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ABSTRACT
In this paper we consider Distance Hedonic Games, a class of non-
transferable utility coalition formation games that properly gen-
eralizes previously existing models, like Social Distance Games
and Fractional Hedonic Games. In particular, in Distance Hedonic
Games we assume the existence of a scoring vector α , in which the
i-th coefficient αi expresses the extent to which x contributes to
the utility of y if they are at distance i .

We focus on Nash stable outcomes and consider two natural
scenarios for the scoring vector: monotonically decreasing and
monotonically increasing coefficients. In both cases we give NP-
hardness and inapproximability results for the problems of finding a
social optimum and a best Nash stable outcome. Moreover, we char-
acterize the topologies of coalitions with high social welfare and
give bounds on the Price of Anarchy and on the Price of Stability.
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1 INTRODUCTION
Coalition Formation Games (CFGs) model multi-agent systems
where selfish agents form coalitions and have preferences over the
coalitions they could belong to. More specifically, an outcome of
a CFG is a partition of the set of agents into disjoint coalitions,
referred to as a coalition structure. The utility of an agent for a given
outcome represents her satisfaction with the outcome. When such
a utility only depends on the coalition she belongs to, and not on
how the other agents are aggregated, we are in the class of Hedonic
Games (HGs) [17]. HGs form one of the most important classes of
CFGs and have been widely studied in the literature [4].

One of the main goals in CFGs is to understand the stable out-
comes that the selfish behavior of the agents leads to, both from
an existential and an algorithmic perspective. To this aim, several
stability concepts have been defined. Since we focus on individual
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deviations, we consider the fundamental notion defined in this set-
ting, that is, Nash stability. A coalition structure is Nash stable (NS),
if no agent can improve her utility by unilaterally moving to a dif-
ferent coalition. In order to evaluate the efficiency of NS outcomes,
we resort to the classical measures of price of anarchy (PoA) [23, 25]
and price of stability (PoS) [1]. The PoA and the PoS are defined
as the worst/best-case ratio between the highest achievable social
welfare (i.e., the sum of the agents’ utilities) of a coalition structure
and that of an NS one, respectively.

In many natural scenarios the relations between agents can
be modeled as a graph, and the utilities that agents receive from
their coalitions strongly depend on the graph structure. Classical
examples are Additively Separable Hedonic games [12], Fractional
Hedonic Games (FHGs) [2] and Social Distance Games (SDGs) [14].
In the literature, HGs have been studied w.r.t. both individual [7,
12, 19, 21] and group deviations [11, 18, 20, 21]. The same holds for
FHGs [2, 3, 8–10, 13, 24] and SDGs [5, 6, 14, 22].

In this work, we introduce a class of games termed Distance
Hedonic Games (DHGs), that generalizes both unweighted FHGs
and SDGs, and provides a unifying framework for hedonic models
based on distances. In particular, in SDGs each agent x contributes
to the utility of another agent y in her coalition in an inversely
proportional fashion with respect to their distance, while in FHGs
only if they are neighbors. In DHGs we assume the existence of
a scoring vector in which the i-th coefficient expresses the extent
to which x contributes to the utility of y if they are at distance i .
Such a vector is assumed to be the same for all the agents. We focus
on the most natural types of scoring vectors whose coefficients
have a monotone growth (decreasing and increasing). In the case
of decreasing vectors, if the distance between two agents increases,
the interest of being together decreases. Thus, these vectors model
situations in which agents want to aggregate into coalitions in
which they are close together. Increasing vectors are suitable for
modeling influence spreading, collecting information, or the case
where edges express competition between agents. Note that this
does not violate the hedonic nature of the game: the graph structure
does not necessarily represent friendship, but it can represent, e.g.,
physical distance. Thus, the idea of increasing vectors is wishing to
reach far away nodes while relying only on internal communication.

2 MODEL AND PRELIMINARIES
Given an undirected graph G = (V ,E), a coalition structure C =

(C1, . . . ,Ck ) is a partition of V into coalitions.
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Definition 2.1. A Distance Hedonic Game (DHG) is defined by an
undirected graph G = (V ,E) and a scoring vector α ∈ Rn−1 where
(i) V is a set of n agents and (ii) the utility of an agent x ∈ V in
a given coalition structure C for being in her coalition C(x) ∈ C

is uαx (C(x)) = 1
|C(x ) |

∑
y∈C(x )\{x }

αdC(x )(x,y), where dC(x )(x ,y) is

the distance induced by the subgraph GC(x ) = (C(x),EC(x )), with
EC(x ) = {(x ,y) ∈ E : y ∈ C(x)}. If x and y are disconnected in
coalition C , then dC (x ,y) = ∞ and α∞ = 0.

We define a scoring vector α to be decreasing if αi ≥ αi+1 and
increasing if αi ≤ αi+1,∀i ∈ [n − 2]. An increasing or decreasing
scoring vector α is normalized if α1 = 1.

