
Multi-agent Path Planning based on MA-RRT* Fixed Nodes
Extended Abstract

Jinmingwu Jiang
Chongqing University, College of Computer Science

Chongqing, China
jiangjinmingwu@cqu.edu.cn

Kaigui Wu
Chongqing University, College of Computer Science

Chongqing, China
kaiguiwu@cqu.edu.cn

ABSTRACT
In cooperative pathfinding problems, no-conflicts paths that bring
several agents from their start location to their destination need to
be planned. This problem can be efficiently solved by Multi-agent
RRT*(MA-RRT*) algorithm. However, the implementation of this
algorithm is hindered in systems with limited memory because
the number of nodes in the tree grows indefinitely as the paths
get optimized. This paper proposes an improved version of MA-
RRT*, called Multi-agent RRT* Fixed Nodes(MA-RRT*FN), which
limits the number of nodes stored in the tree by removing the weak
nodes which are not likely to reach the goal. The results show that
MA-RRT*FN performs close to MA-RRT* in terms of scalability
and solution quality while the memory required is much lower and
fixed.

KEYWORDS
Multi-agent motion planning; Cooperative pathfinding; Collision
avoidance; Path planning

ACM Reference Format:
Jinmingwu Jiang and Kaigui Wu. 2020. Multi-agent Path Planning based
on MA-RRT* Fixed Nodes. In Proc. of the 19th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland, New
Zealand, May 9–13, 2020, IFAAMAS, 3 pages.

1 INTRODUCTION
The problem of planning a series of routes for mobile robots to

destinations and avoiding collisions can be modeled as a cooperative
pathfinding problem. Traditionally, this problem is often simulated
in highly organized environments such as grids, which include sev-
eral obstacles and agents. The straightforward method to find the
paths of these agents is looking for the answer in a joint configura-
tion space which is composed of the state spaces of single agents.
Such a space is typically searched using a heuristic guided function
such as A*[4]. However, the problem of cooperative pathfinding is
proved to be PSAPCE-hard[5].

So far, a lot of work has been proposed to solve the multi-
agent path-planning problems, such as Local Repair A*(LRA*)[11]
and Optimal Anytime(OA) [12], and the recently work conflict
based search(CBS) [10] and its improved version [2]. There are
also many attempts in using the sampling-based algorithm, such as
RRT[3][6][7][8]. In [15], Čáp marries RRT* to the classical multi-
agent motion-planning algorithm and proposes Multi-agent RRT*

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

(MA-RRT*). Recently, the work [9] and [14] propose a decentral-
ized version of MA-RRT*, which run RRT* for each agent in a
pre-specified order to plan a path. However, unlike MA-RRT*, The
decoupled algorithms proposed by [9] and [14] are not complete
nor optimal. So far, in the field of coupled algorithms, no works out-
perform MA-RRT* considering the speed, optimality, completeness,
and flexibility at the same time.

However, while MA-RRT* can solve the multi-agent path plan-
ning problem efficiently, the application of theMA-RRT* is hindered
in embedded systems with limited memory, because as the solution
gets optimized, the number of nodes in the tree grows indefinitely.
The closest work to this problem is the RRT* Fixed Nodes(RRT*FN)
proposed by Adiyatov[1], which only focuses on improving the
memory efficiency of RRT*. Up to now, there is no prior work which
limits the memory required for the MA-RRT*.

This work presents a new MA-RRT* based algorithm, the Multi-
agent RRT* Fixed Nodes(MA-RRT*FN), shown in algorithm 1, which
works by employing a node removal procedure to limit the maxi-
mum number of nodes in the tree, performs close to MA-RRT* in
terms of scalability and solution quality while the memory required
is much lower and fixed.

2 PROBLEM FORMULATION
To make a fair comparison with MA-RRT*, which is simulated on

graphs, the paper tests both the two algorithms in a four-connected
gridworld and uses the following definition. Assuming that n agents
are running on a Euclidean space, and each agent, which takes up
a single cell of the grid world, has a unique start location and desti-
nation. For each timestep, all agents can move to its four neighbor
cells if it is free or stay on its current location[13]. A cell is free
means that it will not be occupied by an agent at the end of the
timestep and does not include an obstacle. The total number of
timesteps that the agent takes from its start state to the goal lo-
cation is regarded as the cost of the individual agent’s path. If all
the agents can reach their goal without collision, then the sum of
each path cost is taken as the cost of the final solution, which is the
metric of solution quality.

