
C-CoCoA: A Continuous Cooperative Constraint Approximation
Algorithm to Solve Functional DCOPs

Extended Abstract

Amit Sarker, Abdullahil Baki Arif, Moumita Choudhury, and Md. Mosaddek Khan
Department of Computer Science and Engineering, University of Dhaka, Dhaka, Bangladesh

{amitcsedu99,ahb.arif,moumitach22}@gmail.com,mosaddek@du.ac.bd

ABSTRACT
Distributed Constraint Optimization Problems (DCOPs) are a suit-
able formulation for coordinating interactions (i.e. constraints) in
cooperative multi-agent systems. The traditional DCOPmodel deals
with variables that can take only discrete values. However, there
are many applications where the variables are continuous decision
variables. The existing methods for solving DCOPs with continuous
variables come with a huge computation and communication over-
head. In this paper, we apply continuous non-linear optimization
methods on Cooperative Constraint Approximation (CoCoA) algo-
rithm. Empirical results show that our algorithm is able to provide
high-quality solutions at the expense of small communication cost
and execution time.

KEYWORDS
Distributed Problem Solving; DCOPs; Functional DCOPs
ACM Reference Format:
Amit Sarker, Abdullahil Baki Arif, Moumita Choudhury, and Md. Mosaddek
Khan. 2020. C-CoCoA: A Continuous Cooperative Constraint Approxima-
tion Algorithm to Solve Functional DCOPs: Extended Abstract. In Proc. of
the 19th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2020), Auckland, New Zealand, May 9–13, 2020, IFAAMAS,
3 pages.

1 INTRODUCTION AND BACKGROUND
Distributed Constraint Optimization Problems (DCOPs) are a pow-
erful framework to model cooperative multi-agent systems wherein
multiple agents communicate directly or indirectly with each other.
The agents act autonomously in a common environment in order
to optimize a global objective which is an aggregation of their
corresponding constraint cost functions. Each of the functions is
associated with a set of variables controlled by the corresponding
agents. In DCOPs, agents need to coordinate value assignments to
their variables in such a way that maximize their aggregated utility
or minimize the overall cost [4, 13, 14]. A number of multi-agent co-
ordination problems, such as meeting scheduling [12], multi-robot
coordination [20] and smart homes [5, 16], have been dealt with
this model.

A DCOP is defined as a tuple ⟨A,X,D, F,𝜶 ⟩, where, A is a finite
set of agents, X is a finite set of discrete decision variables, D is
a set of finite discrete domains, F is a finite set of cost functions,
𝜶 : X → A is a mapping function. The traditional DCOP model

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

is based on an assumption; that is, each of the variables that are
involved in the constraints can take values from discrete domain(s)
and a constraint is typically represented in a cost (i.e. utility) table.
During almost the last two decades, a number of algorithms [3, 13,
14] and their extensions [10, 11, 15, 21] have been developed to
solve DCOPs involving discrete valued variables. Nevertheless, a
number of applications, such as target tracking sensor orientation
[6], cooperative air and ground surveillance [7], Network coverage
using low duty-cycled sensors [9] and many others besides, can
be best modeled with continuous-valued variables. Therefore, the
traditional DCOP setting is not well-suited to such algorithms. To
address this, the regular DCOP model is extended for continuous-
valued variables [17]. Later, [8] refer this continuous version of
DCOP as Functional DCOPs (F-DCOPs).

In more detail, [17] propose a new version of the Max-Sum algo-
rithm (i.e. ContinuousMax-Sum - CMS) in order to solve continuous-
valued DCOPs. Then, Hybrid CMS (HCMS) has been proposed
which uses discrete Max-Sum as the underlying framework with
the addition of a continuous non-linear optimization method [19].
Note that none of CMS and HCMS provides quality guarantees on
the solutions because both of them are based on discrete Max-Sum
which does not provide any quality guarantees when applied to
general graphs [8]. Recently three extensions of the Distributed
Pseudo-tree Optimization Procedure (DPOP) [14] algorithm has
been proposed − Exact Functional DPOP (EF-DPOP), Approximate
Functional DPOP (AF-DPOP) and Clustered AF-DPOP (CAF-DPOP)
[8]. However, as they are based on DPOP, a key limitation of these
approximate algorithms is that they require exponential memory.

Against this background, we extend the Cooperative Constraint
Approximation (CoCoA) [18] algorithm so that it can solve func-
tional DOCPs. Our continuous version of CoCoA, that we call C-
CoCoA, is an approximate local search algorithm that can solve
F-DCOPs with a very lower communication cost. In C-CoCoA, we
combine the discrete CoCoA algorithm with continuous non-linear
optimization methods. We empirically show that C-CoCoA outper-
forms HCMS and AF-DPOP in terms of solution quality, number of
messages and time.

