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ABSTRACT
Social structures naturally arise from social networks, yet no model
well interprets the emergence of structural properties in a unified
dimension. Here, we unify explanations for the emergence of net-
work structures by revealing the pivotal role of social capital, i.e.,
benefits that a society grants to individuals, in network formation.
We propose a game-based framework social capital games that math-
ematically conceptualizes social capital. Through this framework,
individuals are regarded as independent learning agents that aim to
gain social capital via building interpersonal ties. We adopt multi-
agent reinforcement learning (MARL) to train agents. By varying
configurations of the game, we observe the emergence of classical
structures of community, small-world, and core-periphery.
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1 INTRODUCTION
Numerous real-life social networks exhibit prominent structural
properties. Take, as an example, co-authorship networks that show
community structure, where scholars in the same research field
form a collaboration group [10]. Another example is small-world
that is often observed in online social networks, where any two
users are connected through a few intermediate acquaintances [26].
A third example is core-periphery, where a core sits in the center,
while others stay at the outskirts [7]. Uncovering emergence of
social structures can bring insights into how social networks form,
function and evolve. However, no theory yet achieves a unified
interpretation of the natural emergence of social structures.

Existing works on network formation aim to explain the emer-
gence of social structures. Traditional approaches to network forma-
tion fall into twomain paradigms: random events-based and strategic
decisions-based. Random events-based models generate networks
with ad-hoc designs that mimic real-world networks [1, 14, 17], but
neglect agents’ behavioral acquisitions. Strategic decisions-based
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models provide explanations for how social structures emerge as
equilibria of network formation games [2, 13, 15, 21]. However, they
are one-shot models and thus neglect dynamics of networks.

Recent advances in multi-agent reinforcement learning (MARL)
and deep learning and sparks a new research perspective for prob-
lems with social concerns [12, 18, 20, 23, 24]. In this paper, we
propose a game-based and MARL-centered framework, social cap-
ital games (SCGs), that aims to unify the explanation for social
structure emergence. Social capital has been shown to be tightly
correlated with social structures [4]. Thus, we define utilities in
SCGs as social capital. We adopt multi-agent reinforcement learning
(MARL) to train agents. By varying configurations, we reproduce
the emergence of three aforementioned classical social structures.

2 MODEL
Dynamic Networks. Let 𝑁 = {1, 2, . . . , 𝑛} be a finite set of agents.
We define the complete graph 𝑔𝑁 as the set of all subsets of 𝑁 of
size 2. Hence {𝑔 | 𝑔 ⊆ 𝑔𝑁 } denotes the set of all possible graphs
on 𝑁 . For any 𝑖 ≠ 𝑗 , we write 𝑖 𝑗 ∈ 𝑔 to denote an undirected edge
between 𝑖 and 𝑗 . To capture the creation of links, for any 𝑔′ ⊆ 𝑔𝑁 ,
let 𝑔 ∪ 𝑔′ denote the integrated graph obtained via adding each
link 𝑖 𝑗 ∈ 𝑔′ into 𝑔. Denoted by N𝑑 (𝑖), the 𝑑-hop neighbor set of 𝑖
are the set of 𝑖’s neighbors with distance 𝑑 . We denote N𝑑 [𝑖] B
{ 𝑗 ∈ N𝑥 (𝑖) | 𝑥 ≤ 𝑑} all 𝑖’s neighbors within distance 𝑑 . We assume
an agent 𝑖 only has local information, i.e., 2-hop neighbors 𝑜𝑖 B
{ 𝑗𝑘 | 𝑗, 𝑘 ∈ N2 [𝑖]}. A dynamic network is a sequence of graphs𝐺 =

𝑔0, 𝑔1, . . . , 𝑔ℓ that evolves in finite discrete time 0, 1, . . . , ℓ , where ℓ is
the termination step. Throughout, we use superscript 𝑡 and subscript
𝑖 to denote the corresponding notation derived from time step 𝑡 and
agent 𝑖 , respectively. For 𝑡 < ℓ , each agent 𝑖 ∈ 𝑁 builds a link to
another agent 𝑎𝑡

𝑖
from 𝑜𝑡

𝑖
. All agents make decisions simultaneously.

