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ABSTRACT
Social Reinforcement Learning considers multi-agent systems with
large number of agents and relatively few interactions between
them, which is challenging due to high-dimensional search space,
inter-agent dependencies that increase computational complex-
ity. Moreover sparse agent interactions produce insufficient data
to capture higher-order relations (interactions) for learning accu-
rate policies. To overcome these challenges, we present a dynamic
cluster-based Social RL approach that utilizes the properties of the
social network structure, agent interactions, and correlations to
obtain a compact model to represent network dynamics.
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1 INTRODUCTION
Real-world social networks consist of thousands of users who in-
teract with each other and are related in various ways [4–8, 17].
However, each user typically only interacts with a small number of
other users in the network. This means the network interactions
are overall sparse. Traditional MARL approaches do not scale for
large numbers of agents, and state-of-the-art Social RL approaches
[5, 8, 17] do not overcome the problem of sparse user interactions,
resulting in noisy policy estimates [9, 10]. To address these chal-
lenges, we propose a Dynamic Cluster-based Policy Learning (DCPL)
approach for social RL. Our work makes the following major con-
tributions: (1) We utilize agent correlations to cluster agents and
reduce model dimensionality (i.e., number of parameters) from ∼N 2

to ∼G2,G ≪ N , and thus computational cost, while still facilitating
joint learning to capture agent dependencies. (2) We design differ-
ence reward based clustering features to help in effective credit
assignment for resource allocation. We use these features (via clus-
ters) to learn agents’ effectiveness early on, to better explore the
action space without increasing the state space, and thus policies
converge faster. (3) We revise the clusters over time, which facil-
itates learning of policies that are responsive to change in agent
behavior. We combine this with a method to easily derive person-
alized agent-level actions from cluster-level policies by exploiting
the similarity and variability in agents’ behavior. To the best of
our knowledge, our DCPL approach is the first to consider policy
learning while dynamically clustering users in MARL for social
networks.
Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

2 CLUSTER-BASED POLICY LEARNING
We consider an application of fake news mitigation [1, 14–16] to
demonstrate the utility of our proposed approach (see [9] for de-
tailed problem description). The objective is to combat fake news by
increasing the spread of true news [5, 8]. We consider a social net-
work withN users (agents) who interact via different network activ-
ities such as tweets, retweets, likes. The (re)tweets are labeled fake
(F) or true (T). Our data contains a temporal stream of events with
the time horizon divided into K stages, each of time-interval ∆T ,
where stage k ∈ [1,K] corresponds to the time-interval [τk , τk+1).
Fig. 1 illustrates the different components of our system.

The objective is to learn a policy π that maps the network state
(over N users) to actions (over N users). In a real-world social net-
work, users interact with each other, which leads to dependencies
between their actions [9]. Thus, to learn the policy for a single user,
we need to consider the actions of all N users, resulting in at least
N 2 parameters to learn N user policies with N actions per policy.
However, in contrast with dense networks where all agents inter-
act (i.e., Ω(N 2) interactions), social networks are typically sparse
(i.e., O(N ) interactions) since agents only interact with a constant
number of other agents. In this case, since there are insufficient ob-
servations to capture ∼N 2 agent dependencies it is difficult to learn
accurate policies. This is particularly challenging for large N due
to the curse of dimensionality, which further increases variance.

To address these challenges, we propose to cluster users into G

clusters and learn a policy πG that maps the state representation of
G clusters to G actions, where G ≪ N . We then combine this with
a method to derive user-level actions from the cluster actions. We
consider multi-stage policy learning, in which the policy is updated
after regular time-intervals to capture dynamic user behavior. Since
we want clusters to reflect the effects of applying the updated policy,
we need to dynamically update cluster memberships while learning
the policy. To ensure that the clusters are aligned across multiple
stages, we propose a weighted centroid clustering approach.

Our DCPL approach starts by clustering the users and learning a
set of Multivariate Hawkes Processes (MHP) [11] from the training
data. The MHP models [8] characterize user activities in the net-
work, and are used to simulate additional training data to obtain
user states for learning the policy. We represent the user state sU as
the number of events for different network activities (e.g., sharing
true news) and compute the state features of the clusters sG by
averaging the state features of their associated members. We define
reward R as the correlation between exposures to fake and true
news [5, 8]. To increase the spread of true news, we define user
actions aU as interventions to be applied to the intensity function
of users’ true news activity at each stage of the diffusion process.
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Figure 1: Overview of Cluster-Based Policy Learning and Evaluation

Given the network state, our goal is then to learn a cluster-level
policy πG to determine the actions for users, such that the total
expected discounted reward is maximized.

