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ABSTRACT

An underlying assumption of Stackelberg Games (SGs) is perfect ra-
tionality of the players. However, in real-life situations the followers
(thieves, poachers, smugglers), as humans in general, may act not
in a perfectly rational way, since their decisions may be affected by
biases of various kinds which bound rationality of their decisions.
One of the popular models of bounded rationality is Anchoring
Theory (AT) which claims that humans have a tendency to flatten
probabilities of available options, i.e. they perceive a distribution of
these probabilities as being closer to the uniform distribution than
it really is. We propose an efficient formulation of AT in sequential
extensive-form SGs suitable for Mixed-Integer Linear Program so-
lution methods and compare the results of its implementation in
five state-of-the-art methods for solving sequential SGs.
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1 INTRODUCTION

Bounded rationality (BR) [15] in problem-solving refers to limi-
tations of decision-makers that lead them to taking non-optimal
actions. Except for limited cognitive abilities, BR can be attrib-
uted to partial knowledge about the problem, limited resources,
or imprecisely defined goal [1, 14]. The most popular models of
BR are Prospect Theory [5], Anchoring Theory (AT) [16], Quantal
Response [11] and Framing Effect [17]. In this paper, AT approach
implemented in COBRA [12, 13] for normal-form games is extended
to the case of sequential extensive-form games in a way that avoids
non-linear constraints, which makes it suitable for a wide range
of MILP approaches. AT assumes the existence of a certain distor-
tion (towards the uniform distribution of probabilities of possible
actions) of the follower’s perception of the leader’s mixed strategy.
The leader being aware of that distortion can exploit this weakness
in their strategy formulation.

A pure strategy of the player is an assignment of one action to
each potentially reachable state of the game. Let’s denote a set of all
pure strategies of player i by Πi . Amixed strategy δi is a probability
distribution over Πi . In extensive-form SGs each node in a game
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tree is uniquely defined by a pair of sequences: the leader’s actions
and the follower’s actions which lead to that node. These sequences
will be denoted by σl and σf , resp.

The goal of SG is to find Strong Stackelberg Equilibrium [9] i.e. a
strategy profile (δ∗

l
, δ∗

f
) satisfying the two following equations: δ∗

l
=

argmaxδl ul (δl , δ
∗
f
) and δ∗

f
= argmaxδf uf (δl , δf ). The second one

defines the follower’s best (optimal) response to the leader’s strategy
δl while the first one selects the best leaders’s strategy against the
optimal follower’s response. Additionally it is assumed that the
follower breaks ties in favour of the leader. ui , i ∈ {l, f } is the
utility/payoff of player i .

2 AT IN SEQUENTIAL SG (ATSG)

ATSG is implemented as a distorted follower’s perception of the
leader’s behavior strategy. Let’s denote by q(i) a probability of
choosing action i by the leader in a given information set (IS), stem-
ming from its behavior strategy. The most straightforward imple-
mentation of AT (though non-linear in sequence-form games) is to
change the probability of taking this action to q′(i) = (1 − αq(i)) +

α/M , whereM is the number of actions available in this IS. How-
ever, in sequence-form games, for a given leader’s feasible sequence
of actions σl = a1,a2,a3, . . . ,an a probability of playing it, based
on behavior strategy, would be p(σl ) = q(a1)q(a2) · · ·q(an ) and the
distorted AT probability would become (*): p′(σl ) = ((1−α)q(a1)+

α/M1)((1 − α)q(a2) + α/M2) · · · ((1 − α)q(an ) + α/Mn ), whereMi

is the number of actions available in IS in which ai is played.
State of the art approaches to SSE in extensive-form games uti-

lize MILP formulations capable of exploiting a sequence form of
a game [2, 3]. Variables p in MILP formulation of SG are prod-
ucts of q(ai ) values presented above (*), and as such cannot be
expressed in a linear form with respect to q(ai ). Consequently,
applying the above AT modification to MILPwould end-up with
non-linear constraints, inadequate for MILP formulation. Conse-
quently, we propose to simplify the above ATSG by dropping
distortion coefficients from all but the last one probabilities (**):
p′′(σl ) = q(a1) · · ·q(an−1)((1− α)qan + α/Mn ) = q(a1) · · ·q(an−1)·

α/Mn+(1−α)q(a1)· · ·q(an−1)q(an ) = p(init(σl ))α/Mn+(1−α)p(σl ),
where init(·) is a function which outputs a sequence without the last
move. A simplified version of ATSG (**) is well suited to MILP/LP
formulations of sequence-form games.

Please note that relations among probabilities of the leader’s
actions within a single IS are the same according to both equa-
tions (*) and (**), i.e. ∀σ 1

l
,σ 2

l
I (σ 1

l
) = I (σ 2

l
) ⇒ p′(σ 1

l
)/p′(σ 2

l
) =

p′′(σ 1
l
)/p′′(σ 2

l
), where p′(σ ),p′′(σ ) represent probability of sequ-

ence σ in a given IS calculated according to (*) and (**), resp. Fur-
thermore, for a given sequence σl , for small values of α a difference
|p′′(σl ) − p′(σl )| is also small.
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Modification of MILP/LP based methods. ATSG formulation
(**) was incorporated into three state-of-the-art MILP methods for
general-sum sequential SGs: BC2015 [2], C2016 [3] and CBK2018 [4].
The first two are exact methods, the last one provides approximate
solutions. In each case, due to inherent requirement of constraints
linearity, a simplified AT version (**) was used, i.e. each occur-
rence of p(σl ) in constraints enforcing the followers optimal re-
sponse (either stand-alone or as a joint probability p(σl ,σf )) in
the original MILP formulations of these methods was replaced by
p(init(σl ))α/Mn + (1 − α)p(σl ).

