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ABSTRACT
The Multi-Robot Pickup and Delivery problem has received signif-
icant attention from the research community. We focus on such
problem and propose a multi-item variant, where robots can pick
up multiple items at once and deliver them to their destinations
in a single travel. We propose a distributed algorithm based on
a Token-Passing approach, where robots handles by themselves
the allocation of tasks and generates conflict-free paths requiring
weaker assumptions in comparison to previous approaches. We
evaluate our approach on two maps, one representing the ICE labo-
ratory, a facility for Industry 4.0 located in Verona. Our approach
produces solutions comparable in quality to those produced by a
centralized approach and reduces computation times significantly.
We also show a synchronization technique to the robots’ move-
ments, still based on Token-Passing. This guarantees the absence
of collisions in spite of unexpected delays in path execution.
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1 INTRODUCTION
The Multi-Agent Pickup and Delivery (MAPD) problem requires a
set of agents to deliver a set of items to relevant locations. This prob-
lem is particularly relevant in logistic scenarios, where robots move
goods from storage locations to production areas [1]. Several ap-
proaches have been proposed to solve this problem and coordinate
involved agents [5, 9]. The MAPD problem is a lifelong version of
the Multi-Agent Path Finding (MAPF) problem, where agents plan
conflict-free paths from their position to their goal and has been
widely studied [3, 7, 8, 10]. MAPD is also related to the Multi-Robot
Task Allocation (MRTA) problem, which can be broadly described
as the problem of deciding which robot in the MRS executes which
task(s). Because of the impact that it has on the performance of

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

a MRS, many different approaches have been proposed [1, 2, 4–
6]. Of particular interest are the approaches to MAPD based on
Token-Passing [4, 5]. In particular, here we present a new variant
of the MAPD problem where robots can pickup multiple items and
delivery them in a single travel. We also describe our approach to
solve such problem, based on a Token-Passing technique.

2 MULTI-ITEM MAPD PROBLEM
An instance of the multi-item MAPD problem is defined by a set
P = {p1,p2, . . . ,pq } of multi-item tasks, where q is the number
of tasks, and by a graph G = (V ,E) that represents the robots’
environment. Each task pi requires the assigned robot to reach
the pickup location si ∈ V , pickup the items and deliver them to
the delivery locations {д1i ,д

2
i , . . . ,д

mi
i }, wheremi is the number of

such locations. To solve the instance, each task must be assigned
to a robot and for each robot a conflict-free path that completes
all the robot’s tasks must be found. To make sure that the robots
avoid collisions with each other and that paths are conflict-free,
the following conditions must be enforced: (1) two robots can not
occupy the same vertex in the same timestep and (2) two robots
can not traverse the same edge in the same timestep. A limit has
been posed on how much a robot can carry. In particular, a capacity
value C , equal for each robot, has been defined. Robots can take a
task only if the sum of the items’ demands does not overcome the
capacity C . This is important for the first phase of our approach
where we generate the instance of the problem from a standard,
single-item MAPD instance.

3 TOKEN-PASSING APPROACH
Our approach makes use of a token containing the tasks that must
be allocated. The robots share the token to allocate the tasks and cal-
culate their paths, which are stored inside the token. Our approach
is divided in three main steps:

(1) A set of single-item tasks T is aggregated to form the multi-
item task set P in what is called the aggregation phase. Each task
of set T is composed by a single item with its pickup and delivery
locations. This step is performed by a centralized module called task
planner with an exhaustive approach that evaluates all the possible
partitions of the T . Each partition is composed of subsets of items.
Each subset represent a possible multi-item task and contains the
items that must be delivered in such task. Hence the partition repre-
sent a possible way of defining the multi-item tasks. Each partition
is evaluated by giving a value to each subset. This is calculated
with a metric that normalizes the path required to complete the
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multi-item task with the total demand of the task’s items. This path
is calculated without considering other robots and is used just as an
estimate to evaluate the partition’s value. The value of a partition
is the sum of its subsets’ values and the partition with the higher
value becomes the multi-item task set P. An example is visible in
Figure 1, where items in box labeled T are grouped in box P to
form 4 multi-item tasks.

