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ABSTRACT

Reinforcement learning algorithms have been shown to converge
to the classic replicator dynamics of evolutionary game theory,
which describe the evolutionary process in the limit of an infi-
nite population. However, it is not clear how to interpret these
dynamics from the perspective of a learning agent. In this paper
we propose a data-inefficient batch-learning algorithm for tempo-
ral difference Q learning and show that it converges to a recently
proposed deterministic limit of temporal difference reinforcement
learning. In a second step, we state a data-efficient learning algo-
rithm, that uses a form of experience replay, and show that it retains
core features of the batch learning algorithm. Thus, we propose an
agent-interpretation for the learning dynamics: What is the infinite
population limit of evolutionary dynamics is the infinite memory
limit of learning dynamics.
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1 INTRODUCTION

The link between evolutionary game theory and multi-agent re-
inforcement learning has proven itself useful to gain improved,
qualitative insights into the resulting collective learning dynamics
of a multi-agent system [5]. The relationship between the two fields
is as follows: one population with a frequency over phenotypes in
the evolutionary setting corresponds to one agent with a frequency
over actions in the learning setting [22]. In their seminal work,
Borgers and Sarin showed how one of the most basic reinforce-
ment learning update schemes, Cross learning [7], converges to the
deterministic replicator dynamics of evolutionary games theory
[6]. Likewise, the convergence to the replicator dynamics has been
shown for single-state Q learning [21, 23].

This deterministic - sometimes also called evolutionary - limit
can be taken in multiple ways. In continuous time, the learning rate
is sent to zero [21, 23]. In discrete time, the batch size of a batch
learning algorithm is sent to infinity [4, 9-11]. In essence, both
ways assume that policy updates occur on much slower time scales
than actual interactions with other agents and the environment.
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So far the majority of learning dynamics studies focused on
single-state repeated games. Previous work on learning dynamics
which consider more realistic multi-state environments combine
replicator dynamics with switching dynamics between cell parti-
tions of the state space of the dynamical system [12, 13, 24]. They
consider an average reward setting, whereas in Q learning a dis-
counted reward is commonly used. Only recently, an analytical
method to derive the deterministic, discrete-time limit of temporal
difference reinforcement learning with discounted rewards was
proposed [2]. However, it is unclear how the temporal difference
batch learning algorithm must be constructed, such that its learning
trajectories through policy space can converge to the ones of the
deterministic learning equations under large batch size. This lack
of connection between algorithmic implementation and analytical
equations make an agent-interpretation of this deterministic limit
difficult.

Taken together, it is therefore still an open question how to
interpret the deterministic, evolutionary, limit in the context of
reinforcement learning agents. The classic replicator equations
have a clear interpretation. They model the dynamics of an infinite
population evolving under the pressures of selection [15].

2 METHODS

In this work, we propose to interpret the deterministic, evolutionary,
limit of reinforcement learning as learning in the infinite memory
limit. We do so by comparing the deterministic temporal differ-
ence reinforcement learning dynamics (DetRL) [2] against three
algorithms (see below). As a testbed, we use two environments: a
single-agent two-actions two-states environment, modeling an in-
tertemporal risk-reward dilemma [3]; and a two-agents two-actions
two-states Matching Pennies game, [12], which presents a chal-
lenge of coordination. We let each algorithm update its policy for a
100 times.

3 ALGORITHMS

Research activity on batch reinforcement learning has grown sub-
stantially in recent years [17]. In this work, we exclusively use the
tabular case (without function approximation) and thus, focus on
the issue of data efficiency [25].

3.1 Sample-Batch

First, we propose a novel, data-inefficient, sample-batch reinforce-
ment learning algorithm for Q learning (SBATCH). Key to its per-
formance is the separation of the state-action values into two data
structures, one for the value estimation inside the batch, the other
for acting outside the batch. Since the agent interacts physically
with the environment during the interaction phase, SBATCH re-
quires many interaction steps and is therefore highly data-inefficient.
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Figure 1: Comparison between the DetRL dynamics (dark red dashed line) and the SBATCH, CorrER and ER algorithms (light
blue straight lines) for various batch sizes K; shown are policy spaces of one state, i.e., the probability of playing action 1 on
the x-axes for agent 1 and on the y-axes for agent 2; on top for a single-agent intertemporal risk-reward dilemma; on the
bottom for the multi-agent two-state Matching pennies game. We let each algorithm adapt its behavioral policy a 100 times.
Resulting interaction steps required with the environment are shown in the middle. SBatch matches the deterministic limit
increasingly well under increasing batch size K, however at the cost of increasing interaction steps, which make SBatch highly
data-inefficient. CorrER and ER require only 5100 interaction steps for a batch size of K = 5000 and are therefore highly data-
efficient. For the single-agent environment the trajectories of CorrER match well with the ones of the deterministic limit, in
contrast to the ones of ER. However, for the multi-agent environment CorrER fails to gain similarity to the deterministic limit
because it does not take into account the actions of the other agents.

Fig. 1 shows that SBATCH converges indeed to the learning
trajectories of DetRL, both, for the single- and the multi-agent
environment. However, it requires many interactions with the en-
vironment, proportional to the batch size, and is therefore highly
data-inefficient.

3.2 Correlated Experience Replay

Second, we transform the data-inefficient batch learning algorithm
into a data-efficient learning algorithm, which uses a form of experi-
ence replay. Thus, we shift the batch of actual interactions with the
environment into the memory of the agent. In contrast to popular
uses of experience replay with neural network function approxi-
mation [17], we use correlated experiences to be replayed to the Q
update of the agent. Therefore we term it CorrER.

Fig. 1 shows that it retains core features of the batch learning
algorithm, in contrast to an experience replay variant without cor-
related experiences (ER), when used within a single-agent environ-
ment. However, when used in the multi-agent environment, CorrER
trajectories were not closer to the one of DetRL than the ones of
ER because CorrER does not take into account the actions of the
other agents. This suggests that DetRL - interpreted in the infinite
memory limit - represent a form of joint-action learning.

4 CONCLUSION

Taken together, we provide an individual agent interpretation for
the dynamics of learning. The deterministic limit of reinforcement
learning, which results from a time-scale separation of interaction
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and adaptation, is like learning under infinite joint-action mem-
ory. Although derived from independent, model-free learners, this
suggests that these dynamics represent a form of model-based joint-
action reinforcement learning.

Especially when the evolutionary process is understood as a form
of social, cultural learning [14] we can state this equivalence as
follows. Evolutionary imitation learning from others’ experience in
an infinite population of equals resembles individual learning from
own experience under infinite memory of joint-action observations.
What is the infinite population limit of evolutionary dynamics is
an infinite memory limit of learning dynamics.

This result is of potential use for broadening the scope of previous
research in ecology and economics, where an infinite population
approximation is often used to study the convergence to equilibria
[8, 16, 18—20]. Our work suggests that these results apply also to
finite populations with large memory.

Furthermore, we hope that our results contribute to a better
understanding of the dynamics of collective reinforcement learning.
Such an understanding is crucial in order to put the study of collec-
tive learning dynamics into practical use for overcoming critical
challenges of multi-agent reinforcement learning, such as nonsta-
tionarities, the curse of dimensionality of the joint-state-action
space, the increased number of hyper parameters, coordination
needs, and the possibility of social dilemmas [1].
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