Modification of heuristic methods. The remaining two meth-
ods are heuristic non-MILP approaches to solving sequential exte-
nsive-form SGs: O2UCT [7, 8] and EASG [18]. The former (double-
oracle UCT sampling) relies on a guided sampling of the follower’s
strategy space interleaved with finding a feasible leader’s strat-
egy using double-oracle method. The latter utilizes Evolutionary
Algorithm (EA) to find the leader’s mixed strategy.

ATSG implementation in O2UCT required using distorted prob-
abilities (**) in the follower’s oracle when calculating the expected
value, as well as in a procedure that calculates a difference between
the follower’s utilities for two strategies.

Incorporation of ATSG into EASG relies on considering a dis-
torted version (**) of the leader’s mixed strategy when calculating
the best follower’s response against which each chromosome is
evaluated.

Observe that O2UCT and EASG are flexible in adoption of

various ATSG formulations. For both methods, contrary to

MILP/LP ATSG implementations, the potential existence of

non-linearities in the formulas defining distorted follower’s

probabilities is not harmful, and - in principle - any other

BR modification could be used instead of eq. (**). For compa-
rability reasons, we will use a linear form (**) in the experiments.

3 EXPERIMENTAL EVALUATION

In what follows modifications of considered methods incorporating
ATSG will be referred to with the prefix AT-.

Benchmark games. Experimental evaluation was performed
on a set of patrolling Warehouse Games introduced in [6]. Game
instances can be downloaded from our project website [10]. The
benchmark set consisted of 25 games generated on 4 × 4 grid, T =
3, . . . , 7, albeit for T = 7 exact methods were unable to compute
solutions with allotted time and memory.

Experimental setup. For each game instance (game layout and
game length) AT-O2UCT and AT-EASG were run 10 times and for
each other (deterministic)MILPmethod a single trial was performed.
Tests were run on Intel Xeon Silver 4116 @ 2.10GHz with 256GB
RAM. Experiments withAT-O2UCT andAT-EASG were run in paral-
lel, each with 8GB RAM assigned. Tests withAT-C2016,AT-CBK2018,
AT-BC2015 were run sequentially with all 256GB RAM available
in each trial. All tests were limited to 200 hours (per single test)
and forcibly terminated if not completed within the allotted time.
Results for all games are presented w.r.t the aggregated number
of game nodes (|H |) in the extensive-form game representation.
This grouping followed the formula: bucket = 10round(log10 |H |),
where round rounds a number to the nearest integer. Henceforth
Bi , i = 2, . . . , 7 will denote the i-th bucket of games.

Payoffs. The average expected leader’s utilities are compared in
Fig. 1a. AT-C2016 and AT-BC2015 are exact methods, so their results
are clearly the highest and the resp. plots overlap. Both non-MILP
heuristic methods perform slightly worse, although for games from
B≤5 AT-EASG is a close runner-up, outperforming AT-O2UCT.

For the largest B7 games the best-performing method is AT-
O2UCT, which excels AT-EASG (the only remaining competitor) by
a clear margin. None of the two exact MILP methods were capable
of solving games of this size and the approximate MILP approach
(AT-CBK2018) solved 16 game instances and failed in solving the
remaining 9. Consequently, for the sake of fair comparison, payoff
results of AT-CBK2018 are not presented for B7 games. Generally,
AT-CBK2018 yields the weakest outcomes across the entire range
of game sizes.

●

●

●

●
●

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

B2 B3 B4 B5 B6 B7

Game nodes
L
e
a
d
e
r’
s
 p

a
y
o
ff method

● AT−BC2015

AT−C2016

AT−CBK2018

AT−EASG

AT−O2UCT

(a) Leader’s payoff.

●
●

●

●

●

1e+00

1e+03

1e+06

B2 B3 B4 B5 B6 B7

Game nodes

T
im

e
[s

]

method

● AT−BC2015

AT−C2016

AT−CBK2018

AT−EASG

AT−O2UCT

(b) Computation time.bib

Figure 1: (a): The average expected leader’s payoff. (b): The

average time requirements.

Time scalability is presented in Fig. 1b. While all methods scale
exponentially, the running times of non-MILP approaches grow at
slower paces. For games from B≥6 (AT-EASG) and from B≥7 (AT-
O2UCT ), resp. they already excel exact MILP methods. Obviously,
the main asset of AT-C2016 and AT-BC2015 is convergence to opti-
mal solutions and hence a comparison of their running times with
heuristic approaches needs to be considered with care. Nevertheless,
it seems reasonable to conclude that beyond certain game complex-
ity the exact methods become infeasible and, in such scenarios,
both heuristic approaches present a viable alternative.

The third MILP method is a state-of-the-art algorithm for approx-
imate solving of extensive-form games. Following [4] AT-CBK2018
was parameterized in a way which assures fast convergence (ϵ =
0.3,σ = 0.4), though still for the most complex B7 games AT-EASG
and AT-O2UCT are faster (Fig. 1b), and at the same time provide bet-
ter solutions (Fig. 1a). Note that AT-CBK2018 solved only 16 games
from B7 and times for the remaining instances are capped at the
limit of 200h. This situation favors AT-CBK2018, as for AT-O2UCT
and AT-EASG the actual times for all games are reported.

Results summary. Evaluation on a set of 25 games shows that
non-MILP AT methods (O2UCT [7, 8], EASG [18]) provide optimal
or close-to-optimal leader’s payoffs while being visibly faster than
exact MILP AT approaches (BC2015 [2],C2016 [3]). At the same time,
they outperform time-optimized approximate MILP AT method
(CBK2018 [4]) in both payoffs quality and time efficiency.
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