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1 INTRODUCTION
Researchers have long been interested in the role that norms can
play in governing agent actions in multi-agent systems. Norms
have been shown to facilitate social order [2] and improve cooper-
ation and coordination among agents [9], and an active research
community has investigated many theoretical and practical aspects
of normative reasoning in multi-agent systems [1]. Much of this
work has focused on formalising normative concepts from human
society and adapting them for the government of open software
systems, and on the simulation of normative processes in human
and artificial societies. However, there has been comparatively little
work on applying normative MAS mechanisms to understanding
the norms in human society.

This work investigates this issue in the context of international
politics. Using the GDELT dataset, containing machine-encoded
records of international events extracted from news reports, we
extracted bilateral sequences of inter-country events and applied
a Bayesian norm mining mechanism to identify norms that best
explained the observed behaviour. A statistical evaluation showed
that a probabilistic model enhanced with explicit normative reason-
ing fitted the data significantly better than a baseline probabilistic
model.

The Global Database of Events, Language and Tone (GDELT) [6]
is a continuously updated geopolitical event database with over half
a billion records. It is free and open, and the current version, GDELT
2.0, is updated every 15 minutes. The database includes an events
table containing machine-coded data extracted from news reports,
with 60 attributes for each event (e.g. the event type and countries
involved) [5], and has been used for studies such as predicting
future violence levels in Afghanistan [11] and detecting protest
events in the world [8].

We considered the following research question: Can the GDELT
data be better explained by a model combining probabilities and
norms than by a purely probabilistic model? Our research comprised
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five stages: i) collecting and pre-processing data from the GDELT
database; ii) fitting a probabilistic model to serve as the baseline
model; iii) defining a model to calculate the likelihood of observed
sequences of events, given an assumed norm; iv) using this model to
mine norms from the GDELT database based on Bayesian learning;
and v) comparing the fit of the two models with the data.

2 DATA PRE-PROCESSING
The types of events and actors in the database are encoded using
the Conflict and Mediation Event Observations (CAMEO) coding
scheme [4]. CAMEO event codes have a three-level hierarchical
structure, with 20 “root codes” that are further specialised into “base
codes”, with some of these subdivided into a further level of detail.
We used root codes only. For example, a news report that “Albania
on Friday denounced as an ugly crime Yugoslavia’s suppression
of ethnic Albanian unrest” [4] is encoded with root event code
11 (Disapprove). Other example root codes are 3 (Express intent to
cooperate), 4 (Consult) and 5 (Engage in diplomatic cooperation).

We considered events spanning one year, from 19 June 2018 to
20 June 2019, recorded in 35,039 data files. We considered events
involving two “country” actors (as opposed to other international
organisations) with a primary role code of “government”. We ex-
tracted bilateral sequences of mutually relevant events, based on
the transitive closure of a co-mention relation that holds when
two events appear in the same news report. As we aimed to learn
generic norms that apply to all countries, we did not retain the
events’ source and target countries when learning norms. However,
the relative directions of events in a bilateral event sequence are
significant. We therefore represented each event as a combination
of a direction and an event root code, where by convention the
first event in an event sequence is taken to be in the “forwards”
direction. We denote a directed event by a pair ⟨direction, code⟩.

3 LEARNING NORMS FROM EVENT
SEQUENCES

We used the following language to define our norm hypothesis
space, where ec and cec range over root event codes.

• O(ec): an unconditional obligation to perform an event with
event code ec.

• O(cec, ec, rel_dir): a conditional obligation to perform an
event with event code ec if a prior condition event with
event code cec has occurred, and the relative direction of
these two events is specified by rel_dir (either ‘same’ or
‘different’, denoted + and −, respectively).

• P(ec): an unconditional prohibition of events with event code
ec.
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Figure 1: The norm state machine

• P(cec, ec, rel_dir): a conditional prohibition of events with
event code ec if a prior condition event with event code cec
has occurred, and the relative direction of the two events is
specified by rel_dir .