2 THE C-COCOA ALGORITHM
The C-CoCoA algorithm first discretize the domain of the variables
into a fixed number of points. Note that the states of the partici-
pating agents are defined as IDLE, ACTIVE, HOLD and DONE, as
defined in [18]. We define a set 𝜓 that contains the set of agents
who finish their variable assignments. Therefore, 𝐴−𝜓 is the set of
unassigned agents (i.e. the value assignments to their variables are
not finished). Then in the initialization step, each agent initializes its
state to IDLE, the Current Partial Assignment (CPA) with an empty

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1990

assignment and𝜓 with an empty set. After this step, C-CoCoA acti-
vates an agent 𝑎𝑖 randomly from the set 𝐴 −𝜓 as starting with any
agent yields the same result. Upon activation, the agent 𝑎𝑖 sends
an inquiry message to its neighboring agents N𝑖 . When 𝑎𝑖 sends
the inquiry message to 𝑎 𝑗 ∈ N𝑖 , each 𝑎 𝑗 calculates cost for every
value in the discretized domain of 𝑎𝑖 using the following equation:

𝜁 𝑗,𝑘 = min
𝑥 𝑗,𝑙 ∈𝐷 𝑗

∑
𝐶∈𝐹 𝑗

𝐶 (𝑥 𝑗 ∩ 𝑥𝑖,𝑘 ∩ 𝑥 𝑗,𝑙) (1)

In Equation 1, 𝜁 𝑗,𝑘 is the cost for the 𝑘𝑡ℎ value of agent 𝑎𝑖 ’s dis-
cretized domain which is calculated by the neighbor 𝑎 𝑗 , 𝑥 𝑗,𝑙 indi-
cates that 𝑥 𝑗 is assigned the 𝑙𝑡ℎ value of 𝑎 𝑗 ’s discretized domain
𝐷 𝑗 , 𝐶 is the cost for the function which is an element of all the
constraint function set 𝐹 𝑗 between agent 𝑎𝑖 and 𝑎 𝑗 , 𝑥 𝑗 is the cur-
rent partial assignment sent from 𝑎𝑖 to 𝑎 𝑗 that contains the known
assigned values of the neighbors of 𝑎𝑖 , 𝑥𝑖,𝑘 indicates that 𝑥𝑖 is as-
signed the 𝑘𝑡ℎ value of agent 𝑎𝑖 ’s discretized domain 𝐷𝑖 . Agent 𝑎 𝑗
calculates 𝜁 𝑗,𝑘 for all the values of 𝑘 ∈ 𝐷𝑖 and the resulting cost map
𝜁 𝑗 = {𝜁 𝑗,1, 𝜁 𝑗,2, , 𝜁 𝑗, |𝐷𝑖 | } is sent to the inquiring agent 𝑎𝑖 . Then,
𝑎𝑖 finds the value of its variable 𝑥𝑖 from the following equation:

𝛿 =𝑚𝑖𝑛

|N𝑖 |∑
𝑗=1

𝜁 𝑗,𝑘 ; 𝜌 = {𝑘 :
|N𝑖 |∑
𝑗=1

𝜁 𝑗,𝑘 = 𝛿} (2)

Here, 𝛿 is theminimum aggregated cost received from the neighbors
for each𝑘 ∈ 𝐷𝑖 , 𝜌 is a set of values from agent 𝑎𝑖 ’s domain for which
the cost is minimum and 𝜁 𝑗,𝑘 is the received cost messages from its
neighbors. Agent 𝑎𝑖 also stores the variable values of 𝑎 𝑗 ∈ N𝑖 in a
set 𝜒 for which the minimum cost results.

Now, more than one value in 𝑎𝑖 ’s domain can achieve the min-
imum cost. In this case, a unique-first approach is followed to de-
termine whether the current solution is accepted or not. In this
approach, |𝜌 | is comparedwith a bound 𝛽 . The initial value of 𝛽 is set
to 1. This means that the value is acceptable if it is a unique local op-
timum. If |𝜌 | > 𝛽 , agent 𝑎𝑖 goes into HOLD state and waits for more
information. Otherwise, a value is selected randomly from 𝜌 and is
assigned to its controlled variable. This assignment is near-optimal
within the discretized domain. In order to find the best solution
within the actual continuous domain, we use a non-linear optimiza-
tion technique. We choose gradient-based optimization approach
because this can be implemented in a decentralized way using
only local information. Now, for employing the gradient-based non-
linear optimization, agent 𝑎𝑖 calculates the local objective function
𝐹
𝑎𝑖
N𝑖

by using the following equation:

