
Conditional Updates of Answer Set Programming and Its
Application in Explainable Planning∗

Extended Abstract

Van Nguyen and Tran Cao Son
New Mexico State University

Las Cruces, NM
{vnguyen,tson}@cs.nmsu.edu

Stylianos Loukas Vasileiou and William Yeoh
Washington University in St. Louis

St. Louis, MO
{v.stylianos,wyeoh}@wustl.edu

ABSTRACT
In explainable planning, the planning agent needs to explain its
plan to a human user, especially when the plan appears infeasible
or suboptimal for the user. A popular approach is called model
reconciliation, where the agent reconciles the differences between its
model and themodel of the user such that its plan is also feasible and
optimal to the user. This problem can be viewed as a more general
problem as follows: Given two knowledge bases πa and πh and a
query q such that πa entails q and πh does not entail q, where the
notion of entailment is dependent on the logical theories underlying
πa and πh , how to change πh – given πa and the support for q in
πa – so that πh does entail q. In this paper, we study this problem
under the context of answer set programming. To achieve this goal,
we (1) define the notion of a conditional update between two logic
programs πa and πh with respect to a query q; (2) define the notion
of an explanation for a query q from a program πa to a program πh
using conditional updates; (3) develop algorithms for computing
explanations; and (4) show how the notion of explanation based on
conditional updates can be used in explainable planning.

KEYWORDS
Explainable Planning; Answer Set Programming
ACM Reference Format:
Van Nguyen and Tran Cao Son and Stylianos Loukas Vasileiou and William
Yeoh. 2020. Conditional Updates of Answer Set Programming and Its Appli-
cation in Explainable Planning. In Proc. of the 19th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland,
New Zealand, May 9–13, 2020, IFAAMAS, 3 pages.

1 LOGIC PROGRAMMING
Answer set programming (ASP) [10, 11] is a declarative program-
ming paradigm based on logic programming under the answer set
semantics. A logic program Π is a set of rules of the form

a0 ← a1, . . . ,am , not am+1, . . . , not an

where 0≤m≤n, each ai is an atom of a propositional language, and
not represents (default) negation.Intuitively, a rule states that if all
positive literals ai are believed to be true and no negative literal
not ai is believed to be true, then a0 must be true. If a0 is omitted,
∗This research is partially supported by NSF grants 1345232, 1619273, 1757207, 1829859,
1812619, and 1812628.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

the rule is called a constraint. If n = 0, it is called a fact. For a rule r ,
head(r) denotes a0; pos(r) and neg(r) denote the set {a1, . . . ,am }
and {am+1, . . . ,an }, respectively. atoms(r) denotes the set of all
atoms in r , viz. {head(r)} ∪ pos(r) ∪ neg(r); and, atoms(Π) denotes
the set of all atoms of Π. heads(Π) (neдs(Π)) denotes the set of
atoms occurring in the head of rules of Π (negative literals of Π).

Let Π be a program. I ⊆ atoms(Π) is called an interpretation of
Π. For an atom a, a (resp. not a) is satisfied by I , denoted by I |= a
(resp. I |= not a), if a ∈ I (resp. a < I). A set of literals S is satisfied
by I (I |= S) if I satisfies each literal in S . A rule r is satisfied by I if
I ̸ |= body(r) or I |= head(r). I is a model of a program if it satisfies
all its rules. An atom a is supported by I in Π if there exists r ∈ P
such that head(r) = a and I |= body(r). The reduct of Π w.r.t. I
(denoted by ΠI) is the program obtained from Π by deleting (i)
each rule r such that neд(r) ∩ I , ∅, and (ii) all negative literals in
the bodies of the remaining rules. I is an answer set [5] of Π if I is
the least Herbrand model of ΠI [14], which is the least fixpoint of
the operator TΠ defined by TΠ(I) = {a | ∃r ∈ Π,head(r) = a, I |=
body(r)} and is denoted by lfp(TΠ).

Given an answer set I of Π and an atom q, a justification for q
wrt. I is a set of rules S ⊆ Π such that I |= body(r) for r ∈ S and
q ∈ lfp(TS I). A justification S for q wrt. I is minimal if there exists
no proper subset S ′ ⊂ S such that S ′ is also a justification for q wrt.
I . It is easy to see that if S is a minimal justification for q wrt. I then
neдs(S) ∩ heads(S) = ∅ and heads(S) is an answer set of S .

2 PLANNING USING ASP
Answer set planning refers to answer set programming in plan-
ning [9]. It has been shown by Gebser et al. [4] that answer set
planning, combinedwith good heuristics, can perform at the highest
level of state-of-the-art planning systems.

A planning problem – as described using PDDL [6] – is a triple
(I ,G,D), where I andG encode the initial state of the world and the
goal, respectively; andD (the domain) specifies the actions and their
preconditions and effects. Given a problem P = (I ,G,D), answer set
planning translates it into a program π (P ,n) to compute solutions
of P , where n is constant indicating the maximal length of solutions
that we are interested in (i.e., horizon). Program π (P ,n) consists of
different groups of rules:
• Facts: These atoms define object constants, types of objects,
actions, the initial state, and the goal state.
• ReasoningAbout Effects ofActions:Rules in this groupmake
sure that an action can only be executed if all of its conditions
are true and all of the effects of the actions become true. We use
h(l , t) to denote that l is true at step t for 1 ≤ t ≤ n.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1954

• Goal Enforcement and Action Generation: The rules in this
group generates action occurrences and ensure that only valid
plans are generated.

