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ABSTRACT

When dealing with election data it is reasonable to assume that the

votes are incomplete or noisy. The reasons are manifold and range

from cost-intensive elicitation to manipulation. We study the impor-

tant questions of evaluating elections with incomplete data and the

robustness of elections with noisy data from a computational point

of view. To capture different motivations, we consider three models

for the distribution of preferences: the uniform distribution over

the completions of incomplete preferences inspired by the possible

winner problem, the dispersion around complete preferences, also

called Mallows noise model, and a model in which the distribution

over the votes of each voter is explicitly given. We consider both

approval vector preferences and linear order preferences and show

that the complexity of the problem can vary greatly depending on

the voting rule, the distribution model, and the parameterization.
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1 INTRODUCTION

Elections are an integral part of any democracy, be it for the col-

lective decision-making of a whole country or just for any group

of people, a sports club or employees of a company. In addition to

these classic applications, elections are also considered in connec-

tion with software agents and automation. Here, the applications

of elections range from multi-agent planning (see, e.g., Ephrati and

Rosenschein [6]) and meta-search engines (see, e.g., Dwork et al.

[5]) to recommender systems (see, e.g., Ghosh et al. [8]) and email

classification (see, e.g., Cohen et al. [3]). In the classic case, we

assume that we have perfect knowledge about the preferences of

the voters or agents regarding the candidates or alternatives and

are able to use a voting rule to determine the, with respect to the

specific rule, rightful winners. However, in many realistic scenarios,

we can not assume that we have perfect information about voter

preferences. Nevertheless, a decision must often be made or at least

in some way a result of the election must be presented. The reasons

for imperfect election data are manifold. First, we often can not

assume that the election data we receive is complete. In the case
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of actual elections, the collection of complete election data is often

cost-intensive, complicated, or simply not possible under the given

circumstances. The same holds for the creation of election forecasts

based on partial data aggregated from social networks or polls,

where a complete collection of election data is not appropriate. On

the other hand, even if we receive complete election data, in many

situations we can not assume that it has not been corrupted in trans-

mission, by manipulation, or through the elicitation itself. In these

situations, the question arises how robust and thereby justified a

candidate’s victory is if we assume that the election data has been

corrupted to a certain degree.

Therefore, we study the problem of determining the probability

that a particular candidate wins an election for a given distribution

over the preferences of the voters. Conitzer and Sandholm [4] were

the first to study this problem and called it the evaluation problem.

The relevance of the problem is immense, as it captures many dif-

ferent, and in particular the previously presented, scenarios, such

as the winner determination on incomplete data, the creation of

election forecasts, and the examination of the justification or robust-

ness of a candidate’s victory if corruption of the data is possible. To

cover those different motivations, we consider three models for the

distribution of preferences: the uniform distribution over the com-

pletions of incomplete preferences inspired by the possible winner

problem (see Bachrach et al. [1]), the dispersion around complete

preferences, also called Mallows noise model (see Mallows [10]),

and a model in which the distribution over the votes of each voter

is explicitly given (see Conitzer and Sandholm [4]).

2 SCENARIO

Formally an election is a pair (C,V ), with C = {c1, . . . , cm } with

m ≥ 2 being the set of candidates and V = (v1, . . . ,vn ) with n ≥ 1

a profile consisting of n votes over C . We consider the two most

prominent types of votes: approval vectors and linear orders. In the

case of approval vectors, we use approval voting (AV) to determine

the winners. By k-AV we denote the variant of AV in which each

voter must distribute exactly k approvals with fixed k ≥ 1 form > k .
In the case of linear orders we consider positional scoring rules,

namely k-approval and k-veto with fixed k ≥ 1 form > k, Borda
and the scoring rule characterized by the vector (2, 1, ..., 1, 0). Note

that k-AV and k-approval essentially describe the same voting rule

and differ only in the amount of information we are given about

the preferences of the voters, since for k-approval we additionally
have given rankings over all candidates. Interestingly, this very

distinction leads to differing complexity results in some cases, as

we will see later. In the course of this work we also encounter

elections with partial information, in the form of partial profiles, i.e.

profiles consisting of partial votes. In the case of approval vectors,
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Table 1: Complexity results for E-Evaluation in the non-unique winner case.