Formally, ∀0 ≤ 𝑡 < ℓ : 𝑔𝑡+1 = 𝑔𝑡 ∪ {𝑖𝑎𝑡
𝑖
}𝑖∈𝑁 , where 𝑎𝑡

𝑖
∈ N𝑡

2 (𝑖).
Social Capital. A well-known dichotomy defines two types of so-
cial capital: bonding capital, which refers to welfare such as trust
and norms [3], and bridging capital, which amounts to benefits in
terms of influence and power [5]. •We adopt the formalization of
bonding capital as in [6], which uses personalized PageRank index
to capture benefits rising from neighbors. The metric is adapted
from PageRank to capture the likelihood of a random walk from 𝑖

(with restart) that reaches 𝑗 [22]. Let PageRank index pr𝑗 denote the
probability that node 𝑗 is accessed after convergence of the walk.
The bonding capital of 𝑖 is defined by summing personalized PageR-
ank indices between 𝑖 and 𝑖’s neighbors, i.e., bo𝑖 B

∑
𝑗 ∈N1 (𝑖) pr𝑗 .

• The formalization of bridging capital is straightforward by us-
ing betweenness centrality [1]: br𝑖 B

∑
𝑗≠𝑖≠𝑘∈𝑁 𝜎 𝑗𝑘 (𝑖)/𝜎 𝑗𝑘 , where
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Figure 1: Results for (a) modularity; (b) clustering coefficients; (c) average shortest path length; (d) C-P coefficients after 105
episodes; (e) C-P coefficients under the configurations of three peaks as shown in (d). Results are averaged over 10 independent
runs. Parameter settings: graph embedding iterations 𝑇 = 4, vector dimension 𝑝 = 32, minibatch size 𝑏 = 32.

𝜎 𝑗𝑘 is the number of shortest paths between nodes 𝑗 and 𝑘 , and
𝜎 𝑗𝑘 (𝑖) is the number of shortest paths passing 𝑖 . • As an agent
may have different preferences to two types of capital, we em-
ploy a preference weight 𝑤 ∈ [0, 1] to define the mixed capital:
mix𝑖,𝑤 B 𝑤bo𝑖 + (1 −𝑤)br𝑖 .
Social Capital Games (SCGs). A social capital game is a tuple
(𝑁,𝑊 ,𝑔0, ℓ), where 𝑁 = {1, 2, . . . , 𝑛} is a finite set of agents;𝑊 =

(𝑤1,𝑤2, . . . ,𝑤 |𝑁 |) is a preference vector, in which each entry 𝑤𝑖

is 𝑖’s preference weight; 𝑔0 ⊆ 𝑔𝑁 is the initial network; ℓ ∈ N+
is the termination step. Conceptually, one can view an SCG as a
multi-stage game played with imperfect information. We measure
the immediate utility of an agent as the increment of the mix capital
between two consecutive time steps: 𝑢𝑡+1

𝑖
B mix𝑡+1

𝑖,𝑤𝑖
−mix𝑡

𝑖,𝑤𝑖
. A

policy of an agent 𝑖 ∈ 𝑁 is a function 𝜋𝑖 defined on all possible
2-hop neighbors of 𝑖 such that 𝜋𝑖 (𝑜𝑖 ) = 𝑎 ∈ N2 (𝑖) for any 𝑜𝑖 ⊆ 𝑔𝑁 .
The goal of agent 𝑖 is to find a policy that maximizes the cumulative
utility 𝑈 ℓ

𝑖
B

∑𝑡
𝑖=1 𝑢

𝑡
𝑖
. Thus, an underlying dynamic network 𝐺 =

𝑔0, 𝑔1, . . . , 𝑔ℓ is generated. By repeating the game, the trajectory of
𝑔ℓ represents the evolution of social structures.

3 MARL FOR SOCIAL CAPITAL GAMES
Our learning method is adapted from S2V-DQN as in [16], which
incorporates graph embedding and RL to solve combinatorial prob-
lems on graphs. In our proposed MARL method for SCGs, all agents
independently and synchronously use S2V-DQN to learn a pol-
icy. Each agent 𝑖 ∈ 𝑁 estimates the quality of linking to another
agent 𝑎 ∈ N2 (𝑖) under 𝑜𝑖 using an evaluation function 𝑄𝑖 (𝑜𝑖 , 𝑎).
The policy 𝜋𝑖 functions greedily w.r.t. 𝑄𝑖 , i.e.,

𝜋𝑖 (𝑜𝑖 ) B argmax𝑎∈N2 (𝑖) 𝑄𝑖 (𝑜𝑖 , 𝑎). (1)

S2V-DQN uses structure2vec [8] to parameterize 𝑄𝑖 (𝑜𝑖 , 𝑎;𝚯𝑖 )
that computes a 𝑝-dimensional feature embedding 𝝁 𝑗 for each node
𝑗 involved in 𝑜𝑖 . 𝝁 𝑗 is iteratively updated. Initialized as 0, after 𝑇
iterations, 𝝁 𝑗 will contain information about its 𝑇 -hop neighbors
as determined by the structure of 𝑜𝑖 . The update rule is:

𝝁 (𝑡+1)
𝑗

= ReLU
(
𝜽1𝒙 𝑗 + 𝜽2

∑
𝑘∈N1 ( 𝑗)

𝝁 (𝑡 )
𝑘

)
, (2)

where 𝜽1 ∈ R𝑝×2, 𝜽2 ∈ R𝑝×𝑝 are model parameters and ReLU is
the rectified linear unit (ReLU(𝑧) = max(0, 𝑧)). The vector 𝒙 𝑗 in-
corporates explicit features of 𝑗 . Here, we set 𝒙 𝑗 = (𝑤 𝑗 , dist(𝑖, 𝑗))⊺.