3 EXPLAINABLE PLANNING
In explainable planning (XAIP) problems [7], the planning agent
needs to find ways to ensure that its plans are understood and ac-
cepted by human users. As themodel or knowledge base of the robot
differs from that of the human users, a plan that may be optimal
in the model of the robot may be suboptimal or, worse, infeasible
in the model of the human user. Researchers have approached this
problem from two perspectives. The first is by enforcing that the
robot finds explicable plans (i.e., plans that are optimal or feasible
in the model of the human user) [8, 15]. The second is for the robot
to provide explanations to the human user and reconciling their
two models such that the plan of the robot is also optimal in the
reconciled model of the human user [3, 12, 13]. There is also recent
work in balancing both approaches [1, 2].

In an XAIP problem, a planning problem P = (I ,G,D) is given,
which is identical to the robot model Pa = (Ia ,Ga ,Da). The human
model of the planning problem Ph = (Ih ,Gh ,Dh)might be different
from the model of the robot. The focus of this paper is in the model
reconciliation process, i.e., to bring the human’s model closer to
the robot’s model by means of explanations in the form of model
updates. Given Pa and Ph , a model reconciliation problem (MRP) is
defined by a tuple ⟨π∗, Pa , Ph⟩, where π∗ is a cost-minimal solution
for Pa . A solution for an MRP is a multi-model explanation ϵ , which
creates a model P∗h from Pa and Ph such that π∗ is also a cost-
minimal solution of P∗h by inserting to Ph (or removing from Ph)
some initial conditions, action preconditions, action effects, or goals.
It is required that the changes in the model of the human must be
consistent with the robot’s model.

4 EXPLANATIONS USING ASP
Let πa be the program of the robot, πh be the program of the human,
and q be an atom of πa such that πa |∼ q and πh |≁ q. Assume that
the robot wishes to explain to the human that q, representing a
plan, is true. The robot could do so by identifying an answer set I
supporting q and explaining to the human by presenting a set of
rules λ ⊆ πa , which might be a justification for q wrt. I , such that
an update of πh by λ given I will allow the human to accept that q
is entailed. In other words, the process of updating πh by λ given
I should result in a new program, denoted by πh ⊗I λ such that
πh ⊗I λ |∼ q. Therefore, we define the operator ⊗ before we discuss
the explanation process.

Definition 4.1 (Conditional Update). Let πa and πh be two pro-
grams. Further, let I be an answer set of πa and λ ⊆ πa . The condi-
tional update of πh with respect to λ and I is the program π ′h ∪λ, de-
noted by πh ⊗I λ, where π ′h is the collection of rules from πh \λ such
that (i) head(r) ∈ I and neд(r) ∩ I = ∅ or (ii) neд(r) ∩ heads(λ) , ∅.

Let πa and πh to denote two arbitrary but fixed programs and
q ∈ atoms(πa) such that πa |∼ q and πh |≁ q.

Definition 4.2 (Explanation). A subprogram ϵ ⊆ πa is a lp-
explanation for q from πa to πh wrt. an answer set I of πa (or

Algorithm 1: LP − Explanation(πa ,πh ,q)
Input: Programs πa , πh , atom q
Output: An explanation ϵ for q

1 if πa ∪ {← not q } has no answer set then return nil
2 Let I be an answer set of πa ∪ {← not q }
3 Compute Π(πa, I)
4 Compute an answer set J of Π(πa, I)
5 Compute ϵ = {head (r) ← pos(r), neд(r) | head (r) ←

pos(r), neд(r), ok (r) ∈ Π(πa, I), ok (r) ∈ J }.
6 return ϵ \ πh (or (ϵ \ πh, πh \ ϵ))

Algorithm 2: Computing Non-Trivial LP-Explanation
1 if Π(πa, I) \ {q ←} has no model then
2 return {q ←}—% only trivial lp-explanation exists
3 Compute an answer set of J of Π(πa, I) \ {q ←}

an lp-explanation for q wrt. I) if πh ⊗I ϵ |∼ q. ϵ is a minimal lp-
explanation for q wrt. I if there exists no proper subset ϵ ′ of ϵ s.t.
ϵ ′ is an lp-explanation for q wrt. I . ϵ is a lp-explanation with justifi-
cation if ϵ I contains a justification for q wrt. I . Finally, if {q ←} is
an lp-explanation for q, we call it a trivial lp-explanation.

Given a program πa and an answer set I supporting q of πa , we
define Π(πa , I) be the program such that:
• Π(πa , I) contains the constraint← not q;
• for each x ∈ πa s.t. head(x) ∈ I and neд(x) ∩ I = ∅:
• head(x)←pos(x),neд(x),ok(x) is a rule in Π(πa , I);
• {ok(x)} ← is a rule of Π(πa , I).
• #mimimize{1,X : ok(X)} is a rule of Π(πa , I).
• No other rule is in Π(πa , I).

