Extended Abstract

AAMAS 2020, May 9-13, Auckland, New Zealand

Aplib: An Agent Programming Library for Testing Games

Extended Abstract

I. S. W. B. Prasetya
Utrecht University
s.w.b.prasetya@uu.nl

ABSTRACT

Testing modern computer games is notoriously hard. Highly dy-
namic behavior, inherent non-determinism, and fine grained inter-
activity blow up their state space; too large for traditional auto-
mated testing techniques. An agent-based testing approach offers
an alternative as agents’ goal driven planning, adaptivity, and rea-
soning ability can provide an extra edge. This paper provides a
summary of aplib, a Java library for programming intelligent test
agents, featuring tactical programming as an abstract way to exert
control on agents’ underlying reasoning based behavior. Aplib is
implemented in such a way to provide the fluency of a Domain
Specific Language (DSL) while still staying in Java, and hence aplib
programmers will keep all the advantages that Java programmers
get: rich language features and a whole array of development tools.

KEYWORDS

automated game testing, Al for automated testing, intelligent agents
for testing, agents tactical programming

ACM Reference Format:

L. S. W. B. Prasetya and Mehdi Dastani. 2020. Aplib: An Agent Programming
Library for Testing Games. In Proc. of the 19th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland, New
Zealand, May 9-13, 2020, IFAAMAS, 3 pages.

1 INTRODUCTION

Computer games have become increasingly more interactive and
complex. Modern games improve realism by allowing users to have
fine grained control/interactions. They also employ a large number
of interacting in-game entities, whose behavior is often highly
unpredictable. These make the games hard to test. The induced
interaction space is vast, which is hard to deal with the existing
automated testing techniques such as search based [8, 11], random
[4, 13], model based [1, 18, 19], or symbolic [17].

Contribution. We need new integrated techniques that sup-
port intelligent navigation through a large interaction space and
towards specific to-be tested game states. Such techniques should
allow reasoning about the game (current and goal) states, actions,
and plans in order to decide and develop strategies towards goal
states. Such integrated reasoning techniques should also capture the
strategic and tactical nature of game playing. Integrated reasoning
techniques have been extensively studied in the field of multi-agent
system engineering in order to design and build software agents
that autonomously decide how to interact with their environment
to achieve their objectives. This paper applies this approach to game

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9-13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

1972

Mehdi Dastani
Utrecht University
m.m.dastani@uu.nl

testing and presents aplib!, a Java library for programming intelligent
agents suitable for automating testing tasks.

Notable features of aplib are: multi-agent, goal-driven agents
as in the BDI model [9], integration with Java testing frameworks
JUnit, and a novel layer of tactical programming that provides an
abstract way to exert imperative control on the underlying reason-
ing based agents behavior. Such a programming approach is useful
for implementing testing scenarios that often require subtasks to
be carried out in a certain order, while maintaining the adaptivity
of the underlying behavior. As opposed to dedicated agent pro-
gramming languages [2, 5, 6, 10, 14, 16, 20] aplib offers a Domain
Specific Language (DSL) embedded in Java. Aplib programmers will
thus program in Java, but they will get a set of APIs that give the
fluent appearance of a DSL. A dedicated programming language
for writing tests should be rich enough and have enough tool and
community support as otherwise most companies will consider it
as unacceptable risk. On the other hand, when using an embedded
DSL the programmers have direct access to all the benefit of its
host language (in this case Java) such as its expressiveness, static
typing, rich libraries, and wealth of development tools.

2 APLIB TEST AGENTS

Given a game, one or more aplib test agents can be deployed to
test it. To control the game, the agents interact with it through a
proxy: an abstract interface called Environment. This indirection is
essential to make aplib independent from the technology used by
the game. It does mean that each game will have to implement its
own instance of Environment. The effort should be nominal and
moreover it is a one off investment. Typically the agents will control
in-game player-characters. The Environment should provide at least
amethod for an agent to send a command to the character it controls
and another to obtain information on what this character currently
observes. Aplib makes no assumption on whether the provided
observation is structural or visual (image), though in our current
use cases we only work with structural information.

An agent can be given a set of goals. It runs in sense-reason-act
cyclesala [7, 12, 15], until it has no goal left to achieve, or it runs
out of computing budget. At each cycle, it obtains an observation on
the game state, reasons about it to decide which action to perform
to bring it closer to its current goal, and to perform the chosen
action. The game itself runs autonomously. It may have in-game
entities that independently influence the game state during a cycle.