The embedding 𝝁𝑎 and the pooled embedding over 𝑜𝑖 , 𝝓 (𝑜𝑖 ) B∑
𝑗 ∈N2 [𝑖 ] 𝝁 𝑗 , are used as the surrogates for 𝑎 and 𝑜𝑖 , resp., i.e.,

𝑄𝑖 (𝑜𝑖 , 𝑎;𝚯𝑖 ) = 𝜽⊺3 relu(𝜽4𝝓 (𝑜𝑖 ) ⊕ 𝜽5𝝁𝑎), (3)

where 𝜽3 ∈ R2𝑝 , 𝜽4, 𝜽5 ∈ R𝑝×𝑝 , and ⊕ is the concatenation operator.
The parameterized evaluation function 𝑄𝑖 (𝑜𝑖 , 𝑎;𝚯𝑖 ) is based on a
collection of 5 parameters 𝚯𝑖 = {𝜽𝑚}1≤𝑚≤5, which will be learned.
The Q-learning is used to learn 𝚯𝑖 and the experience replay is
used to update 𝚯𝑖 . For each step, a minibatch of tuples (size of 𝑏)
is randomly sampled from experience dataset D𝑖 . Then stochastic
gradient descent is executed on the following squared loss:

L(𝚯𝑖 ) = E(𝑜,𝑎,𝑟,𝑜′)∼D𝑖

[
(𝑦 −𝑄𝑖 (𝑜, 𝑎;𝚯𝑖 ))2

]
, (4)

where 𝑦 = 𝑟 +max𝑎′ 𝑄𝑖 (𝑜 ′, 𝑎′;𝚯𝑖 ) is the update target.

4 EMERGENCE OF SOCIAL STRUCTURES
General Settings. We train |𝑁 | = 100 agents and set the initial
network 𝑔0 as a regular ring lattice. We vary termination step ℓ ∈
{2, 5, 8}. We use modularity [19], clustering coefficient and average
shortest path length [26], and C-P coefficient [11] to measure the
significance of community, small-world and core-periphery, resp.
Baselines. For each ℓ , we generate 100 random networks for ref-
erence, where in each step each agent randomly links to an agent.
We also adopt network generation models as baselines: • Caveman
graphs (CG) [25] and Random partition graphs (RPG) [9] for commu-
nity. • Watts-Strogatz (WS) model [26] (start from a regular lattice,
each node connected to 𝐾 neighbors and 𝐾/2 on each side. Then
edges are randomly rewired with probability 𝑝 = 0.01.) for small-
world. • rich club model and onion model [7] for core-periphery.
Configurations. The intuitions and configurations are listed as
follows: • Community emerges when all agents are in pure pursuit
of bonding capital. We set preference weight𝑤𝑖 = 1 for all 1 ≤ 𝑖 ≤
100. • Small-world emerges when all agents are in pure pursuit of
bridging capital. We set𝑤𝑖 = 0 for all 1 ≤ 𝑖 ≤ 100. • Core-periphery
emerges when a group of agents are in pure pursuit of bonding
capital, while the remaining agents show mixed preferences to
bonding and bridging capital. We randomly select a subset 𝐶 ⊂ 𝑁

(expected core) with varying size in {10, 20, 30}. For all 𝑐 ∈ 𝐶 , we
vary𝑤𝑐 from 1/1000 to 1/100. For all 𝑝 ∈ 𝑁 \𝐶 (expected periphery),
we set𝑤𝑝 = 1. Throughout, we fix ℓ to an intermediate value, 5.
Results. The statistical information of 𝑔ℓ by our proposed frame-
work and baselines is plotted in Fig. 1. • Modularity grows and
fluctuates at a high level as the number of episodes grows, com-
pared to baselines. • Our framework achieves comparable high
clustering coefficients and lower average shortest path lengths
for each value of ℓ . • Three peaks of C-P coefficients occur under
( |𝐶 |,𝑤𝑐 ) = (10, 1/600), (20, 1/700) and (30, 1/700). Our framework
outputs accepted high C-P coefficients compared to baselines. Over-
all, our proposed framework successfully reproduce and explain
the emergence of various classical social network structures.
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