PPIC Mallows EDM

general const. n general const. n general const. n

AV FP FP #P-hard FP

k-AV (k ≥ 1) #P-hard FP ? FP #P-hard FP

k-approval (k ≥ 1),

k-veto (k ≥ 1),

(2, 1, . . . , 1, 0) #P-hard

#P-hard

(n = 1)

#P-hard FP

#P-hard FP

Borda #P-hard FP (n = 1)

a partial vote is represented by an approval vector in which entries

may be undetermined. In the case of linear orders, a partial vote

consists of a partial order over the set of candidates that is, an

irreflexive and transitive, but on the contrary to linear orders, not

necessarily connex relation. The set of all possible completions of a

profile Ṽ consisting of partial votes is denoted by Λ(Ṽ ).

As mentioned earlier, there may be some uncertainty about the

votes in elections due to several reasons or an election should be

evaluated according to some predictions. Thus we assume some

distribution over possible profiles, and then investigate the problem

of determining the winning probability of a certain candidate. This

is formalized as follows for a given voting rule E.

E-Evaluation

Given: A set of candidates C , a distribution P of profiles over C ,

and a candidate p ∈ C .

Question: What is the probability Φ that p is a winner of the election

with respect to E assuming P?

Here we focus mainly on the non-unique winner case. The distri-
bution as part of the input means that the respective distribution

is specified by the necessary parameters as part of the input. In

the following we will present the three distributions for profiles

considered in this paper.

PPIC. The first distribution model we consider is the normalized

variant of the possible winner motivated model of Bachrach et

al. [1]. We refer to this model as partial profile impartial culture
model (PPIC). Given a set of candidates C , a partial profile Ṽ =
(ṽ1, . . . , ṽn ) over C . The probability of a profile V = (v1, . . . ,vn )
over C according to PPIC is given by PrPPIC(V | Ṽ ) = 1/|Λ(Ṽ ) |.

Thereby, each completion of the partial profile is equally likely,

hence ‘impartial culture’. Referring back to the motivations stated

at the beginning, PPIC covers the scenarios in which we want to

make an election forecast based on partial data aggregated from

social networks or polls, or perform a winner determination on

partial data. Note, that for linear orders, the computation of the

probability of a given profile is #P-hard, since the calculation of the

normalization |Λ(Ṽ )| itself is already a #P-hard problem as shown

by Brightwell and Winkler [2].

Mallows. The second model we are considering is the Mallows
noise model (Mallows [10]). The basic idea is that some reference

profile is given, and the probability of another profile is measured

according to its distance to the reference profile. Given a set of

candidates C , a profile V̂ = (v̂1, . . . , v̂n ) over C and dispersion φ ∈

(0, 1), the probability of a profileV = (v1, . . . ,vn ) overC according

to the Mallows model is given by Pr
Mallows

(V | V̂ ,φ) = φd (V ,V̂ )/Zn

with distance d and normalization constant Z . In the original case

of linear orders, the summed up vote-wise swap distance is used.

In the case of approval vectors, we propose to use the summed

up vote-wise Hamming distance. Mallows noise model captures

the scenarios in which the data was corrupted to a certain degree

or we expect the preferences to have changed over time and we

are interested in how likely and thereby robust the victory of a

candidate is.

EDM. Finally, we consider a model introduced by Conitzer and

Sandholm [4] and later studied by Hazon et al. [9]. Due to its nature,

we refer to it as the explicit distribution model (EDM). Given a

set of candidates C , for each voter i ∈ {1, . . . ,n} we are given a

probability distribution πi over the votes over C through a list of

votes paired with their non-zero probabilities. Each unspecified vote

has probability 0. The probability of a profileV = (v1, . . . ,vn ) over
C according to EDM for π = (π1, . . . , πn ) is given by PrEDM(V |

π ) =
∏n

i=1 πi (vi ). In its generality, EDM can be used to cover

various distributions and thus scenarios, but may require lists with

exponential length.

We summarize our main results for the non-unique winner case

in Table 1. The results presented here additionally hold for the

unique winner case and random and lexicographic tie-breaking, ex-
cept for k-veto assuming PPIC with a constant number of voters in

the unique winner case for which trivial FP results follow. For a con-

stant number of voters we receive FP results for the distributions

and voting rules considered here through applying the dynamic

programming approach by Hazon et al. [9]. Our results regarding

scoring rules assuming PPIC and EDM in Table 1 actually hold for

all scoring rules for which the scoring vector can be determined

efficiently.

We showed that the complexity of the problem varies greatly

depending on the voting rule, the distributionmodel, and the param-

eterization. As future work, there are two open cases, namely the

complexity regarding Mallows and k-AV in general and Borda for a

constant number of voters. Besides that, it is interesting to consider

further distribution models and the fine-grained parameterized

counting complexity, see Flum and Grohe [7].
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