
Evolving Meta-Level Reasoning with Reinforcement Learning
and A* for Coordinated Multi-Agent Path-planning

Extended Abstract

Mona Alshehri
Imam Abdulrahman Bin Faisal University,

Saudi Arabia
Massey University, New Zealand

Maalshehri@iau.edu.sa

Napoleon Reyes
Massey University, New Zealand

N.H.Reyes@massey.ac.nz

Andre Barczak
Massey University, New Zealand

A.L.Barczak@massey.ac.nz

ABSTRACT
This work presents an extension to a graph-based evolutionary
algorithm, called Genetic Network Programming with Reinforce-
ment Learning (GNP-RL) to make it more amenable for solving
coordinated multi-agent path-planning tasks in dynamic environ-
ments. We improve the algorithm’s ability to evolve meta-level
reasoning strategies in three aspects: genetic composition, search
and learning strategies, using optimal search algorithm, constraint
conformance and task prioritization techniques.

KEYWORDS
Evolutionary algorithms; Learning agent capabilities; Multi-agent
learning; Reinforcement learning; Optimal Search

ACM Reference Format:
Mona Alshehri, Napoleon Reyes, and Andre Barczak. 2020. Evolving Meta-
Level Reasoning with Reinforcement Learning and A* for Coordinated
Multi-Agent Path-planning. In Proc. of the 19th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland, New
Zealand, May 9–13, 2020, IFAAMAS, 3 pages.

1 INTRODUCTION
In 2000, a new algorithm emerged from Genetic Programming,
called genetic network programming (GNP) [2]. This algorithm
uses a concise graph structure to represent the chromosomes. Each
graph has a number of nodes including one start node, processing
(action) nodes, and judgment (query) nodes, but without a termi-
nal node. Each node could be visited more than once, and from
more than one agent (Fig.2). In 2007, reinforcement learning (RL)
using the Sarsa algorithm [9] was added to the GNP algorithm,
allowing the algorithm to solve more complex problems. It allowed
for the incorporation of several sub-nodes within each computa-
tional node and run the RL to learn which subnode is the best. This
algorithm, called (GNP-RL) [5], has achieved better results than
previous genetic-based architectures in solving many problems
such as inculcating wall following behaviour in robots [4], stock
trading modelling [11], mobile robot navigation [8], and the tile
world problem [5]. Other algorithms may also be incorporated as a
node in GNP-RL, such as fuzzy logic in [10] and [8].

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

 A2 A3

 T3 T2

 H2 L1 T1 H1

 A1 H3

A Agent
T Tile
H Hole
 Floor
 Obstacle

Queries:

1- What is at the front?
2- What is at the back?
3- What is on the right?
4- What is on the left?
5- Direction to the nearest tile.
6- Direction to the nearest hole.
7- Direction to the second nearest tile.
8- Direction from the nearest tile to the

nearest hole.

Actions:

1- Go forward.
2- Turn left.
3- Turn right.
4- Do nothing.

Figure 1: Challenges of evolving a meta-level reasoning
strategy

2 CHALLENGES OF EVOLVING A
META-LEVEL REASONING STRATEGY

A meta-Level reasoning strategy is evolved in the form of a graph,
comprising of computational nodes (Fig. 2) The graph is evolved
using the mechanisms of GNP, while RL refines the graph solutions,
as the agent interacts with a dynamic environment. A* on the other
hand is used in a variety of judgement (query) nodes.

In order to illustrate the significance of evolving a meta-level
reasoning strategy, we have (Fig. 1) demonstrating one scenario
in the Tile world problem [7] : an Agent (A1) is supposed to push
the nearest tile (T1), into the nearest Hole (H1). Using A*, it can be
seen that the optimal path between the agent and T1 is the one that
eventually leads towards the right-hand side of tile T1. However,
in order to accomplish the task, the Agent should actually push the
tile T1 to the right towards hole H1. Apart from identifying the
optimal paths, path-planning for this problem also needs to take
into account the trap locations (e.g. L1 – if the Tile lands here, it
will get trapped as the robot is not allowed to pull any of the tiles),
as well as Agent (A3) who is in contention with Agent (A1) for tile
T1. All these combinations of constraints checking, optimal path-
planning, sensor querying (judgements) and taking actions needs to
be logically and hierarchically arranged by the GNP-RL algorithm,
requiring some levels of abstraction, in order to formulate a graph
solution that generalises to different arrangements of the world.