We followed a Bayesian approach to norm learning [3]. Given a
set of norm hypotheses, for every observed event sequence σ in our
dataset and each norm hypothesis h we calculated the likelihood
of the observation given the hypothesis: p(σ |h). Bayes’ Rule was
then used to update the log odds of a norm hypothesis h versus the
null hypothesis (h0) that there is no norm, given the observation.
Let σ = (σ1,σ2, . . . ,σN ) be our dataset with N = 513, 906 event
sequences. Then, as each sequence is independently observed, we
can express the log odds of the hypotheses given the dataset as
the sum of the prior log odds and the log likelihood ratios of each
sequence under the two hypotheses:

loд(O(h:h0 |σ )) = loд(O(h:h0)) +
N∑
i=1

(loд(p(σi |h)) − loд(p(σi |h0)))

To define the likelihood of an event sequence given the no-norm
null hypothesis, we fitted a probabilistic language model to the set
of event sequences resulting from our data pre-processing. The
trained model gave us the probability of an event given an event
history. We chose to use the libPLUMP implementation1 of the
sequence memoizer (SM) [10], due to Murphy’s description of the
SM as “the best-performing language model” [7, p.595].

To define the likelihood of an observation, we defined a state
machine for norms (Figure 1), which was instantiated for each
observed event sequence and norm hypothesis. We used this to
define the likelihood of an event sequence given a (non-null) norm
hypotheses using a set of state-specific recursive equations defining
p(σ |s,η) for sequence σ , norm state s and event history η). Through
recursive application of the equations, each event (in turn) is fed to

1http://www.gatsby.ucl.ac.uk/~ucabjga/libplump.html

Table 1: Top six norms

log odds Prob.
compliance

Prob. sanction

O(4) 75355.1 0.225 0.011
O(4, 4,−) 65428.0 0.497 0.019
O(3) 21550.6 0.032 0.004
O(3, 3,−) 14569.4 0.288 0.025
O(5, 5,−) 13814.1 0.189 0.032
O(4, 3,+) 12092.1 0.020 0.009

the state machine. The norm state can change at each of these steps.
Our norm language does not model obligation deadlines. Therefore,
in the Activating state (once a norm’s condition is true), the tail of
the sequence is passed to the state machine to be checked for future
obligation violation. This allows the likelihood of sanction events
to be calculated correctly. The event likelihoods defined by our
equations use normative reasoning to modify the base probabilities
returned from the SM, e.g. an active obligation makes compliant
events more likely, so in this case we compute event probabilities
using a norm-specific SM trained on compliant sequences only.

4 RESULTS
Applying the Bayesian inference procedure to our event sequence
dataset and hypothesis set resulted in 173 norms with posterior log
odds greater than 0 (i.e. odds greater than 1), and which were there-
fore found to be more likely hypotheses than the null hypothesis
that there are no norms. Among these 173 norms, there were 154
conditional obligation norms, 16 conditional prohibition norms and
3 unconditional obligation norms. The top six norms are shown in
Table 1, along with their posterior log odds, and the inferred proba-
bility of compliance and sanctioning. We provide a description for
the top two norms:

• O(4) : CAMEO root code 4 stands for ‘Consult’. This uncon-
ditional obligation to consult the other country is complied
with 22.5% of the time, which accounts for its high log odds.
Violations of this norm were rarely sanctioned.

• O(4, 4,−) : This obligation is triggered by a consultation, and
obliges the other party to consult. More than 50% of the
time it is violated, but some violations (1.8%) are sanctioned.
A 49.7% fulfilment rate and the sanctions account for this
norm’s very high log odds.

We used a likelihood-ratio test to compare our norm-aware
probabilistic model (given the top norm above) with the purely
probabilistic model embodied by the SM. We used the posterior
distribution of sequences, i.e. the trained SM, to generate synthetic
datasets under the null hypothesis. This allowed us to generate an
empirical distribution of the likelihood ratio test statistic LRT, and
calculate a p value for the observed value LRT(D), given our set
of observed event sequences, D. We found that LRT (D) exceeds
LRT (d) for all synthetic datasets d , and the p-value was less than
0.0173. Thus we could reject the null hypothesis at the 0.1 signifi-
cance level and answer our research question in the affirmative: our
model including the top norm explains the GDELT dataset better
than when using the sequence memoizer alone.
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