
Graph Neural Networks for Decentralized Path Planning
Extended Abstract

Qingbiao Li
Dept. of Computer Science and

Technology, University of Cambridge
United Kingdom
ql295@cam.ac.uk

Fernando Gama,
Alejandro Ribeiro

Dept. of Electrical and Systems
Engineering, University of

Pennsylvania, USA
{fgama,aribeiro}@seas.upenn.edu

Amanda Prorok
Dept. of Computer Science and

Technology, University of Cambridge
United Kingdom
asp45@cam.ac.uk

ABSTRACT
We propose a combined model that automatically synthesizes local
communication and decision-making policies for agents navigating
in constrained workspaces. Our architecture is composed of a con-
volutional neural network (CNN) that extracts adequate features
from local observations, and a graph neural network (GNN) that
communicates these features among agents. We train the model to
imitate an expert algorithm, and use the resulting model online in
decentralized planning involving only local communication and lo-
cal observations. We evaluate our method in simulations involving
teams of agents in cluttered workspaces. We measure the success
rates and sum of costs over the planned paths. The results show a
performance close to that of our expert algorithm, demonstrating
the validity of our approach. In particular, we show our model’s
capability to generalize to previously unseen cases (involving larger
environments and larger agent teams).

KEYWORDS
Graph neural networks, decentralized multi-agent path planning,
inter-robot communication
ACM Reference Format:
Qingbiao Li, Fernando Gama, Alejandro Ribeiro, and Amanda Prorok. 2020.
Graph Neural Networks for Decentralized Path Planning. In Proc. of the
19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 3 pages.

1 INTRODUCTION
Efficient and collision-free navigation in multi-agent systems is fun-
damental to advancing mobility, where collision-free paths are gen-
erated to lead agents from their origins to designated destinations.
Current approaches can be classified as either coupled or decou-
pled, depending on the structure of the state space that is searched.
While coupled approaches are able to ensure the optimality and
completeness of the solution, they involve centralized components,
and tend to scale poorly with the number of agents [7, 8]. Decoupled
approaches, on the other hand, compute trajectories for each agent
separately, and re-plan only in case of conflicts [10–12]. This can
significantly reduce the computational complexity of the planning
task, but generally produces sub-optimal and incomplete solutions.
The application of learning-based methods to multi-robot motion
planning has attracted particular attention due to their capability

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

of handling high-dimensional joint state-space representations, by
offloading the online computational burden to an offline learning
procedure [1, 3, 4, 9]. Notably, Sartoretti et al. [6] propose a hybrid
learning-based method called PRIMAL for multi-agent path-finding
that uses both imitation learning and multi-agent reinforcement
learning. In contrast to our work, however, the latter approach does
not learn explicit inter-agent communication policies.

2 PROPOSED FRAMEWORK
We formulate the multi-agent path planning problem as a sequen-
tial decision-making problem that each agent solves at every time
instant 𝑡 , with the objective of reaching its destination. All compo-
nents are described as following:

Partial observation processed by CNN : In an environment
(𝑊 ×𝐻) with static obstacles, each agent has a local field-of-view
(FOV) defined by the radius 𝑟FOV, beyond which it cannot ‘see’
anything. The input map Z𝑖𝑡 for agent 𝑖 with size𝑊FOV ×𝐻FOV is
fed into a CNN that is run internally on each agent. This results in
a vector x̃𝑖𝑡 ∈ R𝐹 containing 𝐹 observations, x̃𝑖𝑡 = CNN(Z𝑖𝑡). These
observations can then be communicated to nearby agents.

Communication via GNN : The agents can communicate with
each other as determined by the communication network defined by
a graph G𝑡 = (V, E𝑡 ,W𝑡) at time 𝑡 . Note that V = {𝑣1, . . . , 𝑣𝑁 } is
the set of𝑁 robots, E𝑡 ⊆ V×V is the set of edges andW𝑡 : E𝑡 → R
is a function that assigns weights to the edges. Robots 𝑣𝑖 and 𝑣 𝑗
can communicate with each other at time 𝑡 if (𝑣𝑖 , 𝑣 𝑗) ∈ E𝑡 , i.e. if
they are within a communication radius 𝑟COMM of each other. The
corresponding edge weight W𝑡 (𝑣𝑖 , 𝑣 𝑗) = 𝑤

𝑖 𝑗
𝑡 can represent the

strength of the communication.
Graph Neural Network: We define a graph convolution [2] as

linear combination of shifted versions of the signal

A(X𝑡 ; S𝑡) =
𝐾−1∑
𝑘=0

S𝑘𝑡 X𝑡A𝑘 (1)

where {A𝑘 }𝑘 is a set of 𝐹 ×𝐺 matrices representing the filter co-
efficients combining different observations. S𝑘𝑡 X𝑡 = S𝑡 (S𝑘−1𝑡 X𝑡) is
computed by means of 𝑘 communication exchanges with 1-hop
neighbors, and is actually computing a summary of the information
located at the 𝑘-hop neighborhood. The operation S𝑡X𝑡 represents
a linear combination of neighboring values of the signal due to the
sparsity pattern of S𝑡 .

