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ABSTRACT

Social structures naturally arise from social networks, yet no model
well interprets the emergence of structural properties in a unified
dimension. Here, we unify explanations for the emergence of net-
work structures by revealing the pivotal role of social capital, i.e.,
benefits that a society grants to individuals, in network formation.
We propose a game-based framework social capital games that math-
ematically conceptualizes social capital. Through this framework,
individuals are regarded as independent learning agents that aim to
gain social capital via building interpersonal ties. We adopt multi-
agent reinforcement learning (MARL) to train agents. By varying
configurations of the game, we observe the emergence of classical
structures of community, small-world, and core-periphery.

KEYWORDS

Network formation; multi-agent reinforcement learning; network
structure; relationship building

ACM Reference Format:

Yang Chen, Jiamou Liu, He Zhao and Hongyi Su. 2020. Social Structure Emer-
gence: A Multi-agent Reinforcement Learning Framework for Relationship
Building. In Proc. of the 19th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2020), Auckland, New Zealand, May 9-13,
2020, IFAAMAS, 3 pages.

1 INTRODUCTION

Numerous real-life social networks exhibit prominent structural
properties. Take, as an example, co-authorship networks that show
community structure, where scholars in the same research field
form a collaboration group [10]. Another example is small-world
that is often observed in online social networks, where any two
users are connected through a few intermediate acquaintances [26].
A third example is core-periphery, where a core sits in the center,
while others stay at the outskirts [7]. Uncovering emergence of
social structures can bring insights into how social networks form,
function and evolve. However, no theory yet achieves a unified
interpretation of the natural emergence of social structures.
Existing works on network formation aim to explain the emer-
gence of social structures. Traditional approaches to network forma-
tion fall into two main paradigms: random events-based and strategic
decisions-based. Random events-based models generate networks
with ad-hoc designs that mimic real-world networks [1, 14, 17], but
neglect agents’ behavioral acquisitions. Strategic decisions-based
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models provide explanations for how social structures emerge as
equilibria of network formation games [2, 13, 15, 21]. However, they
are one-shot models and thus neglect dynamics of networks.
Recent advances in multi-agent reinforcement learning (MARL)
and deep learning and sparks a new research perspective for prob-
lems with social concerns [12, 18, 20, 23, 24]. In this paper, we
propose a game-based and MARL-centered framework, social cap-
ital games (SCGs), that aims to unify the explanation for social
structure emergence. Social capital has been shown to be tightly
correlated with social structures [4]. Thus, we define utilities in
SCGs as social capital. We adopt multi-agent reinforcement learning
(MARL) to train agents. By varying configurations, we reproduce
the emergence of three aforementioned classical social structures.

2 MODEL

Dynamic Networks. Let N = {1,2,..., n} be a finite set of agents.
We define the complete graph gV as the set of all subsets of N of
size 2. Hence {g | g € ¢V} denotes the set of all possible graphs
on N. For any i # j, we write ij € g to denote an undirected edge
between i and j. To capture the creation of links, for any g’ C ¢,
let g U ¢’ denote the integrated graph obtained via adding each
link ij € ¢’ into g. Denoted by Ny (i), the d-hop neighbor set of i
are the set of i’s neighbors with distance d. We denote Ny|[i]
{j € Nx(i) | x < d} all i’s neighbors within distance d. We assume
an agent i only has local information, i.e., 2-hop neighbors o; :=
{jk | j,k € N2[i]}. A dynamic network is a sequence of graphs G =
go, gl, ., g[ that evolves in finite discrete time 0, 1, . . ., £, where £ is
the termination step. Throughout, we use superscript t and subscript
i to denote the corresponding notation derived from time step ¢ and
agent i, respectively. For t < ¢, each agent i € N builds a link to
another agent af from of . All agents make decisions simultaneously.
Formally, V0 < t < £: g**! =gt U {iaf},-eN, where af € NZt(i).

Social Capital. A well-known dichotomy defines two types of so-
cial capital: bonding capital, which refers to welfare such as trust
and norms [3], and bridging capital, which amounts to benefits in
terms of influence and power [5]. « We adopt the formalization of
bonding capital as in [6], which uses personalized PageRank index
to capture benefits rising from neighbors. The metric is adapted
from PageRank to capture the likelihood of a random walk from i
(with restart) that reaches j [22]. Let PageRank index pr; denote the
probability that node j is accessed after convergence of the walk.
The bonding capital of i is defined by summing personalized PageR-
ank indices between i and i’s neighbors, i.e., bo; = ¥ jen; (i) prj.
o The formalization of bridging capital is straightforward by us-
ing betweenness centrality [1]: br; = ¥ jzjzken 0k (i)/0jk, Where
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Figure 1: Results for (a) modularity; (b) clustering coefficients; (c) average shortest path length; (d) C-P coefficients after 10°
episodes; (e) C-P coefficients under the configurations of three peaks as shown in (d). Results are averaged over 10 independent
runs. Parameter settings: graph embedding iterations T = 4, vector dimension p = 32, minibatch size b = 32.

oj is the number of shortest paths between nodes j and k, and
ok (i) is the number of shortest paths passing i. ¢ As an agent
may have different preferences to two types of capital, we em-
ploy a preference weight w € [0, 1] to define the mixed capital:
mix;, = wbo; + (1 — w)br;.