3 THE ALGORITHM
The MA-RRT*FN initially grows the tree before the maximum

number of nodes M is attained, after which the MA-RRT*FN re-
moves a node that has one or no child in the tree before adding
a new node. The first attempt to remove the node is during the
EXTEND procedure, in which the algorithm updates the cost of
nodes near the newly added node xnew . If a node xnear fromXnear
can reach a lower cost to the initial state by reconnecting to the
newly added node, then the algorithm will check whether the par-

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1875

Algorithm 1 MA-RRT*FN

1: V ← {xinit }; E ← ∅;
2: while not interrupted do
3: if M = NodesInTree(v) then
4: (Vold , Eold) ← (V , E)
5: end if
6: T ← (V , E);
7: xrand ← SAMPLE;
8: (V , E) ← EXTEND(T , xrand);
9: if M > NodesInTree(v) then
10: (V , E) ← ForceRemoval(V , E);
11: end if
12: if No ForceRemovalPer f ormed() then
13: (V , E) ← RestoreTree();
14: end if
15: end while

ent of this node has only one child and whether the number of
nodes in the tree reaches M. If so, xnear will be rewired as a child
of xnew , and the parent of xnear will be deleted. If none of the
nodes in the near domain of xnew has only one child, then the
ForcedRemoval procedure will be employed, which searches the
entire tree, except the xnew and the goal node, to find the nodes
without children and deletes one randomly[1]. In case no nodes are
deleted in EXTEND and ForceRemoval function, xnew is removed
from the tree. The performance of MA-RRT*FN can be improved
by frequently sampling the regions that are more likely to have
high-quality solutions. This improved version is called informed
sampling MA-RRT*FN(isMA-RRT*FN).

4 EXPERIMENTS AND RESULTS
The paper compares the capability of the MA-RRT*, MA-RRT*FN,

isMA-RRT* and isMA-RRT*FN in terms of scalability, solution qual-
ity and memory cost. All experiments are performed on matlab
2018a64-bit in a common program framework and tested on intel
core i7 8700k 3.7 GHz CPU.

To compare the scalability and suboptimality, the paper sets
the problem instance set as follows: The agents run in a grid-like
square-shaped world, where each agent occupies a single cell. Ten
percent of the grids are removed to represent obstacles or barri-
ers. A unique start location and destination are selected randomly
for every agent. The problem instances set varies in the following
two parameters: The grid sizes: 10x10, 30x30, 50x50, 70x70,90x90
and the number of agents: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Each combina-
tion contains 120 random instances. Thus, in total, there are 6000
random instances. Particularly, to compare the memory cost and
convergence rate, for clarity, this paper sets another experiment
which fixes the two parameters: the grid sizes: 50x50 and the num-
ber of agents: 3, and randomly sets 120 instances to qualitatively
show the memory needed and convergence rate of all algorithms.
All algorithms are implemented on the same instance set when
comparing the same capabilities. For comparing scalability and sub-
optimality, the runtime of each instance is limited to 5 seconds, and
the maximum number of nodes of MA-RRT*FN and isMA-RRT*FN
is set to 200. For comparing the memory cost and convergence

0 1000 2000 3000 4000 5000 6000
instances

0
10
00

20
00

30
00

40
00

50
00

ru
nt
im

e(
m
s)

First-solution performance curve

MARRTs MARRTsFN isMARRTs isMARRTsFN
(a) Scalability

0 1000 2000 3000 4000 5000
Number of iterations

90
10
0

11
0

12
0

13
0

14
0

Pa
th

co
st

Three Agent Navigation

MARRTs MARRTsFN isMARRTs isMARRTsFN
(b) convergence rate

0 1000 2000 3000 4000 5000
Number of iterations

0
10
00

20
00

30
00

40
00

50
00

N
um

be
ro

fn
od

es

Three Agent Navigation

MARRTs MARRTsFN isMARRTs isMARRTsFN
(c) Memory required

(d) Suboptimality

Figure 1: experiment results.

rate, the maximum number of iterations of each instance is limited
to 5000, and the maximum number of nodes of MA-RRT*FN and
isMA-RRT*FN is set to 1000. The results are plotted in Figure 1. The
suboptimality is calculated by the following formula:

suboptimality =
(
the cost of returned solution
the cost of optimal solution

− 1
)
· 100.