To cluster users, we design payoff and contribution features
inspired by the idea of difference rewards [2]. Payoff measures the
change in the expected reward of a user, after applying the policy in
the previous stage, which indicates the user’s responsive to the past
policy. Contribution is defined as the difference in the total expected
reward obtained when applying the policy to a user, compared to
not applying it to that user. This measures the effectiveness of a
user in maximizing the reward, given the actions of other users.

Learning Cluster-Based Policy. Let there be K stages in the Simu-
lated Training Data (STD) (Fig. 1). Given state features at the be-
ginning of stage k (i.e., time τk ), we use a multi-layer feed-forward
neural network to learn a policy function πG to obtain the actions
to be applied during stage k (i.e., time-interval [τk , τk+1)). We deter-
mine actions for the clusters, aG ,k =πG (sG ,k ), which correspond to
interventions to be added to intensity for true news diffusion. Then,
we compute actions for the users aU ,k by weighting the cluster
actions by the user’s distance to the centroid. This helps to capture
both similarity and variability in user behavior. Next, we compute
expected reward from these user actions and optimize the policy.

Update Clusters Dynamically. Using actions aU ,k learnt for stage
k , we calculate the clustering features for the next stage, Xk+1. Due
to application of the policy, Xk+1,i is different from Xk ,i . Thus,
we need to re-compute the centroids Y and cluster memberships
M. Additionally, we want the clusters to be aligned across differ-
ent stages, so that the policies can be optimized using the neural
network (for different clusters across multiple epochs). To achieve
this, we define weighted centroids that include the effect of cen-
troids in the previous stage. This helps to ensure that the centroids
do not shift much and thus, clusters in stage k+1 can be aligned
with those in stage k . Using Xk+1, we obtain the updated centroids
ÛY k+1,m∀m ∈ [1,G] for stage k+1. We define G weighted centroids
ÜY k+1,m = ε1 ÛY k+1,m + εYk ,m∀m ∈ [1,G], ε1+ε2 = 1. Here ε1, ε2
indicate the importance assigned to the centroids from the previous
stage and the current stage, respectively. After updating the cen-
troids, we update the membership matrix and repeat until the cen-
troids converge. Additionally, since the change in policy estimates
across epochs reduces as optimization gets closer to convergence,
the clustering features (which are dependent on these estimates),
do not change much for the same stages across such epochs. Thus,
we can reuse the learned clusters from stage k ′ of epoch e ′ as the
clusters for stage k ′ in epoch e ′ + 1, without re-clustering users for
any stage of epoch e ′ + 1. We use an approach similar to simulated

annealing and only update the cluster assignments every ηe ∈ Z+

epochs gradually increasing ηe as the epoch number increases,
which helps speed up convergence of policy learning.

Policy Evaluation. To evaluate the estimated policy π̂G , we sim-
ulate data again from the MHPs. Using the final clusters GK , we
obtain actions from the policy to add to theMHP intensity functions
and generate evaluation data to assess empirical reward.
3 EXPERIMENTS
We use real-world datasets, Twitter 2016 and Twitter 2015 [12, 13],
with 749 and 2051 users, respectively. We compare our approach to
different clustering approaches that use reward features to obtain
fixed (static) clusters, (eg. KM-R) [3, 18]. We also compare to non-
clustering baselines (eg. NC-PF, NC-TR), which do not cluster users
and/or simply add the clustering features to the state representa-
tion. Our DCPLapproach converges faster than the non-clustering
methods and achieves a greater performance for all epochs. Clus-
tering based approaches achieve lower variance, which indicates
that they overcome sparsity and the curse of dimensionality. As
expected, the non-clustering methods have larger variance and
noisy estimates due to high dimensionality of state/action space.
Additionally, DCPL, which updates cluster assignments dynam-
ically outperforms KM-R, which assumes fixed assignments. In
DCPL, the information about agents’ payoff and contribution via
clusters, helps faciliate exploration over the action space without
increasing the state space. This helps the model to learn agents’
effectiveness early on and converge faster to a better policy. We
conducted additional experiments to study the effect of different
network properties, as well as evaluate the learned clusters and the
users selected by our model to spread true news.
4 CONCLUSION
This paper outlines a cluster-based policy learning approach for so-
cial RL that helps to address challenges due to high-dimensionality
and sparsity. Specifically, we cluster users based on their payoff and
contribution and aggregate the interactions of similar agents. We
learn policies for the clusters, and then use those to obtain actions
for individual users. This allows for efficiently learning personal-
ized policies, while still considering all agent dependencies given
a large number of users. Since the number of effective policies is
greatly reduced, this also lowers the computational complexity. Ex-
periments show that dynamic clustering of users helps the model
to quickly learn better policy estimates, allowing it to outperform
other static clustering-based and non-clustering alternatives. See
[9] for a complete description of algorithms, methodology, and
experiments.
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