𝑛𝑇
𝜅 .

Algorithm 2 SupLinUCB-S

1: Initialization: 𝑆 ← ln𝑇 , Ψ𝑠
𝑖,𝑡
← 𝜙 for all 𝑠 ∈ [ln𝑇 ]

2: for t = 1,2,. . . , T do
3: 𝑠 ← 1 and �̂�1 ← N
4: 𝑗 ← 1 + (𝑡 mod 𝑛)
5: repeat
6: Use BaseLinUCB-Swith {Ψ𝑠

𝑖,𝑡
}𝑖∈N and context vector𝑥𝑡 to calculate

the width 𝑤𝑠
𝑖,𝑡

and upper confidence bound 𝑢𝑐𝑏𝑠
𝑖,𝑡

= (𝑟𝑠
𝑖,𝑡
+ 𝑤𝑠

𝑖,𝑡
) ,

∀𝑖 ∈ �̂�𝑠

7: if 𝑗 ∈ �̂�𝑠 and 𝑤𝑠
𝑗,𝑡

> 2
−𝑠 then

8: Select 𝐼𝑡 = 𝑗

9: Update the index sets at all levels:

Ψ𝑠′
𝑖,𝑡+1 ←

{
Ψ𝑠′
𝑖,𝑡
∪ {𝑡 } if 𝑠 = 𝑠′

Ψ𝑠′
𝑖,𝑡

otherwise

10: else if 𝑤𝑠
𝑖,𝑡
≤ 1√

𝑇
, ∀𝑖 ∈ �̂�𝑠 then

11: Select 𝐼𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖∈�̂�𝑠

𝑏𝑖 · (𝑟𝑠𝑖,𝑡 + 𝑤𝑠
𝑖,𝑡
)

12: Update index sets at all levels for 𝐼𝑡 :

Ψ𝑠′
𝐼𝑡 ,𝑡+1 ← Ψ𝑠′

𝐼𝑡 ,𝑡
, ∀𝑠′ ∈ [𝑆 ]

13: else if 𝑤𝑠
𝑖,𝑡
≤ 2
−𝑠 , ∀𝑖 ∈ �̂�𝑠 then

14: �̂�𝑠+1 ← {𝑖 ∈ �̂�𝑠 |𝑏𝑖 · (𝑟𝑠𝑖,𝑡 +𝑤𝑠
𝑖,𝑡
) ≥ max

𝑎∈�̂�𝑠
𝑏𝑎 · (𝑟𝑠𝑎,𝑡 +𝑤𝑠

𝑎,𝑡 ) −
2
1−𝑠 }

15: 𝑠 ← 𝑠 + 1
16: else
17: Select 𝐼𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑖∈�̂�𝑠
𝑏𝑖 · (𝑟𝑠𝑖,𝑡 + 𝑤𝑠

𝑖,𝑡
)

18: until 𝐼𝑡 is selected

Figure 1: Regret vs Rounds (T)

GameTheoreticAnalysis From the result in [3], an ex-postmono-

tone allocation can be transformed to obtain a mechanismM such

thatM is EPIC and EPIR. As our proposed allocation rules ELinUCB-
SB and SupLinUCB-S are ex-post monotone, we obtain EPIC and

EPIR mechanism. All the details can be found in [1].

3 CONCLUSION
We believe that ours is the first attempt to design a non-exploration

separated ConMAB mechanism. Although our mechanisms are

randomized, they are game theoretically sound and scalable as com-

pared to M-Reg. Further, in terms of regret, M-ELinUCB-SB and

M-SupLinUCB-S outperforms M-Reg in experiments and theoreti-

cally M-SupLinUCB-S matches the regret in non-strategic setting

up to a factor of 𝑂 (𝑛) which is the price of truthfulness.
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