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ABSTRACT
K-cores are maximal induced subgraphs where all vertices have de-

gree at leastk . These dense patterns have applications in community

detection, network visualization and protein function prediction.

However, k-cores can be quite unstable to network modifications,

which inspires the question: How resilient is the k-core structure of a
network, such as the Web or Facebook, to edge deletions? More specifi-

cally, we study the problem of computing a small set of edges for which
the removal minimizes the k-core structure of a network. This paper
provides a comprehensive characterization of the hardness of the

k-core minimization problem (KCM), including innaproximability

and parameterized complexity. Motivated by these challenges, we

propose a novel algorithm inspired by Shapley value—a cooperative

game-theoretic concept— that is able to leverage the strong inter-

dependencies in the effects of edge removals in the search space.

Our experiments, show that the proposed algorithm outperforms

competing solutions in terms of k-core minimization.

KEYWORDS
k-core, network design, network resilience, shapley value

ACM Reference Format:
Sourav Medya, Tianyi Ma, Arlei Silva, and Ambuj Singh. 2020. A Game The-

oretic Approach For k-Core Minimization. In Proc. of the 19th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020),
Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 3 pages.

1 INTRODUCTION
K-cores play an important role in revealing the higher-order orga-

nization of networks. A k-core [10] is a maximal induced subgraph

where all vertices have internal degree of at least k . These cohesive
subgraphs have been applied to model users’ engagement and viral

marketing in social networks [2]. Other applications include anom-

aly detection [12], community discovery [8], and visualization [3].

However, the k-core structure can be quite unstable under network

modification. For instance, removing only a few edges might lead

to the collapse of the core structure of a graph. This motivates the

k-core minimization problem: Given a graph G and constant k, find
a small set of b edges for which the removal minimizes the size of the
k-core structure [15].
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We motivate k-core minimization using the following applica-

tions: (1) Monitoring: Given an infrastructure or technological net-

work, which edges should be monitored for attacks [6]? (2) Defense:
Which communication channels should be blocked in a terrorist

network in order to destabilize its activities [9]? and (3) Design:
How to prevent unraveling in a social or biological network by

strengthening connections between pairs of nodes [2]?

There is no polynomial time algorithm that achieves a constant-

factor approximation for KCM. This behavior differs from more

popular problems in graph combinatorial optimization, such as sub-

modular optimization, where a simple greedy algorithm provides

constant-factor approximation guarantees. The algorithm proposed

in this paper applies the concept of Shapley values (SVs), which,
in the context of cooperative game theory, measure the contribu-

tion of players in coalitions [11]. Our algorithm selects edges with

largest Shapley value to account for the joint effect (or cooperation)

of multiple edges in the solution set.

Recent papers have introduced the KCM problem [15] and its

vertex version [13], where the goal is to delete a few vertices such

that the k-core structure is minimized. However, our work provides

a stronger theoretical analysis and more effective algorithms that

can be applied to both problems. In particular, we show that our

algorithm outperforms the greedy approach proposed recently in

[15]. Our main contributions are summarized as follows:

• We study thek-coreminimization (KCM) problem, which consists

of finding a small set of edges, removal of which minimizes the

size of the k-core structure of a network.
• We show that KCM is NP-hard, even to approximate by a constant

for k ≥ 3. We also discuss the parameterized complexity of KCM

and show the problem isW [2]-hard parameterized by budget.

• Given the above inapproximability result, we propose a Shapley

Value based algorithm that efficiently accounts for the interde-

pendence among the candidate edges for removal. We show the

accuracy and efficiency of our algorithm using several datasets.

Due to space limitation we defer some details, proofs, and exper-

imental results to an extended version [7].

Related Work : Adiga et al. [1] studied the stability of high

cores in noisy networks. A few works [6, 14] recently introduced

a notion of resilience in terms of the stability of k-cores against
deletion of random nodes/edges. Another related paper [13] studied

the node version of KCM. Bhawalkar et al. [2] and Chitnis et al. [4]

studied the problem of increasing the size of k-core by anchoring a

few vertices initially outside of the k-core.
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2 PROBLEM DEFINITION
We assumeG(V ,E) to be an undirected and unweighted graph with

sets of verticesV (|V | = n) and edges E (|E | =m). Let d(G,u) denote
the degree of vertex u inG . An induced subgraph, H = (VH ,EH ) ⊂

G is such that if u,v ∈ VH and (u,v) ∈ E then (u,v) ∈ EH . The

k-core [10] of a network is defined below.

Definition 2.1. k-Core: The k-core of a graph G, denoted by

Ck (G) = (Vk (G),Ek (G)), is defined as a maximal induced subgraph

that has vertices with degree at least k .

