
Matching Affinity Clustering: Improved Hierarchical Clustering
at Scale with Guarantees

Extended Abstract

MohammadTaghi Hajiaghayi

University of Maryland, College Park

College Park, Maryland

hajiagha@cs.umd.edu

Marina Knittel

University of Maryland, College Park

College Park, Maryland

mknittel@cs.umd.edu

ABSTRACT
Hierarchical clustering is a stronger extension of one of today’s

most influential unsupervised learning methods: clustering. The

goal of this method is to create a hierarchy of clusters, thus con-

structing cluster evolutionary history and simultaneously finding

clusterings at all resolutions. We propose four traits of interest for

hierarchical clustering algorithms: (1) empirical performance, (2)

theoretical guarantees, (3) balance (the minimum ratio between

cluster sizes), and (4) scalability. While a number of algorithms are

designed to achieve one to two of these traits at a time, there exist

none that achieve all four.

Inspired by Bateni et al.’s scalable and empirically successful

Affinity Clustering [NeurIPs 2017], we introduce Affinity’s succes-

sor, Matching Affinity Clustering. Like its predecessor, Matching

Affinity Clustering maintains strong empirical performance, even

outperforming Affinity when the dataset is size 2
𝑛
and clusters

are balanced, and uses Massively Parallel Communication as its dis-

tributed model. Designed to maintain provably balanced clusters,

we show that our algorithm achieves a (1/3− 𝜖)-approximation for

Moseley and Wang’s revenue (the dual to Dasgupta’s cost) when

the data set is of size 2
𝑛
, and a (1/9 − 𝜖)-approximation in general.

We prove the former approximation is tight, and also that Affinity

Clustering cannot do better than a 1/𝑂 (𝑛)-approximation. In addi-

tion, we see that our algorithm empirically performs similarly to

Affinity Clustering and 𝑘-Means, outperforming many state-of-the-

art serial algorithms. Along the way, we also introduce an efficient

𝑘-sized maximum matching algorithm in the MPC model.

ACM Reference Format:
MohammadTaghi Hajiaghayi and Marina Knittel. 2020. Matching Affinity

Clustering: Improved Hierarchical Clustering at Scale with Guarantees.

In Proc. of the 19th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2020), Auckland, New Zealand, May 9–13, 2020,
IFAAMAS, 3 pages.

1 INTRODUCTION
Clustering is one of the most prominent methods to provide struc-

ture, in this case clusters, to unlabeled data. Hierarchical cluster-

ing elaborates on this structure by adding a hierarchy of clusters

contained within superclusters. The input is a graph whose edge

weights represent the similarity (or dissimilarity) between two data

points. A hierarchical clustering algorithm outputs a tree 𝑇 , whose

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

leaves represent the input data, and internal nodes represent the

merging of data and clusters. This process must meet at a single

root vertex, representing the cluster of all data.

Obviously it is more computationally intensive to find 𝑇 than a

simple clustering. However, having access to such a structure pro-

vides two main advantages: (1) it allows a user to observe the data

at different granularities, effectively querying 𝑇 for clusterings of

different sizes without recomputation, and (2) it constructs a history

of relationships between data. The latter is most readily applied to

phylogenetics, where dendrograms depict the evolutionary history

of genes and species [17]. Hierarchical clustering in general has

been used in a number of other unsupervised applications. In this

paper, we explore four important qualities of a strong and efficient

hierarchical clustering algorithm:

(1) Theoretical guarantees. Previously, analysis for hierarchi-
cal clustering performance has relied on experimental evalu-

ation. While experimental performance is one indicator for

success, relying completely on it is problematic in that it

cannot ensure performance across a wider range of datasets.

Researchers combat this by considering optimization func-

tions to evaluate broader guarantees [6, 18]. One function

that has received significant attention recently [5, 9] is a cost

function proposed by Dasgupta [10] to evaluate clusterings

on graphs where edge weights represent data similarity. Cost

is intuitively defined, encouraging any pair of highly similar

points to be clustered more tightly. However, Charikar and

Chatziafratis [4] showed that it is likely NP-hard to approx-

imate cost within a constant factor. To overcome this we

examine its dual, revenue [20]. We are interested in constant

factor approximation algorithms for this function.