3 GNP-RL WITH A* FRAMEWORK
The GNP works in tandem with the RL algorithm to find the best
solution, represented as a graph. The algorithm starts with a random
population of chromosomes (solutions), and each chromosome is
composed of a number of nodes (genes). In turn, each node is
comprised of a maximum number of sub-nodes, possessing three
main characteristics: (Q-value for choosing the subnode, sub-node
ID to identify the associated function, and connections that direct
to the next nodes). In this work, we modified the chromosome
structure presented in [5], in order to detect and handle conflicting

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1744

Gene (node) {Judgment node}

1 2

4
69

11

51
3

47
12

Sub-node 0
ID

Connections

Chromosome (individual)

 Sub-node 4
ID

Connections

Node id = 3
Node type = 1
Delay time = 1

1

4

111

Trapped Node
Sub-node 0

ID = 1
Connections

Gene (node) {Processing node}

4 sub nodes (maximum)

Sub-node 4
ID = 2

Connections
 Node id = 69

Node type = 2
Delay time = 5

1
0

6

Figure 2: Chromosome Structure
situations (see Fig.2a). The new structure makes use of two output
pathways: one if conflict was detected, and another otherwise.

Before running the GNP-RL, firstly, identify all queries and ac-
tions (Fig. 1) that may be utilised by the agent, as well as all the
conflicting situations that may occur in the problem domain, then
incorporate the appropriate functions (into the library of functions
for which GNP-RL selects from) that implement them. Secondly,
apply the optimal search algorithm to order the tasks required for
each agent, allowing for the distribution of the tasks to each of
the agents without requiring any communications between them.
Thirdly, create N (e.g.300) individuals randomly as part of the initial
population using the same techniques in [6].

The algorithm takes the following inputs, each time an agent
visits a node in the graph: locations of agents L, set of actions A
(processing functions), set of queries (judgment functions), set of
constraints C (conflict situations), set of priorities P (the sorted
tasks), set of rewards A (rewards for each <state,action/query>),
set of states S, and set of objects O (contains all the objects in
the environment). Algorithm 1 provides the steps for executing a
node, utilising optimal search, constraint conformance, and task
prioritization techniques to operate in a dynamic environment. The
output of each node call directs the agent to the next node in the
graph. The A* algorithm was utilised for identifying the nearest
object, and the shortest path to this object.

𝑄𝑖𝑝 = 𝑄𝑖𝑝 + (𝛼 ∗ (𝑅𝑒𝑤𝑎𝑟𝑑 + (𝛾 ∗𝑄 𝑗𝑞) −𝑄𝑖𝑝)) [5] (1)

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =

𝐸𝑁𝑉∑
𝑒𝑛𝑣=1

[(𝑎 ∗ 𝐷𝑡𝑖𝑙𝑒) + (𝑏 ∗ 𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) + (𝑐 ∗𝑇𝑟𝑒𝑚𝑎𝑖𝑛)] (2)

To evaluate a chromosome, the reinforcement learning is run on
this chromosome for the three agents, on the tile world environ-
ments using equation 1 for updating the Q-value. Ten environments
were used for each training and testing sets. The training set is the
same training environment used in [6], while Testing set 1 is the
same with [6]. We produced Testing set 2 to be similar in complexity
with Li et al’s work [3]. Finally, after executing the chromosome
on the training environments, the fitness function is calculated
using equation 2, which was modified from [6]. The settings of the

0

5

10

15

20

25

30

35

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750

GNP-RL VSGNP-RL GNP-RL-CC GNP-RL-CC-OS GNP-RL-CC-OS-TP

Figure 3: Training Results on Set 1

weights a,b, and c depends on the size of the environment (the full
details is in [1]).