Given a game instance ⟨G,α⟩, we denote by NS⟨G,α ⟩ the set
of its NS outcomes. If for some α there exists a graph G in which
the social optimum has strictly positive social welfare and C ∈

NS⟨G,α ⟩ s.t. SW(C) = 0, we say that PoA(α) = ∞. Moreover, if
∀C ∈ NS⟨G,α ⟩ , SW(C) = 0, we say that PoS(α) = ∞.

Model Discussion. Both symmetric unweighted FHGs and SDGs
are a subclass of DHGs, with scoring vector α = (1, 0, . . . , 0) and
α = (1, 12 , . . . ,

1
n−1 ), respectively. We also observe that these vec-

tors induce utilities that are proportional to the degree and to the
harmonic centrality measure of nodes in coalitions. Also further
centrality indices fit into the DHG model, such as the Dangalchev
centrality measure [15, 16].

Because of the hedonic character of the game, and as is traditional
in clustering settings, agents’ utilities depend only on the distances
induced by the coalitions they belong to and not on the distances
in the original graph. Similarly, we set α∞ = 0, both for increasing
and decreasing vectors, as we wish the agents to achieve positive
utility only from the nodes they are connected to.

3 OUR RESULTS
First we discard vectors that contain negative coefficients, not only
because they do not represent natural scenarios, but also because of
their low efficiency of NS outcomes. Indeed, it is possible to show
that given a general scoring vector α that has negative components,
both PoA(α) and PoS(α) are unbounded. Thus, in what follows we
focus on vectors with non-negative components, i.e. α j ≥ 0 for each
j ∈ [n − 1]. In particular, for these vectors an NS outcome always
exists, since the grand coalition is NS. Unfortunately, it is possible
to show inefficiency of equilibra also for non-negative vectors (see
Table 2). These negative results are due to vectors with α1 = 0. Thus,
we further assume that α1 > 0 and that, w.l.o.g., α is normalized,
i.e. α1 = 1. Furthermore, we will assume that the scoring vector
components are monotone, decreasing and increasing. While other
scoring vector classes can still be of theoretical interest, the ones
we focus on seem also to be the most natural choices.

We first provide hardness results concerning the determination
of optimal and best NS outcomes (w.r.t. the social welfare), and then
move on to the analysis of the PoA and the PoS.

3.1 Hardness Results
We show intractability or inapproximability results for the two prob-
lems defined below, examining separately the case of decreasing
and increasing vectors. Our results are summarized in Table 1.

Scoring Vector MSW MSW-S
Decreasing NP-hard NP-hard
normalized [3],[14] for any α2 < 1

2

Increasing no poly-time no poly-time
with α1 = 0 w. approx. > 0 w. approx. > 0

Increasing no poly-time
normalized w. approx. < 2n+1

n2+1
Table 1: Hardness and inapproximability results for finding
the optimal (MSW) and best NS (MSW-S) outcomes.

Scoring Vector PoA PoS

General ∞ ∞

Non-negative ∞ Θ(n)

Normalized ≤ Mα (n − 1) ≤ min{Mα
mα
, n2 ·Mα }

Constant 1 1

Decreasing normalized
n − 1 ≤ n ·

α2+
√
α 2
2+(1−α2)

2

1+2α2 ·(n−1)with α2 ≤ 1
2 , girth ≥ 5

Increasing normalized Θ
( SW(Pn )

n

)
Θ
( SW(Pn )

n

)
Table 2: PoA and PoS, where mα and Mα denote the min
and themax component of the scoring vector α , respectively.
SW(Pn ) is the social welfare achieved by a path of n nodes.

Definition 3.1. MSW (resp. MSW-S) is the problem of computing,
given a DHG instance ⟨G,α⟩, a coalition structure C∗ of maximum
social welfare (resp. a NS coalition structure of maximum social
welfare).

For decreasing vectors the NP-hardness of MSW is already im-
plied by the previous results on FHGs [3] and SDGs [14]. Even
though in this workwe focus on normalized vectors, we also present
a nice inapproximability result for increasing vectors with α1 = 0.

3.2 Price of Anarchy and Price of Stability
In the previous subsection we reported that the best (NS) outcomes
cannot be easily computed. As the next step, we want to estimate
the quality of NS⟨G,α ⟩ solutions by providing bounds on their PoA
and PoS. We focus on non-negative and normalized scoring vectors,
showing that in this case the PoS and the PoA are indeed bounded.
We provide improved bounds for decreasing and increasing vectors
by examining the topologies of coalitions with high social welfare,
namely star partitions and paths for decreasing and increasing
scoring vectors, respectively. Table 2 summarizes our main results.

The refined PoS bound for decreasing vectors is better than the
general bound of n

2 for normalized scoring vectors if and only if

α2 ≥

√
4n2−12n+6−n
2((n−2)2−2) ≈ 1

2n and this quantity tends to 0 asn increases.
This result generalizes the one for SDGs obtained in [5]. That is,

PoS((1, 12 , . . . )) ≤
1
2 +

1√
2
.
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