Action Policy: A local MLP (weight-sharing) is trained to predict
action ũ𝑖𝑡 taken by robot 𝑖 , which is computed by a softmax over
the probability distribution of motion primitives, includes up, left,

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1901

Encoder

Framework (Trained)

Action
𝑢𝑡

MLPCNN

Action
Policy

Detect
Collision

Reach Goal
YesNo

Yes

Collision
Shielding

Update 𝑍t
𝑖 by action 𝑢𝑡until all robots reach goals or the loop exceeds maximum step

D

Communication

𝑆𝑡

GNN

𝑍t
𝑖

B
A

C

F
in

ish

Figure 1: Illustration of the inference stage: for each robot, the input map
Z𝑖𝑡 with the same format as in training, is fed to the trained framework to
predict its action; collisions are detected and prevented by collision shielding.
The input map Z𝑖𝑡 is continuously updated until the robot reaches its goal
or exceeds maximum steps𝑇𝑚𝑎𝑥 = 3𝑇MP∗ . Here,𝑇MP∗ is the makespan of
the solution generated by the expert algorithm.

down, right and idle. The final path is represented by a series of
sequential actions.

Learning from Expert Data: To train our models, we propose
an imitation learning approach based on expert data [5]. At training
time, we have access to an optimal trajectory of actions {U∗

𝑡 } for all
the robots, and the corresponding maps obtained for this trajectory
{Z𝑖𝑡 }, collected in a training set T = {({U𝑡 }, {Z𝑖𝑡 })}. Then, we train
the mapping F so that the output is as close as possible to the
corresponding optimal action U∗ using cross entropy loss L(·).
For the mapping F involving the CNN, GNN and action policy
parametrizations just described, then this optimization problem
becomes

min
CNN,{Aℓ𝑘 },MLP

∑
({U𝑡 },{Z𝑖𝑡 }) ∈T

∑
𝑡

L(U∗
𝑡 , F ({Z𝑖𝑡 },G𝑡)) . (2)

We are optimizing over the filters in the CNN required to process the
map and the set of matrices {Aℓ𝑘 } that contains the

∑𝐿
ℓ=1 𝐾ℓ𝐹ℓ−1𝐹ℓ

learnable parameters of the communication GNN. Note that the
number of parameters is independent of the size of the network 𝑁 .

Policy Execution with Collision Shielding: Fig. 1 summarizes
the inference process with a protective mechanism, called collision
shielding: robots’ actions are replaced by idle actions if the robot
reaches obstacle or edge, and an inter-robot collision happens. To
overcome such deadlocks caused by collision shielding, a dataset
aggregation method inspired by DAgger [5] is designed to leverage
an online expert to resolve hard cases.

3 PERFORMANCE EVALUATION
Metrics: 1) Success Rate (𝛼) = 𝑛success

𝑛 , is the proportion of successful
cases over the total number of tested cases 𝑛. A case is considered
successful (complete) when all robots reach their goal prior to the
timeout; 2) Flowtime Increase (𝛿FT) FT−FT∗

FT∗ , measures the difference
between the sum of the executed path lengths (FT) and that of
expert (target) path (FT∗). We set the length of the predicted path
𝑇 𝑖 = 𝑇𝑚𝑎𝑥 (Fig. 1), if the robot 𝑖 does not reach its goal.

Experimental Setup: We instantiate 600 different maps of size
20×20 with obstacle density 10%, of which 420 are used for training,
90 for validation, and 90 for testing. We generate 50 cases for each
map. We set 𝑟FOV = 4 and 𝑟COMM = 5. Our simulations were
conducted using a 12-core, 3.2Ghz i7-8700 CPU and an Nvidia

4 6 8 10 12
robots

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Exp setup
GNN - K=1
GNN - K=2
GNN - K=3

a: Success rate (𝛼)

4 6 8 10 12
robots

0.1

0.2

0.3

0.4

0.5

Fl
ow

tim
e

In
cr

ea
se

Exp setup
GNN - K=1
GNN - K=2
GNN - K=3

b: Flowtime increase (𝛿FT)

Figure 2: Results for success rate (𝛼) and flowtime increase (𝛿FT), as a
function of the number of robots. For each panel, we vary the number
of communication hops (𝐾 ∈ {1, 2, 3}), where 𝐾 = 1 corresponds to no
communication.4 6 8 10 12 14

4
6

8
10

12

0.9431 0.8518 0.7531 0.5980 0.4909 0.3642

0.9638 0.9313 0.8747 0.7916 0.7058 0.6227

0.9676 0.9442 0.9140 0.8547 0.7842 0.7042

0.9647 0.9520 0.9249 0.8984 0.8544 0.8136

0.9696 0.9542 0.9347 0.9082 0.8791 0.8302 0.45

0.60

0.75

0.90

Figure 3: Success rate 𝛼 (trained with K = 3). The rows represent the
number of robots on which each model was trained, and columns represent
the number of robots at test time. The generalization performance of the
network is visualized by a heatmap, which maps performance values into a
color range from purple to red, where purple indicates the best performance
and red indicates the worst performance.
GTX 1080Ti GPU with 32 and 11GB of memory, respectively. The
proposed network was implemented in PyTorch v1.1.0, and was
accelerated with Cuda v10.0 APIs. We used the Adam optimizer
with momentum 0.9. The learning rate 𝛾 was scheduled to decay
from 10−3 to 10−6 within 150 epochs, using cosine annealing. We
set the batch size to 64, and L2 regularization to 10−5.