Let GB = (V ,E \ B) be the modified graph after deleting a set B
with b edges. Deleting an edge reduces the degree of two vertices

and possibly their core numbers. The reduction in core number

might propagate to other vertices. For instance, the vertices in a

simple cycle are in the 2-core but deleting any edge moves all the

vertices to the 1-core. Let Nk (G) = |Vk (G)| and Mk (G) = |Ek (G)|
be the number of nodes and edges respectively in Ck (G).

Definition 2.2. Reduced k-Core: A reduced k-core, Ck (G
B ) is

the k-core in GB
, where GB = (V ,E \ B).

Definition 2.3. K-Core Minimization (KCM): Given a candi-

date edge set Γ, find set B ⊂ Γ of b edges to be removed such that

Ck (G
B ) is minimized, or, fk (B) = Nk (G) − Nk (G

B ) is maximized.

Inapproximability: The hardness of the KCM problem stems

from the fact that there is a combinatorial number of choices of

edges from the candidate set, and there might be strong dependen-

cies in the effects of edge removals. KCM is proved to be NP-hard in

[15].We show a stronger result that KCM is NP-hard to approximate

within any constant factor.

Theorem 1. The KCM problem is NP-hard to approximate within
a constant-factor for all k ≥ 3.

Theorem 1 shows that there is no polynomial-time constant-

factor approximation for KCM when k ≥ 3. This contrasts with well-

known NP-hard graph combinatorial problems in the literature [5].

We explore the hardness of our problem further in terms of exact

exponential algorithms with respect to the parameters and show

that KCM isW [2]-hard.

Theorem 2. The KCM problem isW [2]-hard parameterized by
the budget b.

3 ALGORITHMS AND EXPERIMENTS
According to the Theorems 1 and 2, an optimal solution— or constant-

factor approximation—for k-core minimization requires enumerat-

ing all possible size-b subsets from the candidate edge set, assuming

P ,NP . Here we propose an efficient heuristic for KCM. The general

greedy algorithm is unaware of some dependencies between the

candidates in the solution set. To capture these dependencies, we

adopt a cooperative game theoretic concept named Shapley Value

[11]. Our goal is to make a coalition of edges (players) and divide

the total gain by this coalition equally among the edges inside it.

The Shapley Value of an edge e in KCM is defined as follows.

Let the value of a coalition P be V (P) = fk (P) = Nk (G) − Nk (G
P ).

Given an edge e ∈ Γ and a subset P ⊆ Γ such that e < P , themarginal

contribution of e to P is: V (P ∪ {e}) − V (P), ∀P ⊆ Γ. Let Ω be
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Figure 1: K-core minimization (DN(%)) varying the number
of edges in the budget: The Shapley Value based algorithm
(SV) outperforms the best baseline (LD) by up to 6 times.

the set of all |Γ |! permutations of all the edges in Γ and Pe (π ) be
the set of all the edges that appear before e in a permutation π . The
Shapley Value of e is the average of its marginal contributions to

the edge set that appears before e in all the permutations:

Φe =
1

|Γ |!

∑
π ∈Ω

V (Pe (π ) ∪ {e}) − V (Pe (π )). (1)

Shapley Values capture the importance of an edge inside a set

(or coalition) of edges. However, computing Shapley Value requires

considering O(|Γ |!) permutations. We efficiently approximate the

Shapley Value for each edge via sampling.

We evaluate the proposed Shapley Value based algorithm (SV)

for k-core minimization against baseline solutions. The experiments

were conducted on a 2.59 GHz Intel Core i7-4720HQ machine with

16 GB RAM running Windows 10. Algorithms were implemented

in Java. The datasets (EE: Enron, DB: DBLP, FB: Facebook, and WS:

Web-Stanford) are available online
1
.

Besides the Greedy Cut (GC) algorithm [15], we also consider

three more baselines in our experiments. Low Jaccard Coefficient
(JD) removes the k edges with lowest Jaccard coefficient. Simi-

larly, Low-Degree (LD) deletes k edges for which adjacent vertices

have the lowest degree. We also apply Random (RD), which simply

deletes k edges from the candidate set Γ uniformly at random. The

evaluation measure is the percentage DN (%) of vertices from the

initial graph G that leave the k-core after the deletion of edges in

B: DN (%) =
Nk (G)−Nk (GB )

Nk (G)
× 100.

Figure 1 presents the k-core minimization results for k=5 using
four different datasets. SV outperforms the best baseline by up to

six times as our algorithm can capture strong dependencies among

sets of edges. On the other hand, GC, which takes into account only

marginal gains for individual edges, achieves worse results than

simple baselines such as JD and LD. A large value of k leads to a

less stable k-core that can be broken by the removal of edges with

low-degree endpoints. LD is a good alternative for such extreme

scenarios.

1
https://snap.stanford.edu
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