Crossover & Mutation: We employed crossover and mutation
techniques similar to [5], but we relaxed the way crossover is per-
formed; that is, not limiting the operation only to nodes with the
same IDs.

Algorithm 1 General Node Execution

1: Inputs: current locations of Agents L, Set of actions A[], Set
of queries Q[], Set of constraints C[], Set of priorities P[], Set
of Rewards R[], Set of States S[], objects in the environment
O[]

2: Output: nextNode
3: if NodeType is an Action Node then
4: With probabilistic selection a in A[] based on Q-value
5: if a causes any conflict c in C[] then
6: 𝑅𝑒𝑤𝑎𝑟𝑑 ← -low reward from R[]
7: 𝑁𝑒𝑥𝑡𝑁𝑜𝑑𝑒 ← 𝑓 𝑖𝑟𝑠𝑡_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 ⊲ deal with conflict
8: else
9: Apply action a, update state s
10: if ((a,s) has priority p in P[]) then
11: 𝑟 = 𝑅 [𝑝] ⊲ includes both punishments and rewards
12: end if
13: 𝑁𝑒𝑥𝑡𝑁𝑜𝑑𝑒 ← 𝑠𝑒𝑐𝑜𝑛𝑑_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 ⊲ without conflict
14: end if
15: else if NodeType is a Query Node then
16: With probabilistic selection q in Q[] based on Q-value
17: if q is a directional query then
18: path = A*(q,L,O) ⊲ use the A* algorithm to answer q
19: response = q(Direction(first_waypoint(path)))
20: else
21: response = q()
22: end if
23: 𝑁𝑒𝑥𝑡𝑁𝑜𝑑𝑒 ← 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒)
24: end if
25: Update Q-value(r)
26: Goto the 𝑁𝑒𝑥𝑡𝑁𝑜𝑑𝑒

4 SUMMARY
Using training set (1), we trained and tested 5 different algorithms.
Each of the experiments ran for 5000 generations (on both training
& testing stages) for GNP-RL, VSGNP-RL, GNP-RL with constraint
conformance (GNP-RL-CC), GNP-RL with Optimal search and con-
straint conformance (GNP-RL-CC-OS), and GNP-RL with task pri-
ority optimal search and constraint conformance (GNP-RL-CC-OS-
TP). Fig.3 shows the dynamic training accuracy for the algorithms
when running the RL with both exploration and exploitation modes
on the GNP graph, in terms of the number of correctly dropped
tiles for each generation. It is clear that GNP-RL-CC-OS-TP reached
the top performance the earliest.

In the testing stage, the best chromosome was found in GNP-RL-
CC-OS-TP, which was able to achieve 100% accuracy in training set
(1), and (29/30) 96.66% of accuracy in the Testing set (1) as compared
to a previous best result of 43.3% using (VS-DGNP) [6], and 29/30
(96.66%) in the Testing Set (2) vs. the best in the literature 63.3% [3].

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1745

REFERENCES
[1] Mona Alshehri. 2019. Genetic network programming with reinforce-

ment learning and optimal search component : a thesis presented in
partial fulfilment of the requirements for the degree of Master of Sci-
ence in Computer Sciences at Massey University, Auckland, New Zealand.
http://ezproxy.massey.ac.nz/login?url=http://search.ebscohost.com/login.aspx?
direct=true&db=cat00245a&AN=massey.b4735499&site=eds-live&scope=site

[2] Hironobu Katagiri, Kotaro Hirasama, and Jinglu Hu. 2000. Genetic network
programming - application to intelligent agents. In Proceedings of the IEEE
International Conference on Systems, Man & Cybernetics: "Cybernetics Evolv-
ing to Systems, Humans, Organizations, and their Complex Interactions", Sher-
aton Music City Hotel, Nashville, Tennessee, USA, 8-11 October 2000. 3829–3834.
https://doi.org/10.1109/ICSMC.2000.886607

[3] Xianneng Li, Meihua Yang, and Shizhe Wu. 2018. Niching genetic network
programming with rule accumulation for decision making: An evolutionary rule-
based approach. Expert Syst. Appl. 114 (2018), 374–387. https://doi.org/10.1016/j.
eswa.2018.07.041