(2) Empirical performance. As theoretical guarantees are of-
ten only intuitive proxies for broader evaluation, it is still

important to evaluate the empirical performance of algo-

rithms on real datasets. Currently, Bateni et al. [3]’s Affinity

Clustering remains the state-of-the-art for scalable hierar-

chical clustering algorithms with strong empirical results.

To compete, we must ensure our algorithm exhibits similar

empirical performance to Affinity Clustering. This is why

we use Affinity Clustering as an inspirational foundation

for our algorithm: so that we can maintain or exceed its

experimental success.

(3) Balance. One downside of algorithms like Affinity Cluster-

ing is that they can create extremely unbalanced clusters. In

many natural clustering problems, balanced clusters can be

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1864

preferable or more accurate. A simple example is a cluster-

ing of a population into genders, where the gender ratio is

likely balanced. Some more specific applications include im-

age collection clustering, where balanced clusters can make

the database more easily navigable [12], and wireless sensor

networks, where balancing clusters of sensor nodes ensures

no cluster head gets overloaded [1]. Here, we define balance

as the minimum ratio between cluster sizes.

(4) Scalability. Most current approximations for revenue are

serial and do not ensure performance at scale. We approach

this problem by utilizing the modularity of distributed algo-

rithms for hierarchical clustering. Clustering itself, as well as

other common big data problems, has been a topic of interest

in the distributed community in recent years [2, 7, 8]. In par-

ticular, hierarchical clustering has been studied by Jin et al.

[15, 16], but only Bateni et al. [3] has attempted to ensure

theoretical guarantees. In their paper, Bateni et al. introduce

their Affinity Clustering algorithm and briefly propose a cost

metric for analysis. However, little motivation is provided

for this metric. Therefore, we are interested in evaluating

distributed algorithms with respect to a more well-founded

cost function, such as revenue.

For our distributed model, we look to Massively Parallel
Communication (MPC), which was used to design Affinity

Clustering. MPC is a theoretical abstraction of MapReduce,
a popular programming framework famous for its ease of

use, fault tolerance, and scalability [11]. In MPC, individual

machines carry only a fraction of the data and execute in-

dividual computations in rounds. At the end of each round,

machines can send limited messages to each other. Complex-

ities of interest are the number of rounds and the individual

machine space. This framework has been used in the anal-

ysis for many large-scale problems in big data, including

clustering [14, 19]. It is a natural selection for this work.

There exist algorithms that can achieve some of these qualities.

Affinity Clustering, notably, exhibits good empirical performance

and was implemented efficiently in the MPC model. While Bateni

et al. [3] describe some minor theoretical guarantees for Affinity

Clustering, we believe that proving an algorithm’s ability to opti-

mize for revenue is a stronger and more well-founded result due to

its popularity and relation to Dasgupta’s cost function. A simple

random divisive algorithm proposed by Charikar and Chatziafratis

[4] was shown to achieve a 1/3-approximation for revenue and can

be efficiently implemented using MPC (simply allocate each cluster

in the current clustering to its own machine). However, we show

that it does not perform well empirically. Similarly, balanced parti-

tioning may achieve balanced clusters, but it is unclear whether it

is scalable, and it has not been shown to achieve strong theoretical

guarantees.

In this paper, we are interested in finding an algorithm that,

unlike the current state-of-the-art, can achieve all four strengths

simultaneously.

1.1 Our contributions
In this work, we propose a new algorithm, Matching Affinity Clus-
tering, for hierarchical clustering in the distributed setting. It is

inspired by Affinity Clustering’s reliance on the minimum span-

ning tree in order to greedily select edges to merge across [3].

Instead of using the MST, we iteratively merge clusters based off

a maximum matching. We show that it achieves state-of-the-art

results in all four qualities.

First, we prove that Matching Affinity Clustering achieves a good

approximation for revenue to theoreticallymotivate our findings.
Relative to Affinity Clustering, this a significantly stronger guaran-

tee, as revenue is a well-studied and motivated dual to Dasgupta’s

popular cost function. These results are presented in Theorem 1.1.

