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ABSTRACT

We introduce ballooning multi-armed bandits (BL-MAB), a novel
extension to the classical stochastic MAB model. In the BL-MAB
model, the set of available arms grows (or balloons) over time.
The regret in a BL-MAB setting is computed with respect to the
best available arm at each time. We first observe that the existing
stochastic MAB algorithms are not regret-optimal for the BL-MAB
model. We show that if the best arm is equally likely to arrive at
any time, a sub-linear regret cannot be achieved, irrespective of the
arrival of the other arms. We further show that if the best arm is
more likely to arrive in the early rounds, one can achieve sub-linear
regret. Making reasonable assumptions on the arrival distribution
of the best arm in terms of the thinness of the distribution’s tail,
we prove that the proposed algorithm achieves sub-linear instance-
independent regret. We further quantify explicit dependence of
regret on the arrival distribution parameters.
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1 INTRODUCTION

The classical stochastic multi-armed bandit (MAB) problem encap-
sulates the classical exploration versus exploitation dilemma, in
that the planner’s algorithm has to arrive at an optimal trade-off
between pulling relatively unexplored arms and pulling the best
arms according to the history of pulls thus far. This problem has
been extensively studied in the literature. These studies include an-
alyzing the lower bound on regret [14], analysis of asymptotically
optimal algorithms [1, 4, 5, 19], empirical studies [8, 10, 17], and
several extensions [7, 18].

The theoretical results in MAB are complemented by a wide
variety of modern applications which can be seamlessly modelled
in the MAB setup. Internet advertising [6, 16], crowdsourcing [12],
clinical trials [20], wireless communication [15] represent a few of
the many applications. In this paper, we propose a novel variant of
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MAB, which we call Ballooning multi-armed bandits (BL-MAB). In
contrast to the classical MABwhere the set of available arms is fixed
throughout the run of an algorithm, the set of arms in BL-MAB
grows (or balloons) over time. As the number of arms increases
(potentially linearly) with time, it is clear that an optimal algorithm
has to ignore (or drop) a few arms. Hence, in addition to achieving
an optimal trade-off between the number of exploratory pulls and
exploitation pulls, the algorithm must also ensure that it does not
drop too many or too few arms.

BL-MAB, in general, is directly applicable in any scenario, where
the set of options grows over time and the objective is to choose
the best option available at any given time. A contemporary exam-
ple is provided by question and answer (Q&A) platforms such as
Reddit, Stack Overflow, Quora, Yahoo! Answers, and ResearchGate,
where the platform’s goal is to discover the highest quality answer
that should be displayed in the most prominent slot, for a given
question. Each display of a posted answer corresponds to a pull of
the corresponding arm (answer post). At each time instant, a new
user observes the existing answer posts shown by the platform,
decides whether to endorse them, and may also choose to post her
own answer, thus increasing the number of available arms.

Some of the other applications of BL-MAB are in variouswebsites
that feature user reviews, such as Amazon and Flipkart (product
reviews), Tripadvisor (hotel reviews), and IMDB (movie reviews).
As time progresses, the reviews for a product (or a hotel or a movie)
keep arriving, and the website aims to display the most useful re-
views for that product (or hotel or movie) at the top. The usefulness
of a review is estimated using users’ endorsements for that review,
similar to that in Q&A forums. BL-MAB is also applicable in sce-
narios where users comment on a video or news article, on a video
or news hosting website respectively, where the website’s objective
is to display the most popular or interesting comment at the top.
Our Contributions: We introduce the BL-MABmodel that allows
the set of arms to grow over time, and show that in the absence of
any distributional assumption on the arrival time of the best (or
highest quality) arm, the regret will grow linearly with time (Theo-
rem 2.1). We propose an algorithm, BL-Moss, which determines:
(1) the fraction of the time horizon until which the newly arriving
arms should be explored at least once and (2) the sequence of arm
pulls during the exploitation phase. Our key finding is that BL-Moss
achieves sub-linear regret under practical and minimal assumptions
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on the arrival distribution of the best arm, namely, sub-exponential
tail (Theorem 2.2) and sub-Pareto tail (Theorem 2.3). Note that we
make no assumption on the arrival of the other arms.

2 THE MODEL AND MAIN RESULTS

A BL-MAB instance is given by ⟨T , (K(t), (Di )i ∈K (t ))
T
t=1⟩. Here,

K(t) is the set of arms available at time t and Di is the reward
distribution corresponding to an arm i . Denote by qi , the mean
of distribution Di . Consider that each of the distributions Di is
supported over a finite interval and is unknown to the algorithm.
Throughout the paper, without loss of generality, we consider that
Di is supported over [0, 1]. Further, we will refer to qi as the quality
of arm i . A BL-MAB algorithm is run in discrete time instants, and
the total number of time instants is denoted by time horizon T . In
each time instant aka round, the algorithm selects a single arm and
observes the reward corresponding to the selected arm. The arms
which are not selected, do not give any reward. In the BL-MAB
model, this set of available arms grows by at most one arm per
round, i.e., K(t) ⊆ K(t + 1) and |K(t)| ≤ |K(t + 1)| ≤ |K(t) + 1|.

Similar to the notion of regret in the sleeping stochastic MAB
model [9, 13], the notion of regret in BL-MAB setting takes into
account the availability of the arms at each time t . Let it denote the
arm pulled by the algorithm and i⋆t be the best available arm at time
t , i.e., i⋆t = argmaxi ∈K (t ) qi . The instance-dependent regret of a
BL-MAB algorithm A is given by RA(T ,I) = E

[ ∑T
t=1(qi⋆t − qit )

]
.

