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ABSTRACT
Inverse reinforcement learning is a method that estates a reward
function from experts demonstrations. Most existing inverse rein-
forcement learning methods assume that an expert gives demon-
strations in a fixed environment, although the expert can provide
demonstrations for a specific objective in multiple environments.
In such cases, normal practice is to use demonstrations in multiple
environments to estimate the expert’s reward. Herein, we formu-
late this problem based on a Bayesian inverse reinforcement learn-
ing framework and propose amini-batchMarkov chainMonte Carlo
method. An advantage of our method is scalability. Our proposed
method is scalable with respect to a number of environments in
which expert demonstrations are generated. Experimental results
show quantitatively that the proposed method outperforms exist-
ing inverse reinforcement learning methods.

KEYWORDS
inverse reinforcement learning; bayesian inference

ACM Reference Format:
Yusuke Nakata and Sachiyo Arai. 2020. Mini-batch Bayesian Inverse Rein-
forcement Learning forMultiple Dynamics. In Proc. of the 19th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020),
Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 2 pages.

1 INTRODUCTION
We formulate a problem of estimating rewards from expert demon-
strations inmultiple environments by using the Bayesian IRL (BIRL)
framework [2]. This formulation enables rewards to be estimated
from sub-optimal expert demonstrations with a stochastic policy
with prior knowledge about expert rewards represented as a prob-
ability distribution. Furthermore, we propose amini-batchMarkov-
chain Monte Carlo (MCMC) method for the formulated problem;
this method uses part of expert demonstrations in each MCMC
iteration to approximates the posterior distribution. The experi-
mental results suggest that it is better to collect them in multiple
environments than collecting it in a fixed environment, even if an
available number of expert demonstrations in each environment
are limited.

2 MARKOV DECISION PROCESS
AMarkov decision process (MDP) is a classical formalization of the
problem of sequential decision making. A finite MDPM = (E,R),
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comprises an environment E = ⟨ S, A, T , γ ⟩, and a reward R,
whereS is a finite set of states,A is a finite set of actions,T (s ′ |s,a)
is the probability of transition to s ′ ∈ S when the agent takes an
action a ∈ A in state s ∈ S, γ ∈ [0, 1] is the discount factor, and
the reward function R : S → R specifies the reward received in
state s ∈ S. An agent decides to take action a in state s with the
probability specified by the policy π : S × A → [0, 1].

A state value and an action value under the reward function R,
and policy π are given respectively as,

V π (s,R) = Eπ ,T

[ ∞∑
t=0

γ tR(St )
���S0 = s] , (1)

Qπ (s,a,R) = Eπ ,T

[ ∞∑
t=0

γ tR(St )
���S0 = s,A0 = a

]
. (2)

3 PROBLEM: BAYESIAN INVERSE
REINFORCEMENT LEARNING FOR
MULTIPLE DYNAMICS

BIRL-MD defines the problem of estimating the distribution of re-
ward from the demonstrations of an expert under multiple dynam-
ics. BIRL involves estimating the posterior distribution of reward
P(R |D) = P(R |D, E) given a fixed environment E and a dataset D,
where D is generated by an expert in E. However, the proposed
BIRL-MD involves estimating the posterior distribution of reward
P(R |{(Dm, Em )}Mm=1) given environments with different dynam-
ics Em = ⟨S,A,Tm,γ ⟩ and a set of datasets {Dm }Mm=1 gener-
ated by an expert in each environment. In this paper, we model
posterior distribution of the reward given a dataset of the expert
{(Em,Dm )}Mm=1 can be expressed as

P(R |{(Dm,Em )}Mm=1) =
1
Z ′

exp ©«κ
M∑

m=1

∑
(s ,a)∈Dm

Q∗(s,a,R, Em )
ª®¬ P(R).
(3)