Algorithm 1 can be used for computing an lp-explanation. To
compute a non-trivial lp-explanation, Line 4 is replaced by the three
lines (Lines 1-3) in Algorithm 2.

The proposed notion of an lp-explanation can be used in ex-
plainable planning as follows. Let π (Pa , t) and π (Ph , t) be the
two programs encoding the planning model of the robot and the
human, respectively. Assume that α = [a1, . . . ,at−1] is a plan
in π (Pa , t) and is not a plan in π (Ph , t). This implies that πa =
π (Pa , t) ∪ occurs

∗(α) |∼ дoal and πh = π (Ph , t) ∪ occurs
∗(α) |≁ дoal

where occurs∗(α)={occurs(ai , i) | i=1, . . . , t − 1}. As such, an lp-
explanation for the atom дoal from πa to πh could explain why α
is not a solution in the model of Ph . Indeed, Algorithm 1 can be
used to compute an lp-explanation for the atom дoal from πa to πh ,
i.e., an explanation for the MRP between the robot and the human.
This can be used as a seed for computing complete explanations
for the MRP.

5 CONCLUSIONS AND FUTUREWORK
In this abstract, we consider a general problem of updating a theory
πh so that the resulting theory π̂h credulously entails an atom q
given that q is entailed by a theory πa using ASP by proposing
the notion of conditional updates in logic programming and use it
to define the notion of an explanation. We then show how it can
be used to compute explanations for MRP problems. Future work
includes experimentally evaluating this approach against the state
of the art.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1955

REFERENCES
[1] Tathagata Chakraborti, Sarath Sreedharan, and Subbarao Kambhampati. 2018.

Explicability versus explanations in human-aware planning. In AAMAS. 2180–
2182.

[2] Tathagata Chakraborti, Sarath Sreedharan, and Subbarao Kambhampati. 2019.
Balancing Explicability and Explanations in Human-Aware Planning. In IJCAI.
1335–1343.

[3] Tathagata Chakraborti, Sarath Sreedharan, Yu Zhang, and Subbarao Kambham-
pati. 2017. Plan Explanations as Model Reconciliation: Moving Beyond Explana-
tion as Soliloquy. In IJCAI. 156–163. https://doi.org/10.24963/ijcai.2017/23

[4] Martin Gebser, Benjamin Kaufmann, Javier Romero, Ramón Otero, Torsten
Schaub, and Philipp Wanko. 2013. Domain-Specific Heuristics in Answer Set
Programming. In AAAI. 350–356.

[5] M. Gelfond and V. Lifschitz. 1990. Logic programs with classical negation. In LP.
579–597.

[6] Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. 1998. PDDL – the planning
domain definition language.

[7] Subbarao Kambhampati. 2019. Synthesizing Explainable Behavior for Human-AI
Collaboration. In AAMAS. 1–2.

[8] Anagha Kulkarni, Yantian Zha, Tathagata Chakraborti, Satya Gautam Vadlamudi,
Yu Zhang, and Subbarao Kambhampati. 2019. Explicable Planning as Minimizing

Distance from Expected Behavior. In AAMAS. 2075–2077.
[9] V. Lifschitz. 2002. Answer set programming and plan generation. Artificial

Intelligence 138, 1–2 (2002), 39–54. https://doi.org/10.1016/S0004-3702(02)00186-8
[10] V. Marek and M. Truszczyński. 1999. Stable models and an alternative logic pro-

gramming paradigm. In The Logic Programming Paradigm: a 25-year Perspective.
375–398. https://doi.org/10.1007/978-3-642-60085-2_17

[11] I. Niemelä. 1999. Logic programming with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence 25, 3,4
(1999), 241–273.

[12] Sarath Sreedharan, Tathagata Chakraborti, and Subbarao Kambhampati. 2018.
Handling model uncertainty and multiplicity in explanations via model reconcil-
iation. In ICAPS. 518–526.

[13] Sarath Sreedharan, Alberto Olmo Hernandez, Aditya Prasad Mishra, and Sub-
barao Kambhampati. 2019. Model-Free Model Reconciliation. In IJCAI. 587–594.

[14] M. van Emden and R. Kowalski. 1976. The semantics of predicate logic as a
programming language. J. ACM 23, 4 (1976), 733–742. https://doi.org/10.1145/
321978.321991

[15] Yu Zhang, Sarath Sreedharan, Anagha Kulkarni, Tathagata Chakraborti,
Hankz Hankui Zhuo, and Subbarao Kambhampati. 2017. Plan explicability and
predictability for robot task planning. In ICRA. 1313–1320.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1956

https://doi.org/10.24963/ijcai.2017/23
https://doi.org/10.1016/S0004-3702(02)00186-8
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1145/321978.321991
https://doi.org/10.1145/321978.321991

	Abstract
	1 Logic Programming
	2 Planning using ASP
	3 Explainable Planning
	4 Explanations using ASP
	5 Conclusions and Future Work
	References