Results: Figures 2a and 2b show results for the success rate
and flowtime increase, respectively, as a function of the number
of robots. We train a model for 𝑁 ∈ {4, 6, 8, 10, 12}, and test it
on instances of the same robot team size. In each experiment, we
vary the number of communication hops (𝐾 ∈ {1, 2, 3}). Note that
for 𝐾 = 1 there is no communication involved. In both figures,
we see a drop in performance for larger teams, but this drop is
much more pronounced for the non-communicative GNN (𝐾 = 1).
There is a small but noticeable improvement as we increase the
communication hop count from 𝐾 = 2 to 𝐾 = 3.

Fig. 3 summarizes the generalization capability of our model for
success rates. By comparing across rows under the same column,
we see that when tested on the same number of robots, the network
trained on a larger number of robots tends to perform better (even
better than on the same instance size as trained on), leading to
higher success rates. Also, comparing performance across columns
for a fixed row, we observe that as we train networks with increas-
ingly large robot teams, the network tends to generalize better
across any unseen instances (larger as well as smaller robot teams).

4 ACKNOWLEDGMENTS
We gratefully acknowledge the support of ARL grant DCIST CRA
W911NF-17-2-0181. A. Prorok was supported by the Engineering
and Physical Sciences Research Council (grant EP/S015493/1). We
gratefully acknowledge their support.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1902

REFERENCES
[1] M. Everett, Y. F. Chen, and J. P. How. 2018. Motion Planning Among Dynamic,

Decision-Making Agents with Deep Reinforcement Learning. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, Madrid,
Spain, 3052–3059. https://doi.org/10.1109/IROS.2018.8593871

[2] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro. 2019. Convolutional Neural
Network Architectures for Signals Supported on Graphs. IEEE Trans. Signal
Process. 67, 4 (Feb. 2019), 1034–1049.

[3] A. Khan, E. Tolstaya, A. Ribeiro, and V. Kumar. 2019. Graph Policy Gradients for
Large Scale Robot Control. arXiv preprint arXiv:1907.03822 (2019).

[4] A. Prorok. 2018. Graph Neural Networks for Learning Robot Team Coordi-
nation. Federated AI for Robotics Workshop, IJCAI-ECAI/ICML/AAMAS 2018;
arXiv:1805.03737 [cs] (May 2018). arXiv: 1805.03737.

[5] S. Ross, G. Gordon, and D. Bagnell. 2011. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth
international conference on artificial intelligence and statistics. Journal of Machine
Learning Research (JMLR), Fort Lauderdale, FL, USA, 627–635.

[6] G. Sartoretti, J. Kerr, Y. Shi, G.Wagner, T. K. Kumar, S. Koenig, and H. Choset. 2019.
PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning.
IEEE Robotics and Automation Letters 4 (2019), 2378–2385. Issue 3.

[7] D. Silver. 2005. Cooperative Pathfinding. Artificial Intelligence and Interactive
Digital Entertainment 1 (2005), 117–122.

[8] T. Standley and R. Korf. 2011. Complete Algorithms for Cooperative Pathfinding
Problems. In Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence - Volume Volume One (IJCAI’11). AAAI Press, Barcelona,
Catalonia, Spain, Article 1, 6 pages. https://doi.org/10.5591/978-1-57735-516-8/
IJCAI11-118

[9] E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro. 2019. Learning
Decentralized Controllers for Robot Swarms with Graph Neural Networks. In
Conf. Robot Learning 2019. Int. Found. Robotics Res., Osaka, Japan.

[10] J. van den Berg, M. Lin, and D. Manocha. 2008. Reciprocal velocity obstacles for
real-time multi-agent navigation. In IEEE International Conference on Robotics
and Automation (ICRA). IEEE, Pasadena, CA, USA, 1928–1935.

[11] J. van den Berg and M. H. Overmars. 2005. Prioritized motion planning for
multiple robots. In 2005 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, Edmonton, Alta., Canada, 430–435. https://doi.org/10.1109/
IROS.2005.1545306

[12] W. Wu, S. Bhattacharya, and A. Prorok. 2020. Multi-Robot Path Deconfliction
through Prioritization by Path Prospects. IEEE International Conference on Robotics
and Automation (ICRA) (2020). arXiv: 1908.02361.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1903

https://doi.org/10.1109/IROS.2018.8593871
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-118
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-118
https://doi.org/10.1109/IROS.2005.1545306
https://doi.org/10.1109/IROS.2005.1545306

	Abstract
	1 Introduction
	2 Proposed Framework
	3 Performance Evaluation
	4 Acknowledgments
	References