Social Capital Games (SCGs). A social capital game is a tuple
(N, W, go, ), where N = {1,2,...,n} is a finite set of agents; W =
(w1, wa, .. .,W|N|) is a preference vector, in which each entry w;
is i’s preference weight; g° C gV is the initial network; ¢ € N*
is the termination step. Conceptually, one can view an SCG as a
multi-stage game played with imperfect information. We measure
the immediate utility of an agent as the increment of the mix capital
between two consecutive time steps: u/*! ftjl - mixl?’ i A
policy of an agent i € N is a function 7; defined on all possible
2-hop neighbors of i such that 7;(0;) = a € N2 (i) for any o; C gN.
The goal of agent i is to find a policy that maximizes the cumulative
utility Uif = Zle uf . Thus, an underlying dynamic network G =
g% g',...,¢" is generated. By repeating the game, the trajectory of
g’ represents the evolution of social structures.

= mix

3 MARL FOR SOCIAL CAPITAL GAMES

Our learning method is adapted from S2V-DQN as in [16], which
incorporates graph embedding and RL to solve combinatorial prob-
lems on graphs. In our proposed MARL method for SCGs, all agents
independently and synchronously use S2V-DQN to learn a pol-
icy. Each agent i € N estimates the quality of linking to another
agent a € Ny (i) under o; using an evaluation function Q;(o;, a).
The policy 7; functions greedily w.r.t. Q;, i.e.,

1

S2V-DQN uses structure2vec [8] to parameterize Q;(0;, a; ©;)
that computes a p-dimensional feature embedding p; for each node
Jj involved in o;. p; is iteratively updated. Initialized as 0, after T
iterations, p; will contain information about its T-hop neighbors
as determined by the structure of 0;. The update rule is:

”;z+1) = RelLU (91Xj + 62 ZkEMU) ”](ct))’

where 0; € RP*?, 0, € RP*P are model parameters and ReLU is
the rectified linear unit (ReLU(z) = max(0, z)). The vector x; in-
corporates explicit features of j. Here, we set x; = (wj, dist(i, j))T.

The embedding p, and the pooled embedding over o;, ¢(0;) =
2 jeN,[i] Mj are used as the surrogates for a and o;, resp., i.e.,

7i(0;) = arg maXge A (i) Qi(0j,a).

@)

Qi(04,a;09;) = 93Tre|u(94¢(oi) ® O5p,), (3)
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where 05 € R, 04, 05 € RP*P and & is the concatenation operator.
The parameterized evaluation function Q;(0;, a; ®;) is based on a
collection of 5 parameters ©; = {6, }1 <m <5, which will be learned.
The Q-learning is used to learn ©; and the experience replay is
used to update ©;. For each step, a minibatch of tuples (size of b)
is randomly sampled from experience dataset D;. Then stochastic
gradient descent is executed on the following squared loss:

£(0;) = E(o,a,r,o’)~1)i [(y - Qi(o,a; ei))z] >
where y = r + maxy Q; (0, a’; ©;) is the update target.

4 EMERGENCE OF SOCIAL STRUCTURES

General Settings. We train [N| = 100 agents and set the initial
network ¢° as a regular ring lattice. We vary termination step £ €
{2,5,8}. We use modularity [19], clustering coefficient and average
shortest path length [26], and C-P coefficient [11] to measure the
significance of community, small-world and core-periphery, resp.
Baselines. For each ¢, we generate 100 random networks for ref-
erence, where in each step each agent randomly links to an agent.
We also adopt network generation models as baselines: © Caveman
graphs (CG) [25] and Random partition graphs (RPG) [9] for commu-
nity. e Watts-Strogatz (WS) model [26] (start from a regular lattice,
each node connected to K neighbors and K/2 on each side. Then
edges are randomly rewired with probability p = 0.01.) for small-
world. e rich club model and onion model [7] for core-periphery.
Configurations. The intuitions and configurations are listed as
follows: ¢ Community emerges when all agents are in pure pursuit
of bonding capital. We set preference weight w; = 1 forall 1 <i <
100. @ Small-world emerges when all agents are in pure pursuit of
bridging capital. We set w; = 0 forall 1 < i < 100. ® Core-periphery
emerges when a group of agents are in pure pursuit of bonding
capital, while the remaining agents show mixed preferences to
bonding and bridging capital. We randomly select a subset C ¢ N
(expected core) with varying size in {10, 20,30}. For all ¢ € C, we
vary w, from 1/1000 to 1/100. For all p € N\C (expected periphery),
we set wp = 1. Throughout, we fix ¢ to an intermediate value, 5.

4)

Results. The statistical information of ¢’ by our proposed frame-
work and baselines is plotted in Fig. 1. ¢ Modularity grows and
fluctuates at a high level as the number of episodes grows, com-
pared to baselines. ® Our framework achieves comparable high
clustering coefficients and lower average shortest path lengths
for each value of ¢. e Three peaks of C-P coefficients occur under
(|IC], we) = (10, 1/600), (20,1/700) and (30, 1/700). Our framework
outputs accepted high C-P coefficients compared to baselines. Over-
all, our proposed framework successfully reproduce and explain
the emergence of various classical social network structures.
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