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1 INTRODUCTION
Uncertainty plays a critical role in many real world applications

where the decision maker is faced with multiple alternatives with

different costs. These decisions arise in our daily lives, such as

whether to rent an apartment or buy a house, which cannot be

answered reliably without knowledge of the future. These decision-

making problems are usually modeled as online rent-or-buy prob-

lems, such as the classical ski rental problem [4, 5, 8]. Two paradigms

have been widely studied to deal with such uncertainty. On the

one hand, online algorithms are designed without prior knowledge

to the problem, and competitive ratio (CR) is used to characterize

the goodness of the algorithm in lack of the future. On the other

hand, machine learning is applied to address uncertainty by making

future predictions via building robust models on prior data.

Recently, there is a popular trend in the design of online al-

gorithms by incorporating machine learned (ML) predictions to

improving their performance [1–3, 6, 7, 9–12]. Two properties are

desired: (i) if the predictor is good, the online algorithm should

perform close to the best offline algorithm (a design goal called

consistency); and (ii) if the predictor is bad, the online algorithm

should not degrade significantly, i.e., its performance should be

close to the online algorithm without predictions (a design goal

called robustness). Importantly, these properties are achieved under

the assumption that the online algorithm has no knowledge about

the quality of the predictor or the prediction error types.

The Multi-Shop Ski Rental Problem. While previous studies

focused on using ML predictions for a single skier to buy or rent

the skis in a single shop, we study the more general setting where

the skier has multiple shops to buy or rent the skis with different

buying and renting prices.We call this amulti-shop ski rental (MSSR)

problem. This is often the case in practice, where the skier has to

make a two-fold decision, i.e, when and where to buy, whereas only
decision on when to buy is needed in the classical single shop ski

rental problem. Specifically, we consider the case that the skier

must choose one shop at the beginning of the skiing season, and

must buy or rent the skis at that particular shop since then. In other
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words, once a shop is chosen by the skier, the only decision variable is
when she should buy the skis. The MSSR not only naturally extends

the classical ski rental problem, where a single skier rents or buys

the skis in a single shop, but also allows heterogeneity in skier’s

options. This desirable feature makes the ski rental problem a more

general modeling framework for online algorithm design.

Consistency and Robustness. The CR of an online algorithm is

defined as the worst-case ratio of the algorithm cost (ALG) to that of

the offline optimum (OPT). Inspired by [1, 3, 9, 12], we also use the

notions of consistency and robustness to evaluate our algorithms.

Let the prediction error be ζ , which is the absolute difference be-

tween the prediction and the actual outcome. We say that an online

algorithm is α-consistent if ALG ≤ α · OPT when the prediction is

accurate, i.e., ζ = 0, and β-robust if ALG ≤ β · OPT for all ζ and

feasible outcomes to the problem. Thus consistency characterizes

how well the algorithm does in case of perfect predictions, and

robustness characterizes how well it does in worst-case predictions.

Main Results. Our main contribution is to develop online algo-

rithms for MSSR with consistency and robustness properties in

presence of ML predictions. A hyperparameter λ ∈ (0, 1) is intro-

duced to capture the trust or the quality of ML predictions. With a

single ML prediction, we show that if this ML prediction is naively

used in algorithm design, the proposed algorithm cannot ensure ro-

bustness. We then incorporate ML prediction in a judicious manner

by proposing a deterministic and a randomized online algorithm

with consistency and robustness guarantee. Greater trust on ML

prediction will set λ close to 0 while less trust will set λ close to 1.

We numerically evaluate the performance of our online algorithms

by investigating impacts of several parameters and provide insights

on the benefits of using ML prediction. We also study a more gen-

eral setting where we getm ML predictions from some ML models.

These along with the proofs of main results are available in [13].

2 ONLINE ALGORITHMS FOR MSSR
We consider MSSR with a single ML prediction. We assume there

are n shops with buying prices b1 > · · · > bn and renting prices

r1 < · · · < rn . Let x be the actual number of skiing days which is

unknown to the algorithm, and y be the predicted number of skiing

days. Then ζ = |y − x | is the prediction error.

Deterministic Algorithm. We develop a deterministic algorithm

by introducing a hyperparameter λ ∈ (0, 1), which gives us a smooth

tradeoff between the consistency and robustness of the algorithm.

Theorem 2.1. The CR of Algorithm 1 is at most min{(λ + 1)rn +

b1/bn+max{λrn+1,
b1
bn

· 1

1−λ }
ζ

OPT ,max{rn+1/λ,
b1
bn

(1+1/λ)}},where
λ ∈ (0, 1) is a parameter. In particular, Algorithm 1 is ((λ + 1)rn +
b1/bn )-consistent and (max{rn,b1/bn } + 1/λ)-robust.
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Algorithm 1 A deterministic algorithm

if y ≥ bn then Rent until day ⌈λbn⌉ − 1 and buy at shop n
else Rent until day ⌈b1/λ⌉ − 1 and buy at shop 1

Remark 1. The CR is a function of hyperparameter λ and pre-
diction error ζ , which is different from the conventional competitive
design. By tuning the λ value, one can achieve different values for CR.
The CR might be even worse than online algorithm without predic-
tions for some cases (e.g., prediction error is large). This shows that
decision making based on ML prediction comes at the cost of lower
worst-case performance guarantee. Finally, it is possible to find the
optimal λ to minimize the worst-case CR if the prediction error ζ is
known (e.g. from historically observed error values).