[4] Shingo Mabu, Hiroyuki Hatakeyama, Kotaro Hirasawa, and Jinglu Hu. 2006.
Genetic Network Programming with Reinforcement Learning Using Sarsa Al-
gorithm. In IEEE International Conference on Evolutionary Computation, CEC
2006, part of WCCI 2006, Vancouver, BC, Canada, 16-21 July 2006. 463–469.
https://doi.org/10.1109/CEC.2006.1688346

[5] Shingo Mabu, Kotaro Hirasawa, and Jinglu Hu. 2007. A Graph-Based Evolu-
tionary Algorithm: Genetic Network Programming (GNP) and Its Extension
Using Reinforcement Learning. Evolutionary Computation 15, 3 (2007), 369–398.

https://doi.org/10.1162/evco.2007.15.3.369
[6] Shingo Mabu, Kotaro Hirasawa, Masanao Obayashi, and Takashi Kuremoto. 2014.

A variable size mechanism of distributed graph programs and its performance
evaluation in agent control problems. Expert Syst. Appl. 41, 4 (2014), 1663–1671.
https://doi.org/10.1016/j.eswa.2013.08.063

[7] Martha E. Pollack and Marc Ringuette. 1990. Introducing the Tileworld: Ex-
perimentally Evaluating Agent Architectures. In Proceedings of the 8th National
Conference on Artificial Intelligence. Boston, Massachusetts, USA, July 29 - August
3, 1990, 2 Volumes. 183–189. http://www.aaai.org/Library/AAAI/1990/aaai90-028.
php

[8] Siti Sendari, Shingo Mabu, Andre Tjahjadi, and Kotaro Hirasawa. 2011. Fuzzy
Genetic Network Programming with Noises for Mobile Robot Navigation. JACIII
15, 7 (2011), 767–776. https://doi.org/10.20965/jaciii.2011.p0767

[9] Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement learning - an intro-
duction. MIT Press. http://www.worldcat.org/oclc/37293240

[10] Wenhan Wang. 2014. Genetic network programming with fuzzy reinforce-
ment learning nodes for multi-behaviour robot control : a thesis presented
in partial fulfilment of the requirements for the degree of Masters of Sci-
ence in Computer Science, Massey University, Albany campus, New Zealand.
http://ezproxy.massey.ac.nz/login?url=http://search.ebscohost.com/login.aspx?
direct=true&db=cat00245a&AN=massey.b3284741&site=eds-live&scope=site

[11] Yang Yang, Zhaoping He, Shingo Mabu, and Kotaro Hirasawa. 2012. A Coopera-
tive Coevolutionary Stock Trading Model Using Genetic Network Programming-
Sarsa. JACIII 16, 5 (2012), 581–590. https://doi.org/10.20965/jaciii.2012.p0581

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1746

http://ezproxy.massey.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat00245a&AN=massey.b4735499&site=eds-live&scope=site
http://ezproxy.massey.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat00245a&AN=massey.b4735499&site=eds-live&scope=site
https://doi.org/10.1109/ICSMC.2000.886607
https://doi.org/10.1016/j.eswa.2018.07.041
https://doi.org/10.1016/j.eswa.2018.07.041
https://doi.org/10.1109/CEC.2006.1688346
https://doi.org/10.1162/evco.2007.15.3.369
https://doi.org/10.1016/j.eswa.2013.08.063
http://www.aaai.org/Library/AAAI/1990/aaai90-028.php
http://www.aaai.org/Library/AAAI/1990/aaai90-028.php
https://doi.org/10.20965/jaciii.2011.p0767
http://www.worldcat.org/oclc/37293240
http://ezproxy.massey.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat00245a&AN=massey.b3284741&site=eds-live&scope=site
http://ezproxy.massey.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat00245a&AN=massey.b3284741&site=eds-live&scope=site
https://doi.org/10.20965/jaciii.2012.p0581

	Abstract
	1 Introduction
	2 CHALLENGES OF EVOLVING A META-LEVEL REASONING STRATEGY
	3 GNP-RL with A* Framework
	4 SUMMARY
	References

