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ABSTRACT

Realistic models of decision-making and social interactions, consid-
ering the nature of memory and biases, continue to be an area of
immense interest. Emotion and mood are a couple of key factors
that play a major role in decisions, nature of social interactions,
size of the social network, and the level of engagement. Most of the
prior work in this direction is generally focused on a single trait: be-
havior or bias. However, this work builds an integrated model that
considers multiple traits such as loneliness, the drive to interact,
the memory, and mood biases in an agent among many others. The
agent system comprises of rational, manic, depressed, and bipolar
agents. The system is also modeled with an interconnected network,
and the size of the personal network of each agent is based on its
nature. We consider a game of iterated interactions where an agent
cooperates based on its past experiences with the other agent. The
agent’s type determines its willingness to participate in each round,
thus modeling the different levels of engagement observed in re-
ality. In this work, emotional bias is modeled using two different
gradients for encoding happy and sad episodes. Through simula-
tion, the effects of various biases and comparative performances of
agent types is analyzed. Taking the performance of rational agents
as the baseline, bipolar agents do slightly better, manic agents do
much better, and depressed agents do much worse. The payoffs also
exhibit an almost-linear relationship with the extent of mania.
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1 INTRODUCTION

Individual and group decision-making and social interactions have
been studied for long and continue to remain of interest. Some early
models were fairly simplistic [13, 30], and they assumed perfectly
rational behavior which is often not the case in reality. Time and
again, research in the domains of psychology and behavioral sci-
ences asserts that humans, as well as animals, are subject to a wide
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array of cognitive biases [7, 15]. Later works moved away from the
assumption of perfect rationality and started incorporating various
cognitive biases into decision models [16, 33, 34]. However, the ef-
fects of emotion and mood disorders on decisions and interactions
still need to be explored.

A great deal of research has focused on the impact of emotion on
memory but the findings have been extremely diverse, with some
claiming emotional memories are indelible [6], while others claim
that emotion has no effect whatsoever on memory [26]. Mood
has been seen as the summary of recent emotions [25]. While
emotions change after each episode, mood maintains a historical
context, yet staying temporally relevant. Mood also affects memory
retrieval; mood dependence is the phenomenon where past events
whose emotional state match the current mood are more likely to
be retrieved [24]. There seems to be no prior model capturing this
effect of mood on memory.

Mood disorders are prevalent in humans, and studies indicate
that about 20% of U.S adults experience some class of mood dis-
order in their lifetimes [3]. There have been many computational
models of various mood disorders [9-11, 17], but most of these
assume independent agents without any social interactions or so-
cial networks. The extent and frequency of social interactions are
intricately linked to mood disorders, with studies indicating that
chronically depressed people have smaller social networks than
healthy controls [4, 35]. Empirical studies also conclude that de-
pressed phases are connected with lower energy, interest, and
drive [18, 31, 38]. Prior models do not take this into account.

We give an integrated model of decisions and social interactions
which takes into account the roles of emotion, mood, and memory
biases.

2 MODEL

Consider two agents A and B paired in an interaction at time ¢. Now,
agent A’s expectation of B’s level of cooperation in this interaction
is the average of past levels of cooperation of B that are still in
A’s memory. The primary assumption of this model, in line with
studies [1, 27], is that A cooperates at the same level at which it
expects B will cooperate.

The interaction is based on the Continuous Prisoners Dilemma
(CPD) [19, 36]. In the standard Iterated Prisoners’ Dilemma, agents
are restricted to only two actions—cooperate or defect. However,
not all interactions can be realistically modeled with such restricted
behavior. In the CPD, agents can cooperate at any level between 0
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and 1, where 0 and 1 correspond to the cases of completed defec-
tion and cooperation respectively. The concept and related payoff
structure are adopted from Verhoeff [36].

Agents with mood disorders such as mania, depression, and
bipolarity are considered in addition to perfectly rational agents.
Such an agent society is modeled with an interconnected social
network, where agents interact only with their neighbors, and
agents broadcast their experiences to their neighbors. Also, the
size of the personal network of each agent is determined by its
type, which helps fill one significant gap in many prior models that
consider agents in isolation.