Theorem 1.1. There is a hierarchical clustering algorithm in
MPC that, on graphs with 𝑛 = 2

𝑁 vertices, achieves a (1/3 − 𝜖)-
approximation for revenue in 𝑂

(
log(𝑛) log log(𝑛) · (1/𝜖)𝑂 (1/𝜖)

)
rounds with𝑂 (𝑛) machine space. This approximation becomes 1/9−𝜖
in 𝑂

(
log(𝑛𝑊) log log(𝑛) · (1/𝜖)𝑂 (1/𝜖)

)
rounds with 𝑂 (𝑛) machine

space for general graphs with max edge weight𝑊 .

We also show the 1/3 − 𝜖 bound is tight. Furthermore, in Theo-

rem 1.2, we prove that Matching Affinity Clustering approximates

the dual better than Affinity Clustering by a factor of𝑂 (𝑛) for some

graphs, and thus Affinity Clustering cannot approximate revenue.

Theorem 1.2. There is a family of graphs on which Affinity Clus-
tering can achieve at best a 1/𝑂 (𝑛)-factor approximation for revenue.

As a side result, we present an efficient and near-optimal MPC

algorithm for 𝑘-sized maximum matching.

Theorem 1.3. There exists an MPC algorithm for 𝑘-sized maxi-
mum matching with nonnegative edge weights and max edge weight
𝑊 for 𝑛/2 > 𝑘 and 𝑘 = 𝑂 (𝑛) that achieves a (1 − 𝜖)-approximation
in 𝑂 (log(𝑛𝑊) log log(𝑛) · (1/𝜖)1/𝜖) rounds and 𝑂 (𝑛/𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛))
machine space.

To evaluate the empirical performance of our algorithm, we

run Bateni et al. [3]’s experiments used for Affinity Clustering on

small-scale datasets. We findMatching Affinity Clustering performs

as well as Affinity Clustering and 𝑘-Means and outperforms other

serial algorithms on raw data. Additionally, on randomly filtered

datasets of size 2
𝑛
which have balanced ground truth clusters, we

find that Matching Affinity Clustering consistently outperforms

Affinity Clustering (and other tested algorithms) by at least a small

but clear margin. This implies Matching Affinity Clustering may

be more useful on balanced datasets than Affinity Clustering.

To confirm the balance of our algorithm, we are able to prove

that Matching Affinity Clustering achieves perfectly balanced clus-

ters on datasets of size 2
𝑛
, and otherwise guarantee near balance

(a cluster size ratio of at most 2). This was also confirmed in our

empirical evaluation.

Finally, Matching Affinity Clustering is highly scalable because
it was designed in the same MPC framework as Affinity Clustering.

We provide similar complexity guarantees to Affinity Clustering,

which implies that it is also significantly more scalable than popular

serial algorithms.

Matching Affinity Clustering is ultimately a nice, simply moti-

vated successor to Affinity Clustering that achieves all four desired

qualities: empirical performance, theoretical guarantees, balance,

and scalability. No other algorithms that we know of can achieve

more than two of these qualities.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1865

REFERENCES
[1] Tarachand Amgoth and Prasanta K. Jana. 2014. Energy efficient and load balanced

clustering algorithms for wireless sensor networks. IJICT 6, 3/4 (2014), 272–291.

https://doi.org/10.1504/IJICT.2014.063216

[2] Maria Fiorina Balcan, Steven Ehrlich, and Yingyu Liang. 2013. Distributed K-

Means and k-Median Clustering on General Topologies. In Proceedings of the
26th International Conference on Neural Information Processing Systems - Volume
2 (NIPS’13). Curran Associates Inc., Red Hook, NY, USA, 1995–2003.

[3] MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, Mohammad-

Taghi Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab S. Mirrokni.

2017. Affinity Clustering: Hierarchical Clustering at Scale, See [13], 6867–6877.

[4] Moses Charikar and Vaggos Chatziafratis. 2017. Approximate Hierarchical Clus-

tering via Sparsest Cut and SpreadingMetrics. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’17). Society for

Industrial and Applied Mathematics, USA, 841–854.

[5] Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, and Grigory Yaroslavtsev.

2019. Hierarchical Clustering for Euclidean Data. In Proceedings of Machine Learn-
ing Research (Proceedings of Machine Learning Research), Kamalika Chaudhuri

and Masashi Sugiyama (Eds.), Vol. 89. PMLR, 2721–2730.

[6] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. 2004.