Throughout the paper, we consider instance-independent regret,
given as RA(T ) = supI RA(T ,I). Our first result shows that, with-
out any side information about the arms, it is impossible to achieve
sub-linear regret.1

Theorem 2.1. There exists a BL-MAB instance I such that the
expected regret of any algorithm A is lower bounded by Ω(T ).

Theorem 2.1 provides a strong impossibility result on the achiev-
able instance-independent regret bound under BL-MAB setting.
We hence impose a restriction on the arrival of the best arm i⋆=
argmaxi ∈K (T ) qi , that the probability of i⋆ arriving early is large
enough. This would allow a learning algorithm to explore the best
arm enough to estimate its true quality with high probability.
Arrival of the Best Arm: Let X be the random variable denoting
the time at which the best arm arrives. Further, let FX (t) denote
the cumulative distribution function of X .
Sub-exponential tail property: There exists a constant λ > 0 such
that the probability of the best arm arriving later than t rounds, is
upper bounded by e−λt , i.e., FX (t) > 1 − e−λt .
Sub-Pareto tail property: There exists a constant β > 0 such that
the probability of the best arm arriving later than t rounds, is upper
bounded by t−β , i.e., F (t) > 1 − t−β .

The aforementioned assumptions naturally arise in the context
of Q&A forums as observed in extensive empirical studies on the
nature of answering as well as voting behavior of the users. Ander-
son et al. [2] observe that high reputation users hasten to post their
answers early.
The Proposed BL-Moss Algorithm: We now present our algo-
rithm, BL-Moss, that uses Moss [3] as a black-box. The number

1The details and proofs are available in the extended version of the paper [11].

of arms explored by BL-Moss is dependent on the distribution of
arrival of the best arm. In particular, BL-Moss considers only the
first ⌈αT ⌉ arms in its execution (α ∈ (0, 1]). The Moss algorithm is
run with ⌈αT ⌉ arms whereas the later arms are ignored.1

For a given BL-MAB instance I, let j⋆ = argmaxi ∈K ( ⌈αT ⌉) qi
and i⋆ = argmaxi ∈K (T ) qi . Clearly, qi⋆ ≥ qj⋆ . As BL-Moss does
not consider all the arms, the regret of BL-Moss can be decomposed
into the following two parts. The external regret of BL-Moss (say
Rext
BL-Moss (T )) is the regret incurred due to considering only a sub-

set consisting of the first ⌈αT ⌉ of the available arms, whereas the
internal regret (say Rint

BL-Moss (T )) is due to not apriori knowing the
qualities of each of the ⌈αT ⌉ arms it considers.Write ∆(i, j) = qi−qj
and let ti be the time of arrival of arm i . Let i⋆t denote the best arm
till time t . The instance-dependent regret is given as

RBL-Moss(T ,I) = P(i
⋆= j⋆)·Rint

BL-Moss(T )+P(i
⋆, j⋆)·Rext

BL-Moss(T ),

where Rint
BL-Moss (T ) =

∑tj⋆−1
t=1 ∆(i⋆t , it ) +

∑T
t=tj⋆

∆(j⋆, it )

and Rext
BL-Moss (T ) =

∑ti⋆−1
t=1 ∆(i⋆t , it ) +

∑T
t=ti⋆

∆(i⋆, it ).

We ignore the ceiling in ⌈αT ⌉ to avoid notation clutter. We now
present the main results of the paper under sub-exponential and
sub-Pareto tail assumptions.1

Theorem 2.2. Let the arrival distribution of the best arm satisfy
the sub-exponential tail property for some λ > 0, and let T be large
enough such that T > 36c log(36)/λ for some c > 0. Then with
α = W (λT /c)

λT /c , the upper bound on the expected regret of BL-Moss,

RBL-Moss (T ), is O
(
T ·max

(
e−cW (λT /c), e−W (λT /c)/2) ) . The upper

bound on the expected regret is minimized when c = 1/2 and is given
by O(

√
T · log(2λT )/2λ).

Theorem 2.3. Let the arrival distribution of the best arm satisfy
the sub-Pareto tail property for some β > 0, and letT be large enough
such that T > (36)(c+β )/β for some c > 0. Then with α = T−β/(β+c),
the upper bound on the expected regret of BL-Moss, RBL-Moss (T ), is

O(max(T
c+β (1−c )
c+β ,T

2c+β
2(c+β ) )). The upper bound on the expected regret

is minimized when c = 1/2 and is given by O(T (1+β )/(1+2β )).

3 DISCUSSION AND FUTUREWORK

We presented the Ballooning multi-armed bandits (BL-MAB) model,
a novel extension to the classical MAB model. We showed that, in
the absence of any side information, it is impossible to achieve a
sub-linear regret in the BL-MAB setting. We provided sufficient
conditions under which the proposed algorithm (BL-Moss) achieves
sub-linear regret. When the arrival distribution of the best quality
arm has a sub-exponential or sub-Pareto tail, our algorithm BL-
Moss achieves sub-linear regret by restricting the number of arms
to be explored in an intelligent way. Our results indicate that, the
number of arms to be explored depends on the distributional param-
eters, namely, λ (for sub-exponential case) and β (for sub-Pareto
case), which must be known to the algorithm. It would be inter-
esting to see how a learning algorithm could be designed to learn
these parameters as well. As noted earlier, we consider a structure
on only the arrival of the best arm. One may also consider a more
sophisticated arrival process of the arms, for obtaining better regret
guarantees.
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