It can be seen from Figure 1(a) that MA-RRT* resolves 66% of
the instances, MA-RRT*FN 65%, isMA-RRT* 86% and isMA-RRT*FN
87%, from the problem instance set. Figure 1(d) shows that MA-
RRT*FN and isMA-RRT*FN have a similar suboptimality to MA-
RRT* and isMA-RRT*FN. Figure 1(b) shows that the MA-RRT*FN
has a similar convergence rate to MA-RRT* while its number of
nodes in the tree is much less, as shown in Figure 1(c), memory
required for MA-RRT* grows linearly with the iterations increase,
while the number of nodes stored in MA-RRT*FN is lower and
fixed. The results in Figure 1(b) and Figure 1(c) also indicate that
the isMA-RRT*FN performs well than isMA-RRT* concerning the
convergence rate and memory requirement. Finally, MA-RRT* is
proved to be convergent in [15]. Although the experiment results
strongly imply that the MA-RRT*FN and isMA-RRT*FN also have
the theoretical guarantee of converging to the optimal path, the
optimality of MA-RRT*FN and isMA-RRT*FN remains to be proved.

5 CONCLUSIONS
This paper proposes MA-RRT*FN, an improved version of MA-

RRT* that has lower demands in the memory requirements. The
experiment results show that the MA-RRT*FN performs as well as
MA-RRT* in terms of scalability, solution quality and convergence
rate while its memory required is much lower and fixed. Besides,
its improved version, isMA-RRT*FN, has a better convergence rate
and scalability than isMA-RRT*. In the future, we will continue to
improve the convergence rate of MA-RRT*FN.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1876

REFERENCES
[1] Olzhas Adiyatov and Huseyin Atakan Varol. [n. d.]. Rapidly-Exploring Ran-

dom Tree Based Memory Efficient Motion Planning. In 2013 IEEE International
Conference on Mechatronics and Automation (2013). IEEE, 354–359.

[2] Anton Andreychuk, Konstantin Yakovlev, Dor Atzmon, and Roni Stern. [n. d.].
Multi-Agent Pathfinding (MAPF) with Continuous Time. ([n. d.]).

[3] Dave Ferguson and Anthony Stentz. [n. d.]. Anytime Rrts. In 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems (2006). IEEE, 5369–
5375.

[4] Peter E Hart, Nils J Nilsson, and Bertram Raphael. [n. d.]. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. 4, 2 ([n. d.]), 100–107.

[5] John E Hopcroft, Jacob Theodore Schwartz, and Micha Sharir. [n. d.]. On the
Complexity of Motion Planning for Multiple Independent Objects; PSPACE-
Hardness of the" Warehouseman’s Problem". 3, 4 ([n. d.]), 76–88.

[6] Shotaro Kamio and Hitoshi Iba. [n. d.]. Random Sampling Algorithm for Multi-
Agent Cooperation Planning. In 2005 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (2005). IEEE, 1265–1270.

[7] Steven M LaValle and James J Kuffner Jr. [n. d.]. Randomized Kinodynamic
Planning. 20, 5 ([n. d.]), 378–400.

[8] Michael Otte and Nikolaus Correll. [n. d.]. Any-Com Multi-Robot Path-Planning
with Dynamic Teams: Multi-Robot Coordination under Communication Con-
straints. In Experimental Robotics (2014). Springer, 743–757.

[9] Matteo Ragaglia, Maria Prandini, and Luca Bascetta. [n. d.]. Multi-Agent Poli-Rrt.
In International Workshop on Modelling and Simulation for Autonomous Systems
(2016). Springer, 261–270.

[10] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. [n. d.]. Conflict-
Based Search for Optimal Multi-Agent Pathfinding. 219 ([n. d.]), 40–66.

[11] David Silver. [n. d.]. Cooperative Pathfinding. 1 ([n. d.]), 117–122.
[12] Trevor Scott Standley. [n. d.]. Finding Optimal Solutions to Cooperative Pathfind-

ing Problems. In Twenty-Fourth AAAI Conference on Artificial Intelligence (2010).
[13] Trevor Scott Standley and Richard Korf. [n. d.]. Complete Algorithms for Coop-

erative Pathfinding Problems. In Twenty-Second International Joint Conference on
Artificial Intelligence (2011).

[14] Paolo Verbari, Luca Bascetta, and Maria Prandini. [n. d.]. Multi-Agent Trajectory
Planning: A Decentralized Iterative Algorithm Based on Single-Agent Dynamic
RRT. In 2019 American Control Conference (ACC) (2019). IEEE, 1977–1982.

[15] Michal Čáp, Peter Novák, JiYí Vokrínek, and Michal Pěchouček. [n. d.]. Multi-
Agent RRT: Sampling-Based Cooperative Pathfinding. In Proceedings of the 2013
International Conference on Autonomous Agents and Multi-Agent Systems (2013).
International Foundation for Autonomous Agents and Multiagent Systems, 1263–
1264.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1877

	Abstract
	1 Introduction
	2 problem formulation
	3 The algorithm
	4 experiments and results
	5 Conclusions
	References