(2) The tasks inside P are distributed among the robots. This
phase, called assignment, is executed distributively using the token.
Such token is shared between the robots in a cyclic order. When
a robot receives the token, it chooses a task in a greedy way and
removes it from the token. Then the token is sent to the next robot.
This is done until all tasks have been assigned. Then the paths are
planned in the next phase. If for any reason it is not possible to find
a valid path for any of the robots, one of them is excluded from
the cycle, all tasks are inserted in the token and the assignment
phase is restarted. As a last resort, if it is not possible to find a
valid assignment with more than one robot, a last token cycle is
performed where each robot tries to allocate all tasks among itself.
This approach guarantees to find a valid assignment (see Section
4). Boxes t1 and t2 of Figure 1 show how the robots take tasks from
the token as it cycles through them.

(3) In the path planning phase, the robots calculate the paths for
their tasks and stores them in the token. Following the token order,
each robot calculates a path that brings it to complete all its tasks
in the order in which those have been taken from the token. Such
path is conflict-free with respect to those of the robots that have
preceded it. To calculate conflict-free paths we use a variant of the
A* algorithm that takes in input a list of waypoints and the other
robots’ paths in order to find a path that goes through the given
waypoints, that does not conflict with the other paths (following
the rules given in Section 2), and minimizes the number of hops for
the path. This suits well with the synchronization approach that
we use to guarantee that conflict-free paths are respected during
simulation. Using the token, each robot notifies when has reached
the next location in its path and does not move on to the following
until all the others have done the same. In this way it is possible
to handle unexpected delays in the paths’ execution and to avoid
robots’ conflicts. Figure 1 shows how the paths are calculated by the
robots as the token cycles. A centralized version, Global, has been
developed in order to evaluate the performance of our approach.
This version takes a brute-force approach, where all the possible
assignments of tasks inside set P to robots are evaluated and the
one that gives the paths with the least number of hops is chosen.

4 GUARANTEES
Recent literature [4, 5] puts three constraints on the MAPD in-
stances in order to guarantee the presence of conflict-free paths,
which are based on the concept of well-formed infrastructures [9].
One of them says that for any two endpoints there must be a path
between them that does not traverse another endpoint. We relaxed
this constraint and set a weaker one: There is at least one home
endpoint from which all task endpoints can be reached without
traversing other home endpoints. Endpoints are location on the
graph from where robots start (home endpoints) or where items
are picked up or delivered (task endpoints). Our algorithms are
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Figure 1: grid map with an example executed on it

grid 2 4 6 stats

Global 195.40 ± 24.03 134.50 ± 13.76 114.90 ± 8.13 Time[s]
145.92 ± 18.58 178.45 ± 22.39 206.72 ± 24.70

∑
Dist[m]

Iterative 200.10 ± 21.56 153.10 ± 22.49 135.40 ± 10.58 Time[s]
149.87 ± 16.65 188.78 ± 23.22 221.31 ± 24.10

∑
Dist[m]

smart-factory 2 4 6 stats

Global 744.50 ± 145.46 505.90 ± 113.42 448.00 ± 119.15 Time[s]
251.32 ± 46.68 263.70 ± 47.83 282.82 ± 55.84

∑
Dist[m]

Iterative 791.70 ± 110.33 564.10 ± 85.17 530.60 ± 127.78 Time[s]
252.65 ± 46.04 263.30 ± 48.44 286.39 ± 45.73

∑
Dist[m]

Table 1: Summary of the three algorithms’ performance

Bold = Best result Italic = Rejected paired-sample t-test with a 5% significance level
The t-test is always done comparing the population of the highlighted value with the
iterative algorithm’s one.

guaranteed to find conflict-free paths because they will always eval-
uate the case in which a single robot performs all tasks and such
robot starts from the home endpoint mentioned in the constraint.
However, in our experiments the algorithms always found solutions
where each robot executes at least a task.

5 RESULTS
To test our algorithms, two maps have been created, one represents
the ICE laboratory, a facility for Industry 4.0 located in Verona. 10
task sets of 12 single-item tasks each have been defined. These have
been tested on each map with configurations of 2, 4 and 6 robots.
Table 1 shows for each configuration the average makespan and
average sum of the robots’ distances. Results show that the Global
algorithm performs best, as expected. However Iterative does show
similar performance. This is confirmed by the t-test that shows how
the difference between the two algorithms in many configurations
is not statistically significant (the t-test null hypothesis has not been
rejected). Even if performance are similar, there is a great difference
in the computation time required to find a solution. While Iterative
finds a solution in seconds, Global required hours or even days (in
6 robots configurations) to terminate.
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