Agents are also modeled with different levels of engagement or
drive. In each round of interaction, an agent has the choice to decide
if it wants to participate. Manic agents are modeled with a higher
drive and depressed agents with a lower drive, as is consistent with
clinical observations [14, 28].

The simulation consists of multiple rounds of interactions, and
all agents are not active in all the rounds. At any such round ¢, an
agent A is randomly paired with another agent B if and only if A
and B are neighbors and are active at ¢.

Emotion is modeled in line with the appraisal theory [2, 22].
The emotion of the agent A at time #, 8, is therefore the difference
between reward and expectation i.e., cg — c4. To model the effect
of emotion on memory, we define the initial strength of a trace
as a linear function of emotion. We use two different gradients
for positive and negative emotions, allowing us to model both
positively and negatively biased agents.

The mood dependence effect is modeled as a probabilistic re-
trieval of traces using a triangular distribution centered around the
current mood of the agent. This ensures traces with similar emo-
tional states have higher chances of being retrieved than others,
which is the condition of mood dependence [24, 32]. Forgetting is
modeled using exponential decay, in line with prior work [29, 37].

One of depression’s common symptoms is anhedonia [28], the
inability or the diminished ability to enjoy pleasurable events; in
mania, the opposite is true [5]. In line with existing work in compu-
tational models of mood disorder [12, 17], we use reward sensitivity
to model perceived rewards to be different from actual rewards in
individuals with mood disorders. The perceived reward is modeled
as the product of actual reward and the agent’s reward sensitivity
(Ba). If agent A is depressed, then 0 < 4 < 1 to model diminished
rewards. If A is manic, then f4 > 1.

3 RESULTS

A system of 200 agents with representation from all four types—
rational, manic, depressed, and bipolar is simulated for 2000 rounds
of interaction. In each round, agents are paired with one of their
neighbors subject to availability. The agents interact, update their
payoffs, emotion, mood, and their availability for the next round.
Different parameters of agents are varied in each experiment and
their impacts on total payoff are studied.

With equal representation (25%) from all 4 types, we find that
payoffs are highest for manic agents and least for depressed agents
(Fig. 1). Although bipolar agents show vastly different payoffs be-
tween themselves, on average the payoff of bipolar agents is greater
than that of rational agents by about 10%. It is also seen that the
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average payoff of manic agents is about 70% higher than the average
payoff of rational agents. When compared with rational agents, an
average depressed agent’s payoff is roughly 60% lower.
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Figure 1: Comparing all types of agents

The reward sensitivity § is a measure of the extent of mania or
depression. Fig. 2a depicts the almost-linear relationship between
and average payoff. It is observed that payoffs increase with increas-
ing mania, which is fairly obvious because the higher the mania,
higher is the drive in our model. An almost-linear relationship be-
tween f and payoff is observed in depressed agents also (Fig. 2b). It
is also clear from Fig. 2, that depressed agents at any level perform
worse than manic agents.
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Figure 2: Effect of levels of mania and depression

4 CONCLUSION

Models that capture the effect of mood and emotion on decisions
realistically are essential and relevant. We use an agent-based mod-
eling approach to understand the effects of various biases on perfor-
mance. Unlike most prior work, we present a multi-faceted model
that takes into account various aspects such as levels of engage-
ment, nature of social interactions, and size of social networks. As
this is an agent-based simulation, parameters such as the extent of
mood disorders, population mixes, etc., can be varied to understand
various scenarios, which may not be feasible in clinical trials.

Based on simulation of an agent society with different types of
agents, the we obtain results about relative payoffs and other as-
pects that are in agreement with, and extend, published studies. Our
results concur with psychological studies that establish a relation-
ship between severity of depression and lower performance [20].
Clinical studies also suggest diminished performance in depressed
individuals and improved performance in cases of mania [8, 21, 23],
as also seen in our model.
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