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ABSTRACT

Autonomous driving promises to transform road transport. Multi-
vehicle and multi-lane scenarios, however, present unique chal-
lenges due to constrained navigation and unpredictable vehicle
interactions. Learning-based methods—such as deep reinforcement
learning—are emerging as a promising approach to automatically
design intelligent driving policies that can cope with these chal-
lenges. Yet, the process of safely learning multi-vehicle driving
behaviours is hard: while collisions—and their near-avoidance—are
essential to the learning process, directly executing immature poli-
cies on autonomous vehicles raises considerable safety concerns. In
this article, we present a safe and efficient framework that enables
the learning of driving policies for autonomous vehicles operating
in a shared workspace, where the absence of collisions cannot be
guaranteed. Key to our learning procedure is a sim2real approach
that uses real-world online policy adaptation in a mixed reality
setup, where other vehicles and static obstacles exist in the virtual
domain. This allows us to perform safe learning by simulating (and
learning from) collisions between the learning agent(s) and other
objects in virtual reality. Our results demonstrate that, after only a
few runs in mixed reality, collisions are significantly reduced.
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1 RELATED WORK

The idea of exploiting mixed (and augmented) reality for robotics
applications was originally introduced as a tool to facilitate devel-
opment and prototyping. Early work experiments with virtual hu-
manoids amongst real obstacles [7]. Chen et al. [1] use augmented
reality to obtain a coherent display of visual feedback during in-
teractions between a real robot and virtual objects. More recently,
mixed reality has gained importance in shared human-robot envi-
ronments [8]. The introduction of mixed reality to support rein-
forcement learning has barely been considered. In [5], Mohammadi
et al. present an approach for online continuous deep reinforcement
learning for a reach-to-grasp task. Although targets exist in the
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Figure 1: Mixed reality multi-vehicle multi-lane traffic cir-
cuit including one real DeepRacer robot and 16 virtual ones.

physical world, the learning procedure is carried out in simulation,
before being transferred to the actual robot.

2 MULTI-VEHICLE SCENARIO

We consider the problem of high-level decision making in a multi-
vehicle, multi-lane system—in particular, we are interested in lane
changing manoeuvres. We introduce randomised static obstacles
to perturb the traffic and to force such manoeuvres. In formalising
this problem, we delegate (i) trajectory following and (ii) velocity
regulation to low-level controllers and focus our learning efforts
on high-level policies responsible for (i) changing lanes and (ii)
selecting target velocities. We adopt the Amazon DeepRacer as
our autonomous vehicle platform and deploy it in a 3-lane track
together with 16 IDM/MOBIL [3] virtual cars (see Figure 1).

3 LEARNING FRAMEWORK

We formalise this problem as a reinforcement learning one in which
an agent (the DeepRacer) receives noise-free but local observations.
The observation space contains information about the position and
desired velocity of the agent itself and (up to) six nearby vehicles.
The action space is discrete: at every decision step, an agent chooses
whether to (i) change lanes left, right, or not at all; as well as to (ii)
accelerate, decelerate, or maintain its current velocity.

The reward function used to train the agent is presented in (1)—
where ¢, c1, and ¢z are hyper-parameters weighting velocity an
proximity terms.

R(vg,dj, da) = —colvg| — max(0,c1L — dj, c2A — dg) (1)

R contains (i) a penalty term for the deviation from the desired
velocity, vg; and (ii) a proximity penalty (with respect to other
vehicles) calculated as the maximum of two terms. The first one
considers the distance to the nearest vehicle in the current lane
in either direction, dj, and scales with the vehicle’s length, L. The
second term considers the distance to the nearest vehicle in any
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lane, dg, and scales with lane separation, A—its purpose is to deter
collision with vehicles in the process of changing lanes.

In our framework, the observations of each nearby vehicle are
processed by a sequence of linear, ReLU activated layers before
being max-pooled and concatenated with the observations of the
agent’s own state. These concatenated observations are then used
as inputs for the actor and both critic networks, each composed
of multiple ReLU linear layers. The actor network is followed by
two additional soft-max layers, one for each of the two high-level
actions (accelerating and lane-changing).

We update our network’s weights using an adaptation of Asyn-
chronous Advantage Actor Critic [4]. When updating the actor we
use the PPO-Clip loss function [6] with an entropy term, and we
use the smallest magnitude value function evaluation from the two
critics [2].
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Figure 2: Empirical distributions at test time of (i) the num-
ber of collisions per scenario (top plot, left is best) and (ii)
the total collected reward per scenario (bottom plot, right is
best) before (blue) and after (red) training in mixed reality.

4 MIXED REALITY SETUP

The physics of the virtual vehicles are calculated by a C++ simu-
lation. This environment is used to implement a fully virtual pre-
training phase. Then, in mixed reality, the same simulator injects
virtual information into the observations available to the Deep-
Racer robot. In the real world, the pose of the DeepRacer robot is
tracked by six OptiTrack Prime 17W cameras. OptiTrack constantly
updates the C++ simulation with this pose.

Learning in mixed reality is performed in an online fashion,
with a small number of experience trajectories being collected
across multiple initialisations of the environment between each
optimisation step. Beyond the added safety of virtual collisions, our
mixed reality framework also enables intuitive visualisation! by
combining the C++ simulation and motion-tracking data.

1Video: https://www.youtube.com/watch?v=LlnaxZHWQOs
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Figure 3: Plots of track positions (y axis) against time (x axis)
of 4 static obstacles (horizontal lines), 12 virtual vehicles,
and one real-life DeepRacer (thicker line). The colourmap
captures velocity of each car. The red dots are collisions in-
curred by the DeepRacer. The top and bottom plots compare
driving behaviours before and after mixed reality training.

5 EXPERIMENTAL RESULTS

We ran experiments in a 3-lane track with 16 virtual vehicles (12
running IDM/MOBIL, 4 acting as static obstacles) and one real,
learning DeepRacer. After pre-training in a purely virtual environ-
ment, we measured performance before and after training in mixed
reality.? Figure 2 shows that training in mixed reality caused a
substantial reduction in mean collisions, as well as their variance.
A qualitative portrait of the improved behaviour learned through
mixed reality is given by Figure 3, which shows a substantial re-
duction in collisions (at the cost of a lower driving speed). The
increase in average reward shown in Figure 2 demonstrates that
the agent’s increased caution is warranted by the trade-offs in the
reward structure. This increase in optimal caution is likely due to
the more unpredictable vehicle dynamics in the real world, when
compared to simulation. Our mixed reality framework is first-of-
its-kind, and we hope it will help bridge the reality gap that still
stymies progress in reinforcement learning for robotics at large.
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