𝐹
𝑎𝑖
N𝑖

=
∑

𝑎 𝑗 ∈N𝑖

𝑓 (𝑎𝑖 , 𝑎 𝑗) (3)

where, 𝑓 (𝑎𝑖 , 𝑎 𝑗) is the cost function that is related to agent 𝑎𝑖 and its
direct neighbor 𝑎 𝑗 ∈ N𝑖 . After that, the agent 𝑎𝑖 performs gradient-
based approach for optimizing its local objective function 𝐹𝑎𝑖N𝑖

(𝑥𝑎𝑖N𝑖
)

where, 𝑥𝑎𝑖N𝑖
is the set of all the related variables with 𝐹

𝑎𝑖
N𝑖
. Agent 𝑎𝑖

assigns every variable 𝑥 ∈ 𝑥
𝑎𝑖
N𝑖

with the corresponding value from
the previously stored set 𝜒 as the initial values in the gradient-based
optimization method. Specifically, the agent 𝑎𝑖 minimizes the local
objective function 𝐹

𝑎𝑖
N𝑖

and updates the value 𝑣𝑥 of each variable

𝑥 ∈ 𝑥
𝑎𝑖
N𝑖

according to the following equation:

𝑣𝑥 (𝑡) = 𝑣𝑥 (𝑡 − 1) − 𝛼
𝜕𝐹

𝑎𝑖
N𝑖

𝜕𝑥
𝑎𝑖
N𝑖

����𝑣𝑥
argmin𝑥𝑖 𝐹

𝑎𝑖
N𝑖

(𝑥𝑎𝑖N𝑖 =𝑣𝑥)
(4)

In Equation 4, 𝛼 is the learning rate of the algorithm. The agent
continues this update process until it converges or a maximum
number of iterations is reached. After termination, the current value
of 𝑣𝑥 is actually the approximate optimal assignment for the variable
𝑥𝑖 . Then the agent 𝑎𝑖 updates its state to DONE, updates the set𝜓
and communicates to its neighbors 𝑎 𝑗 ∈ N𝑖 in a SetValue message.
By receiving this message, each neighbor 𝑎 𝑗 updates its CPA with
the value of 𝑥𝑖 and repeats the algorithm for the unassigned agents
(𝑎𝑖 ∈ 𝐴 − 𝜓). When the set 𝐴 − 𝜓 is empty (all the agents finish
their variable assignment), the algorithm terminates. Note that each
agent can only assign its value once and when assigned it cannot
change its value. To be precise, each agent updates its value locally
with gradient descent and sends the setValue() message only once
to a neighbor, and thus C-CoCoA is a non-iterative approach.

3 RESULTS AND CONCLUSIONS
When we define the total number of agents |𝐴| = 𝑛, 𝑑 is the total
number of discrete points taken from the agents’ continuous do-
main, 𝑏 is the number of times an agent updates the values of the
variables in the gradient based update, then in C-CoCoA, the total
number of messages sent or received by an agent 𝑎𝑖 is 𝑂 (5𝑛 + 𝑑𝑛),
the total message size for an agent 𝑎𝑖 is𝑂 (2𝑛2 +𝑑𝑛) and the overall
computational complexity is𝑂 (𝑛(𝑑2 +𝑏)). We empirically compare
the performance of C-CoCoA with HCMS and AF-DPOP in terms
of solution cost (C), time in sec (T) and the number of messages
(M). Table 1 shows the detailed comparison. We set the number of
agents to 50 and use the Erdős-Rényi topology [2]. Moreover, we
stop HCMS after 500 iterations (I). The averages are taken over 50
randomly generated problems.

Table 1: Comparison between C-CoCoA and the competing
algorithms in terms of Solution Cost, Time and No. of mes-
sages

Graph Type Algorithm I C T (sec) M

Sparse C-CoCoA N/A -1266521.13 53.85 2510
HCMS 500 -1064611.6 66.61 98464

Dense C-CoCoA N/A -282012.78 275.66 2603
HCMS 500 -260016.83 340.75 519440

Scale-Free
C-CoCoA N/A -713674.37 38.95 725
HCMS 500 -575538.56 131.51 195040

AF-DPOP N/A -306311.19 185.87 100

In all the experimental settings, C-CoCoA shows better results
than the other benchmarking algorithms in terms of solution quality,
time and number of messages propagated. In the future, we would
like to further investigate the potential of C-CoCoA on various
F-DCOP applications, as recommended in [1, 8, 17]. We would also
like to explore the ways to extend C-CoCoA to solve multi-objective
and asymmetric DCOPs having continuous-valued variables.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1991

REFERENCES
[1] M. Choudhury, S. Mahmud, and M. M. Khan. 2020. A Particle Swarm Based

Algorithm for Functional Distributed Constraint Optimization Problems. In Pro-
ceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI-20).