Incremental Clustering and Dynamic Information Retrieval. SIAM J. Comput. 33,
6 (2004), 1417–1440. https://doi.org/10.1137/S0097539702418498

[7] Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Haji-

aghayi, Andrew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. 2016.

Kernelization via Sampling with Applications to Finding Matchings and Related

Problems in Dynamic Graph Streams. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ’16). Society for Industrial

and Applied Mathematics, USA, 1326–1344.

[8] Rajesh Chitnis, Graham Cormode, MohammadTaghi Hajiaghayi, and Morteza

Monemizadeh. 2015. Parameterized Streaming: Maximal Matching and Vertex

Cover. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’15). Society for Industrial and Applied Mathematics,

USA, 1234–1251.

[9] Vincent Cohen-addad, Varun Kanade, Frederik Mallmann-trenn, and Claire Math-

ieu. 2019. Hierarchical Clustering: Objective Functions and Algorithms. J. ACM
66, 4, Article Article 26 (June 2019), 42 pages. https://doi.org/10.1145/3321386

[10] Sanjoy Dasgupta. 2016. A Cost Function for Similarity-Based Hierarchical Clus-

tering. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of
Computing (STOC ’16). Association for Computing Machinery, New York, NY,

USA, 118–127. https://doi.org/10.1145/2897518.2897527

[11] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing

on large clusters. Commun. ACM 51, 1 (2008), 107–113. https://doi.org/10.1145/

1327452.1327492

[12] Andreas Dengel, Tim Althoff, and A Ulges. 2011. Balanced Clustering for Content-

Based Image Browsing. In German Computer Science Society, Informatiktage.
[13] Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, HannaM.Wallach, Rob Fergus,

S. V. N. Vishwanathan, and Roman Garnett (Eds.). 2017. Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA.

[14] Sungjin Im, Benjamin Moseley, and Xiaorui Sun. 2017. Efficient Massively Paral-

lel Methods for Dynamic Programming. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing (STOC 2017). Association for Com-

puting Machinery, New York, NY, USA, 798–811. https://doi.org/10.1145/3055399.

3055460

[15] Chen Jin, Ruoqian Liu, Zhengzhang Chen, William Hendrix, Ankit Agrawal, and

Alok N. Choudhary. 2015. A Scalable Hierarchical Clustering Algorithm Using

Spark. In First IEEE International Conference on Big Data Computing Service and
Applications, BigDataService 2015, Redwood City, CA, USA, March 30 - April 2, 2015.
IEEE Computer Society, 418–426. https://doi.org/10.1109/BigDataService.2015.67

[16] Chen Jin, Md. Mostofa Ali Patwary, William Hendrix, Ankit Agrawal, Wei-keng

Liao, and Alok Choudhary. 2013. DiSC: A Distributed Single-linkage Hierarchical

Clustering Algorithm usingMapReduce. International Workshop on Data Intensive
Computing in the Clouds (DataCloud) (11 2013).

[17] Alexander Kraskov, Harald Stögbauer, Ralph G. Andrzejak, and Peter Grassberger.

2003. Hierarchical Clustering UsingMutual Information. CoRR q-bio.QM/0311037

(2003).

[18] Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajaraman, and David P.

Williamson. 2006. A general approach for incremental approximation and hierar-

chical clustering. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006.
ACM Press, 1147–1156. http://dl.acm.org/citation.cfm?id=1109557

[19] Simone A. Ludwig. 2015. MapReduce-based fuzzy c-means clustering algorithm:

implementation and scalability. Int. J. Machine Learning & Cybernetics 6, 6 (2015),
923–934. https://doi.org/10.1007/s13042-015-0367-0

[20] Benjamin Moseley and Joshua Wang. 2017. Approximation Bounds for Hierar-

chical Clustering: Average Linkage, Bisecting K-means, and Local Search, See

[13], 3097–3106.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1866

https://doi.org/10.1504/IJICT.2014.063216
https://doi.org/10.1137/S0097539702418498
https://doi.org/10.1145/3321386
https://doi.org/10.1145/2897518.2897527
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/3055399.3055460
https://doi.org/10.1145/3055399.3055460
https://doi.org/10.1109/BigDataService.2015.67
http://dl.acm.org/citation.cfm?id=1109557
https://doi.org/10.1007/s13042-015-0367-0

	Abstract
	1 Introduction
	1.1 Our contributions

	References