An agent A can be given a testing task, which is a form of a goal,
formulated in aplib/Java as:

testgoal(goalname, A) . toSolve(¢) . invariant(y)

Uhttps://ivaxr-project.github.io/aplib/

https://iv4xr-project.github.io/aplib/

Extended Abstract

v _
. ‘i‘ 1 -
V

T

Fée¢ &€

Figure 1: a 3D game called Lab Recruits.

where ¢ is a goal for A, i.e., a predicate describing a family of game
states whose correctness need to be verified, and ¢ is a predicate
expressing the correctness property to hold on those states. To
verify this, the agent will have to play the game to get it to at least
one state satisfying ¢ before it can check if {/ holds. The hard part in
automating such a task is not in checking ¥/, but rather in ’reaching’
¢, i.e., finding a right plan to move the game to the ¢ state.

To reach the goal, the agent has actions, e.g. to move the agent’s
in-game character some small distance in a certain direction, or to
make the character interacts with another entity. At each cycle one
action is selected for execution. Actions are guarded, a la Action
Systems [3]. The syntax of an action is defined as:

action(name) . do1(f) . on_(q)

where f describes what the action does and q is its guard, expressed
in plain Java or as a Prolog-style query. The action is only enabled
for execution if g evaluates to true on the agent’s current state
(which includes its view on the current game state). Importantly,
the guards express the reasoning of when to do what action. If more
than one actions are enabled, one is chosen randomly.

To make test runs performant, we will often need to superimpose
some form of strategic control over the bare reasoning provided
by actions’ guards, e.g. which actions should be given precedence
for execution. To do this, aplib allows actions to be composed into
tactics: a.1ift() lifts an action « to become a tactic; SEQ(Ty, .., T) is
a tactic that sequentially executes its sub-tactics; FIRSTof (T, .., Ty,)
executes the first enabled/executable sub-tactic; ANY(Ty, ..., T,)
randomly chooses one of its enabled sub-tactic. When using a tactic
T to achieve a goal, at each cycle the agent will look for an action
in T which is both control and guard enabled. Due to the SEQ, it
may take multiple cycles to complete T. If by that time the goal is
not achieved yet, the next cycle will repeat T. This goes on until
the goal is achieved.

When the testing task h = testgoal().toSolve(¢).invariant(y) is
non-trivial, the agent may need some help to automate it. Instead
of simply giving h to the agent, we give it a so-called goal struc-
ture of the form SEQ(g1, .., gg, h) where g;’s are intermediate sub-
goals provided as help. The agent should first pursue them in the
given order. After solving gi, solving the final h should be easier
for the agent. Other constructors to construct goal structures are
FIRSTof(Gj, .., Gn) and REPEAT(G). Additionally, it is possible for
the agent to dynamically insert a goal to, or remove one from, its
goal structure. More details can be found in aplib’s documentation.

1973

AAMAS 2020, May 9-13, Auckland, New Zealand

Example. Figure 1 shows a 3D game called Lab Recruits?. Players
can explore the inside of a lab e.g. to find a certain designated
room. The lab consists of rooms, and possibly multiple floors. It is
populated with various in-game entities, some can be interacted to,
some may be moving, and some may represent hazard such as fire.
Imagine that the game designer has designed a "level’ (in this case
that would be a ’lab’). A typical testing task would be to verify that
critical rooms in the level are reachable from the player’s assumed
starting position. In this game, access to a room can be guarded
by doors, which initially can be closed. A correct in-game button
should be activated to open them. Solving this can be complicated
if the level is large, with buttons that can be hidden behind closed
doors3. As our example here, let us however consider a simple
instance of this problem.

Consider a level where the player starts in the room R with a
door D; and several buttons. We want to verify that button By
would open Dj. This is how to formulate this testing task for a test
agent A:

var h = testgoal(*check door;”, A)
. toSolve(st — isActive(st.get(’B1”)))

. invariant(st — isOpen(st.get(D1”)))

The notation st—e is Java’s lambda-expression; above it is used to
define state predicates, where the bound variable st represents the
agent’s state. initial position. To operate it, the agent needs to stand
next to it, it will need to have at least an action to approach it:

var approachButton; = action(approach B;”)
. doq(st — {navigateTo(st.get("B1”).position) ; return st})
. on_(st — distance(st.position, st.get("B1”).position) > 0.1)

The method navigateTo will drive the agent to B;’s position. Inter-
nally, it uses a 3D path planning algorithm. It may take multiple
cycles to actually reach B;. To add adaptiveness, e.g. to avoid hazard
that dynamically occurs underway, we can instead use a tactic e.g.:

FIRSTof (avoidHazardTatic, approachButton lift())

To automate the testing task h above, simply approaching B is not
enough. The agent needs to interact with it, then navigate (close
enough) to the door D; to get its recent state, and then we can
verify h’s invariant. This can be programmed using sub-goals:

SEQ (G1, G2, G3, hlift())

where the goal G; would bring the agent to stand next to the button
B1, G2 would make By’s state turned to activated, and Gz brings
the agent to a position where the door D; can be observed. Then
finally the agent will check A.