Randomized Algorithm. We consider a class of randomized al-

gorithms for MSSR. Similarly, we consider a hyperparameter λ
satisfying λ ∈ (1/bn, 1). First, we emphasize that a randomized al-

gorithm that naively modifies the distribution used for randomized

algorithm design for the classical ski rental algorithm with or with-

out predictions fail to achieve a better consistency and robustness

at the same time. We customize the distribution functions carefully

by incorporating different renting and buying prices from different

shops into the distributions, as summarized in Algorithm 2.

Theorem 2.2. The CR of Algorithm 2 is at most min

{
rnλ

1−e−rnλ
(1 +

ζ
OPT ),

b1
bn

max

{
rn

1−e−rn (λ−1/bn ) ,
1/λ+1/b1
1−e−1/λ

}}
. In particular, Algorithm 2

is
(

rnλ
1−e−rnλ

)
-consistent, and

(
b1
bn

max

{
rn

1−e−rn (λ−1/bn ) ,
1/λ+1/b1
1−e−1/λ

})
-

robust.

Algorithm 2 A randomized algorithm

if y ≥ bn then Let k = ⌊λbn⌋

Define pi =
(
bn−rn
bn

)k−i
·

rn
bn

(
1−(1−

rn
bn

)k
) , for i = 1, · · · ,k

Choose j ∈ {1, 2, ..., k} randomly from the distribution

defined by pi . Rent till day j − 1 and buy at shop n
else Let l = ⌈b1/λ⌉

Define qi =
(
b1−1
b1

)l−i
· 1

b1
(
1−(1− 1

b
1

)l
) , for i = 1, · · · , l

Choose j ∈ {1, 2, ..., l} randomly from the distribution de-

fined by qi . Rent till day j − 1 and buy at shop 1

3 EXPERIMENTS
For all our experiments, we set the number of shops n = 6, the

buying costs are 100, 95, 90, 85, 80, 75 dollars, and the renting costs

1, 1.05, 1.10, 1.15, 1.20, 1.25 dollars. Note that the actual values of

bi and ri are not important as we can scale all these values by

some constant factors. The actual number of skiing days x is a

random variable uniformly drawn from [1, Γ], where Γ < ∞ is a

constant. The predicted number of skiing daysy is set to x+ϵ where
ϵ is drawn from a normal distribution with mean δ and standard

variation σ . We vary either the value of σ from 0 to Γ, or the value
of δ to verify the consistency and robustness of our algorithms. To

characterize the impact of the hyperparameter λ, we consider the
values of 0.25, 0.5, 0.75 and 1 for λ. Note λ = 1 means that our
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Figure 1: CR of deterministic algorithm. (Left) Γ = 3b1;
(Right) Γ = b1.
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Figure 2: (Left) CR of deterministic algorithm vs. random-
ized algorithm; (Right) Impact of hyperparameter.

algorithms ignore the ML prediction, and reduce to the algorithms

without prediction. For each value of σ , we plot the average CR
by running the corresponding algorithm over 10, 000 independent

trials. We only present results with unbiased prediction error, and

relegate those with biased prediction error to [13].

The Impact of Γ. We consider two possible values of Γ: Γ = 3b1
and Γ = b1. Since b6 = 75, Γ = 3b1 means that it is highly possible

the actual number of skiing days x is larger than b6. Thus according
to our algorithm, buying as early as possible will be a better choice,

i.e., small λ results in better CR as shown in Figure 1 (Left). On the

other hand, with Γ = b1, it is highly possible that x is smaller than

b6. Therefore, if the prediction is more accurate (small σ ), smaller

λ (i.e., more trust on ML prediction) achieves smaller CR, while the

prediction is inaccurate (with large σ ), larger λ achieves smaller

CR. This can be observed from Figure 1 (Right). In particular, with

the values of b’s and r ’s in our setting, λ = 1, i.e., do not trust the

prediction achieves the best CR when the prediction error is large.

We further compare the performance of the deterministic and

the randomized algorithms, as shown in Figure 2 (Left)with Γ = 3b1.
We make the following observations: (i) With the same prediction

errors (e.g., λ = 0.5), the randomized algorithm always performs

better than the deterministic algorithm; (ii) Our deterministic al-

gorithm with ML prediction can beat the performance of classical

randomized algorithm without ML predictions when the standard

deviation of prediction error is smaller than 2.5b1 = 250.

The Impact of Hyperparameter λ. Hyperparameter λ incorpo-

rates the trust of ML prediction in online algorithm design. We

investigate the impact of λ on the deterministic algorithm by con-

sidering a perfect prediction and an extremely erroneous predic-

tion. From Figure 2 (Right) with Γ = 3b1, we observe (i) With

an extremely erroneous prediction, blinding trust the prediction

(smaller λ) leads to even worse performance than the online al-

gorithm without ML predictions; (ii) By properly choosing λ, our
algorithm achieves better performance than the online algorithm

even with extremely erroneous prediction. This demonstrates the

importance of hyperparameter λ.
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