[2] Paul Erdős and Alfréd Rényi. 1960. On the evolution of random graphs. Publ.
Math. Inst. Hung. Acad. Sci 5, 1 (1960), 17–60.

[3] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. 2008. Decentralised co-
ordination of low-power embedded devices using the max-sum algorithm. In
Proceedings of the 7th International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), Vol. 2. 639–646.

[4] Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. 2018. Distributed con-
straint optimization problems and applications: A survey. Journal of Artificial
Intelligence Research 61 (2018), 623–698.

[5] Ferdinando Fioretto, William Yeoh, and Enrico Pontelli. 2017. A multiagent
system approach to scheduling devices in smart homes. In Proceedings of the 16th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
981–989.

[6] Stephen Fitzpatrick and L Meetrens. 2003. Distributed Sensor Networks A multi-
agent perspective, chapter Distributed Coordination through Anarchic Optimiza-
tion. (2003).

[7] Ben Grocholsky, James Keller, Vijay Kumar, and George Pappas. 2006. Cooper-
ative air and ground surveillance. IEEE Robotics & Automation Magazine 13, 3
(2006), 16–25.

[8] Khoi D Hoang, William Yeoh, Makoto Yokoo, and Zinovi Rabinovich. 2019. New
Algorithms for Functional Distributed Constraint Optimization Problems. arXiv
preprint arXiv:1905.13275 (2019).

[9] Chih-fan Hsin and Mingyan Liu. 2004. Network coverage using low duty-cycled
sensors: random & coordinated sleep algorithms. In Proceedings of the 3rd inter-
national symposium on Information processing in sensor networks. 433–442.

[10] M. M. Khan, L. Tran-Thanh, and N. R. Jennings. 2018. A generic domain pruning
technique for gdl-based dcop algorithms in cooperative multi-agent systems.
In Proceedings of the 17th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS). 1595–1603.

[11] M. M. Khan, L. Tran-Thanh, W. Yeoh, and N. R. Jennings. 2018. A near-optimal
node-to-agent mapping heuristic for gdl-based dcop algorithms in multi-agent
systems. In Proceedings of the 17th International Conference on Autonomous Agents

and Multi-Agent Systems (AAMAS). 1613–1621.
[12] Rajiv T Maheswaran, Milind Tambe, Emma Bowring, Jonathan P Pearce, and

Pradeep Varakantham. 2004. Taking DCOP to the real world: Efficient complete
solutions for distributed multi-event scheduling. In Proceedings of the 3rd Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS).
310–317.

[13] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. 2005.
ADOPT: Asynchronous distributed constraint optimization with quality guaran-
tees. Artificial Intelligence 161, 1-2 (2005), 149–180.

[14] Adrian Petcu and Boi Faltings. 2005. DPOP: A scalable method for multiagent
constraint optimization. In Proceedings of the 19th International Joint Conference
on Artificial Intelligence (IJCAI). 266–271.

[15] A. Petcu and B. Faltings. 2007. MB-DPOP: ANewMemory-BoundedAlgorithm for
Distributed Optimization. In Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI). AAAI Press, 1452–1457.

[16] Pierre Rust, Gauthier Picard, and Fano Ramparany. 2016. Using Message-Passing
DCOP Algorithms to Solve Energy-Efficient Smart Environment Configuration
Problems.. In Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI). 468–474.

[17] Ruben Stranders, Alessandro Farinelli, Alex Rogers, and Nick R Jennings. 2009.
Decentralised coordination of continuously valued control parameters using
the max-sum algorithm. In Proceedings of the 8th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS). 601–608.

[18] Cornelis Jan van Leeuwen and Przemyslaw Pawelczak. 2017. CoCoA: A non-
iterative approach to a local search (A) DCOP solver. In Proceedings of the 31st
AAAI Conference on Artificial Intelligence.

[19] Thomas Voice, Ruben Stranders, Alex Rogers, and Nicholas R Jennings. 2010.
A Hybrid Continuous Max-Sum Algorithm for Decentralised Coordination.. In
Proceedings of The 19th European Conference on Artificial Intelligence. 61–66.

[20] Harel Yedidsion and Roie Zivan. 2016. Applying dcop_mst to a team of mobile
robots with directional sensing abilities. In Proceedings of the 2016 International
Conference on Autonomous Agents and Multiagent Systems (AAMAS). 1357–1358.

[21] W. Yeoh, A. Felner, and S. Koenig. 2010. BnB-ADOPT: An asynchronous branch-
and-bound DCOP algorithm. Journal of Artificial Intelligence Research 38 (2010),
85–133.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1992

	Abstract
	1 Introduction and Background
	2 The C-CoCoA Algorithm
	3 Results and Conclusions
	References