3 CONCLUSION

We have briefly summarized the features of the tactical Agent Pro-
gramming Library aplib, suitable for programming automated test-
ing on computer games. More details can be found in aplib’s github
site, along with the Lab Recruits demo.

Acknowledgement. This work is funded by EU ICT-2018-3
H2020 Programme, grant nr. 856716.

Zhttps://github.com/iv4xr-project/labrecruits
3 E.g. the game Dungeons & Dragons Online, https://www.ddo.com, has a number of
such notorious levels.

https://github.com/iv4xr-project/labrecruits
https://www.ddo.com

Extended Abstract AAMAS 2020, May 9-13, Auckland, New Zealand

REFERENCES

[1] Axel Belinfante. 2010. JTorX: A tool for on-line model-driven test derivation and

execution. In International Conference on Tools and Algorithms for the Construction

and Analysis of Systems. Springer, 266—270.

Rafael H Bordini, Jomi Fred Hiibner, and Michael Wooldridge. 2007. Programming)

multi-agent systems in AgentSpeak using Jason. Vol. 8. John Wiley & Sons. on Search-Based Soﬂware; Testing (SBST). IEEE. .)

[3] K Mani Chandy and Jayadev Misra. 1988. Parallel program design: a foundation. (14] HB Rafael, D Mehdi, D]urgen,'anq EFS Amal. 2005. Multi-Agent Programming-
Addison. Languages, Platforms and Applications. Springerg.

[4] Koen Claessen and John Hughes. 2011. QuickCheck: a lightweight tool for [15] Anand S Rao and Michael P Georgeff. 1992. An abstract architecture for rational
random testing of Haskell programs. ACM SIGPLAN notices 46, 4 (2011). agents. 3rd Int. Conf. on Principles of Knowledge Representation and Reasoning

[5] MehdiDastani. 2008. 2APL: a practical agent programming language. Autonomous (1992).

[12] John-Jules Ch. Meyer. 2008. Agent Technology. In Encyclopedia of Computer
Science and Engineering, Benjamin W. Wah (Ed.). John Wiley & Sons.

Ignatius SWB Prasetya. 2016. Budget-aware random testing with T3: benchmark-
ing at the SBST2016 testing tool contest. In IEEE/ACM 9th International Workshop

[13

[2

[

agents and multi-agent systems 16, 3 (2008). [16] Amal El Fallah Seghrouchni, Jiirgen Dix, Mehdi Dastani, and Rafael H Bordini.
[6] Mehdi Dastani and Jorge Gomez-Sanz. 2005. Programming multi-agent systems. 2009. Multi—Agent Programming: Languages, TO"I? and Applicatiorzs. Sp‘rmger'.
The Knowledge Engineering Review 20, 2 (2005), 151-164. [17] Koushik Sen and Gul Agha. 2006. CUTE and jCUTE: Concolic unit testing
[7] Mehdi Dastani and Bas Testerink. 2016. Design patterns for multi-agent pro- an‘? exp1A1c1t path model-checking tools. In Int. Conference on Computer Aided
gramming. Int. Journal Agent-Oriented Software Engineering 5, 2/3 (2016). Verlﬁcathn. Springer.
[18] Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A taxonomy of

[8] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation X ; - . 1O
for object-oriented software. In 19th ACM SIGSOFT symposium and the 13th model-based testing approaches. Software testing, verification and reliability 22, 5
European conference on foundations of software engineering. ACM. (201?)’ 297-312.

[9] Andreas Herzig, Emiliano Lorini, Laurent Perrussel, and Zhanhao Xiao. 2017. Tanja Vos, Paolo Tonella, I. S. W. B. Prasetya, Peter M Kruse, Alessandra Bag-

BDI logics for BDI architectures: old problems, new perspectives. KI-Kiinstliche nato, Mark Har'man, and Onn Shehory. 2014. FITTEST': A new continuous and
Intelligenz 31, 1 (2017). automated testing process for future Internet applications. In IEEE Conference

Koen V. Hindriks. 2018. Programming Cognitive Agents in GOAL. https://goalapl. on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE).

atlassian.net/wiki/spaces/GOAL/overview IE,EE‘
[11] Phil McMinn. 2004. Search-based software test data generation: a survey. Software Michael Winikoff. 2005. JACK intelligent agents: an industrial strength platform.

testing, Verification and reliability 14, 2 (2004), 105-156. In Multi-Agent Programming. Springer.

[19

[10

IS
=

1974

https://goalapl.atlassian.net/wiki/spaces/GOAL/overview
https://goalapl.atlassian.net/wiki/spaces/GOAL/overview

	Abstract
	1 Introduction
	2 Aplib Test Agents
	3 Conclusion
	References