4 APPROACH
We propose an algorithm, mini-batch PolicyWalk for multiple dy-
namics (mini-batch PolicyWalk-MD), which samples reward from
the posterior distribution P(R |{(Dm, Em )}Mm=1). The entire proce-
dure of the mini-batch PolicyWalk-MD is detailed in Algorithm 1,
which uses the technique explained in Section ??. Our algorithm
reduces the number of policy iterations for each MCMC iteration
from M to a constant N . In the experiment, we show that our al-
gorithm approximates the posterior distribution with a small con-
stant N and reduces the computational time significantly.
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Algorithm 1 Mini-batch PolicyWalk for Multiple Dynamics

INPUT: Environments {Em }Mm=1, Demonstrations {Dm }Mm=1,
Prior P(R), Step size δ , Mini-batch size N

OUTPUT: Sampled Rewards {Ri }ti=1
1: Pick a random vector R ∈ R |S |/δ
2: {πm }Mm=1 ← {Policy iteration(Em,R)}Mm=1
3: for i = 1 do t
4: Pick a reward vector R̃ uniformly at random from the

neighbors of R ∈ R |S |/δ
5: u ← Sample from uniform distribution U (0, 1)
6: Ñ ← Sampled N integers from {n ∈ N| n ≤ M} without

repetition
7: Compute Qπ (s,a,R, E) ∀{s,a, (En, πn )} ∈ S × A ×
{(En, πn )}n∈Ñ

8: if ∃{s,a, (E, π )} ∈ S × A ×
{(En, πn )}n∈Ñ,Q

π (s, π (s), R̃, E) < Qπ (s,a, R̃, E) then ▷ If any
sampled policy is not optimal

9: {π̃n }n∈Ñ ←
{
Policy iteration(En, R̃)

}
n∈Ñ

10: if 1
M log

(
u P (R)
P (R̃)

)
< 1

N
∑
n∈Ñ log P

(
Dn, En

��R̃) −
log P

(
Dn, En

��R) then
11: R ← R̃
12: {πn }n∈Ñ ← {π̃n }n∈Ñ
13: else if 1

M log
(
u P (R)
P (R̃)

)
< 1

N
∑
n∈Ñ log P

(
Dn, En

��R̃) −
log P

(
Dn, En

��R) then
14: R ← R̃
15: Ri ← R

5 EXPERIMENTS
The experimental environment is a windy grid world, in which
each state has a wind direction, and the agent transitions to a wind
direction with a certain probability regardless of the agent’s ac-
tion. Hence, we can create environments with different dynamics
by varying the wind direction of each state. In this experiment, the
probability of forced transition to the wind direction is set to 30%.
The number of wind directions is five (i.e., up, down, left, right,
and no wind), and the wind direction of each state is independent.
The reward is 1.0 in a upper right-hand corner state (4, 4), and zero
elsewhere.

We evaluate the estimated reward with a score that is known as
the expected value difference (EVD) [1] which is a measure of how
sub-optimal the learned policy is under the expert true reward.
To calculate EVD, we used 100 environments with different wind
directions (dynamics) generated from uniform distributions, and
each experiment was conducted 10 times.

In Figure 1, the number of demonstrated environments is fixed
to eight, and the number of environments used in each MCMC
step (i.e., mini-batch size) are varied across {1, 2, 4, 8}. As Figure 1
shows, EVD does not change significantly with the mini-batch size
N . Figure 2 evaluates our method with a mini-batch size of N = 1
by varying the numberM of environments of expert’s demonstra-
tions. EVD decreases as the number of environments for reward
estimation decreases.

Figure 1: Evaluation of mini-batch BIRL-MD for different
mini-batch size N .

Figure 2: Evaluation of Minibatch BIRL-MD for Different
Number of Environments of Expert’s Demonstrations M
with fixed mini-batch size N .

6 CONCLUSIONS AND FUTUREWORK
This paper formulates a Bayesian inverse reinforcement learning
problem for expert demonstrations (i.e., sequences of both sensor
inputs to expert and expert’s actions) undermultiple environments
with different dynamics. An advantage of our method is its scala-
bility with respect to the number of environments in which expert
demonstrations are generated. Figure 1 and Table ?? show that our
method can approximate the posterior distribution with a small
mini-batch size in a computational time that is comparable with
that of BIRL.
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