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A common technique to improve learning performance in deep
reinforcement learning (DRL) and many other machine learning
algorithms is to run multiple learning agents in parallel [7, 11]. A
neglected component in the development of these algorithms has
been how best to arrange the learning agents involved to improve
distributed search [1–3, 13]. Here we draw upon results from the
networked optimization literatures [4–6] suggesting that arranging
learning agents in communication networks other than fully con-
nected topologies (the implicit way agents are commonly arranged
in) can improve learning. As shown in Fig. 2, our intuition is that
decentralized communication topologies will lead to clusters of
agents searching different parts of the landscape simultaneously.

Given that network effects are generally only significant with
large numbers of agents, we choose to build upon one of the DRL
algorithms most oriented towards parallelizability and scalability:
Evolution Strategies (ES) [8–10, 12]. To ensure that none of the
modifications we implemented to the ES paradigm to create our
novel Networked Evolution Strategies (NetES) algorithm are caus-
ing improvements in performance, we run a careful ablation study
to control for each modification separately.

Empirically, using the MuJoCo benchmark tasks with 100 agents,
we evaluate NetES on each of the 4 families of communication
topology: Erdos-Renyi, scale-free, small-world and the standard
fully-connected network. As seen in Fig. 1A, Erdos-Renyi strongly
outperforms the other topologies.
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Given the superiority of Erdos-Renyi networks, we focus on
them for all other empirical results going forward - this choice
is supported by our theoretical results which indicate that Erdos-
Renyi would do better on any task.

We run larger networks of 1000 agents on all 5 benchmark re-
sults. As can be seen in Table 1, our Erdos-Renyi networks outper-
form fully-connected networks on all benchmark tasks, resulting
in improvements ranging from 9.8% on MuJoCo Ant-v1 to 798%
on MuJoCo Humanoid-v1. All results are statistically significant
(based on 95% confidence intervals).

Finally, we investigate whether organizing the communication
topology using Erdos-Renyi networks can outperform larger fully-
connected networks. We choose one of the benchmarks that had
a small difference between the two algorithms at 1000 agents, Ro-
boschool Humanoid-v1. As shown in Fig. 1B, an Erdos-Renyi net-
work with 1000 agents provides comparable performance to 3000
agents arranged in a fully-connected network.

Theoretically, we complement these empirical results with an
investigation of why our alternate topologies perform better. We
formalize the capacity of a communication topology to explore the
parameter space as the diversity of parameter updates during each
iteration, which can be measured by the variance of parameter
updates. We provide the proof in the full paper1.

Theorem. In a NetES update iteration 𝑡 for a system with 𝑁 agents
with parameters 𝛩 = {𝜃 (𝑡 )1 , ..., 𝜃
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1Code, JSON experiment files and supplementary available at github.com/d-val/NetES
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Figure 1: A: Erdos-Renyi graphs do best, fully-connected graphs do worst. B: Erdos-Renyi graphs with 1000 agents compared
to varying size fully-connected networks. C: Sparser Erdos-Renyi graphs maximize diversity of parameter updates.

Here, |𝐴𝑙 | =
∑
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In this work, our hypothesis is to test if some networks could do

better than the de facto fully-connected topologies used in state-of-
the-art algorithms. We leave to future work the important question
of optimizing the network topology for maximum performance.
Doing so would require a lower bound, as it would provide us the
worst-case performance of a topology.

Instead, in this section, we are interested in providing insights
into why some networks could do better than others, which can be
understood through our upper-bound, as it allows us to understand
the capacity for parameter exploration of a network topology.

From this result, we see that the diversity of exploration across
agents is likely affected by two quantities that involve the con-
nectivity matrix 𝐴: the first being the term (∥𝐴2∥𝐹 /(min𝑙 |𝐴𝑙 |))2
(henceforth referred to as the reachability of the network), which
according to our bound we want to maximize, and the second being
(min𝑙 |𝐴𝑙 |/max𝑙 |𝐴𝑙 |)2 (henceforth referred to as the homogeneity
of the network), which according to our bound we want to be as
small as possible in order to maximize the diversity of parameter
updates across agents. Reachability and homogeneity are not in-
dependent, and are statistics of the degree distribution of a graph.
It is interesting to note that the upper bound does not depend on
the reward landscape 𝑅(·) of the task at hand, indicating that our
theoretical insights should be independent of the learning task.

Using the above definitions for reachability and homogeneity,
we generate random instances of each network family, and plot
them in Fig. 1C. Two main observations can be made from this
simulation: 1) Erdos-Renyi networks maximize reachability and
minimize homogeneity, which means that they likely maximize the
diversity of parameter exploration. 2) Fully-connected networks
are the single worst network in terms of exploration diversity (they
minimize reachability and maximize homogeneity, the opposite
of what would be required for maximizing parameter exploration
according to the suggestion of our bound).

These theoretical results agree with our empirical results: Erdos-
Renyi networks perform best, followed by scale-free networks,
while fully-connected networks do worse.

Figure 2: A: In DRL, agents search the same local area and
communicate in a fully connected network. B: In NetES,
agents are embedded in a sparser topology where clusters
of agents search different parts of the landscape.

Type Task Fully-connected Erdos Improv. %

MuJoCo Ant-v1 4496 4938 9.8
MuJoCo HalfCheetah-v1 1571 7014 346.3
MuJoCo Hopper-v1 1506 3811 153.1
MuJoCo Humanoid-v1 762 6847 798.6
Roboschool Humanoid-v1 364 429 17.9

Table 1: Improvements from Erdos-Renyi networks with
1000 nodes compared to fully-connected networks.

In summary, we extended ES, a DRL algorithm, to use alternate
network topologies and empirically showed that the de facto fully-
connected topology performs worse in our experiments. We also
performed an ablation study by running controls on all the mod-
ifications we made to the ES algorithm, and we showed that the
improvements we observed are not explained away by modifica-
tions other than the use of alternate topologies (ablation results
in full paper). Finally, we provided theoretical insights into why
alternate topologies may be superior, and observed that our the-
oretical predictions are in line with our empirical results. Future
work could explore the use of dynamical topologies where agent
connections are continuously rewired to adapt to the local terrain
of the research landscape.
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