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ABSTRACT
Multi-agent resource allocation is an important and well-studied

problem within AI and economics. It is generally assumed that the

quantity of each resource is known a priori. However, in many real-

world problems, such as the production of renewable energy which

is typically weather dependent, the exact amount of each resource

may not be known at the time of decision making. In this paper

we investigate fair division of a homogeneous divisible resource

where the available amount is given by a probability distribution.

Specifically, we study the notion of ex-ante envy-freeness, where,

in expectation, agents weakly prefer their allocation over every

other agent’s allocation. We analyse the trade-off between fairness

and social welfare. We show that allocations satisfying ex-ante

envy-freeness can result in higher social welfare compared to those

satisfying ex-post envy-freeness. Nevertheless, the price of envy-

freeness is at least Ω(n), where n is the number of agents, and this

is tight under concave valuation functions. Principally, we show

that the problem of optimising ex-ante social welfare subject to

ex-ante envy-freeness is NP-hard in the strong sense. Finally, we

devise an integer program to calculate the optimal ex-ante envy-free

allocation for linear satiable valuation functions.
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1 INTRODUCTION
We consider the problem of dividing a homogeneous resource

among interested agents in a fair manner without using payments.

This problem has a wide range of applications such as the alloca-

tion of electricity, estate, storage space, bandwidth or processing

time [12, 27, 33]. Among the various in the literature introduced

notions of fairness, envy-freeness has received a lot of attention in

social choice theory [9, 14]. This natural criterion requires that no

agent prefers another agent’s allocation over his/her own. While

obtaining envy-freeness is trivial for homogeneous divisible goods,

we are also interested in maximising social welfare (i.e. efficiency)

and understanding the trade-offs between them. In addition, we

consider, for the first time, these two problems when the amount of

available resource is ex-ante uncertain. In this case the allocations

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
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are conditional on the events (i.e. the amount of available resource)

and this allows us to distinguish between two notions of envy-

freeness and efficiency: ex-ante, i.e. in expectation based on the

probability distribution, and ex-post, i.e. at the time of consumption.

A particular example of interest is that of local energy exchange

markets [24]. In these communal markets fairness plays a major

role. Furthermore, the amount of available energy is uncertain due

the variable production of renewables [22, 32].

The literature on fair division of resources is extensive but mainly

focuses on the allocation of bundles of items or heterogeneous re-

sources [6, 11]. One reason for this is that, without payments or

uncertainty, the envy-free allocation of a homogeneous good is

trivial and consists of giving every agent the same amount [12].

Even with uncertainty, ex-post envy-freeness would generally re-

quire equal distribution in all events and therefore inhibits ex-ante

social welfare improvements. However, relaxing envy-freeness to

only hold in expectation allows social welfare improvements in ex-

pectation. The following example shows that an ex-ante envy-free

allocation can achieve more ex-ante social welfare than the ex-post

envy-free solution.

Example 1.1. Consider a renewable energy settingwhere 2 agents
share a photovoltaic system. They want to plan for the next day to

be able to acquire further electricity from other sources if necessary.

The weather forecast for the next day has the weather as one of two

events; event ω1 is that the day is cloudy which occurs with a prob-

ability of
2/3, whereas eventω2 is that the day is sunny which occurs

with a probability of
1/3. Based on these weather predictions, the

photovoltaic system produces an amount of 0.2kWh and 0.4kWh
of energy, respectively. The two agents are interested in electricity

and value it according to the valuation functions v1(x) =
5

0.3 · x

for 0 ≤ x < 0.3, v1(x) = 5 for x ≥ 0.3, and v2(x) =
1

0.2 · x for

0 ≤ x < 0.2 and v2(x) = 1 for x ≥ 0.2 (see Figure 1a). The objective

is to find an ex-ante allocation. In all three cases, the next day the

agents would get deterministically the allocation associated with

the event (the actual weather).

In the social welfare maximising allocation, agent 1 would get

everything in the first event and 0.3kWh in the second, while

agent 2 gets the remaining 0.1kWh (see Figure 1b), resulting in an

expected social welfare of 4
1

18
. In contrast, giving equal amounts to

both agents in both cases (see Figure 1c) achieves an expected social

welfare of 2
8

9
. Since this allocation gives both agents the same in

both events, it is both ex-ante and ex-post envy-free. Now, consider

the allocation where the first agent gets 0.075kWh in the first event

and 0.3kWh in the second event, and the second agent gets the

remaining energy each time (see Figure 1d). For the first event

agent 1 values his and the other agent’s allocation at
5

4
and 2

1

12

respectively. For the second event, agent 2 values his and the other

agent’s allocation at
1

2
and 1. Hence, the allocation for neither of
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(a) The agents’ valuation func-
tions in the example.
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(b) The efficient allocation uncon-
strained by envy-freeness.
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(c) The ex-post envy-free alloca-
tion.
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(d) An ex-ante but not ex-post
envy-free allocation.

Figure 1: The allocations of the example. In each case, the bars are the two events,ω1 andω2 with an available amount of 0.2kWh
and 0.4kWh, respectively. The patterns and numbers inside the events refer to the allocations to the agents. The diagonal lines
indicate an allocation to agent 1 and the dots indicate an allocation to agent 2.

the events is ex-post envy-free. In comparison, considering ex-ante

valuations, agent 1 values his own and the other agent’s allocation

at 2
1

2
and 1

51

54
respectively, and agent 2 values his own allocation as

well as the other agent’s allocation both at
7

12
. Hence, the allocation

is ex-ante envy-free and has with 3
1

12
an ex-ante social welfare

higher than that of the ex-post envy-free allocation.

The example highlights how the allocation illustrated in Fig-

ure 1d utilises that the allocation can vary between the events.

This allows increased ex-ante social welfare in comparison to the

allocation illustrated in Figure 1c.

Related to our work, Feige and Tennenholtz [12] showed how to

use a relaxation of fairness to hold in expectation to improve the ex-

ante social welfare of a fair allocation by introducing randomisation

of allocations. However, they not only use a different fairness mea-

sure but their mechanisms are uniform lotteries over equally sized

allocations of the same resource amount, while in our setting the

probability distribution is given exogenously and the events signify

different amounts of available resource. Furthermore, in contrast

to their lotteries, we use deterministic (conditional) allocations to

improve ex-ante social welfare under ex-ante envy-freeness. While

efficiency can be improved by considering ex-ante envy-freeness,

there remain intrinsic trade-offs between envy-freeness and effi-

ciency. To this end, we derive the price of envy-freeness [5] which

measures the ratio of the (unconstrained) efficient allocation to the

efficient allocation subject to ex-ante envy-freeness. Principally, we

analyse the complexity of maximising ex-ante efficiency subject to

ex-ante envy-freeness. Finally, we devise an integer program for

linear satiable valuation functions using linearisation techniques.

Contributions. We present a new problem of fair division of a

homogeneous resource with uncertain availability. For this setting,

we show that:

(1) Ex-ante allocations are ex-ante efficient if and only if the

allocations are ex-post efficient (Lemma 4.1). This means that

efficient allocations can be easily calculated for reasonable

valuation functions.

(2) Ex-post envy-free allocations are also ex-ante envy-free

(Lemma 5.2). However, the opposite is not necessarily true

which means that there are settings where ex-ante envy-

free allocations can achieve a higher ex-ante efficiency than

ex-post envy-free allocations (see Example 1.1).

(3) The social welfare of the ex-ante efficient allocation under

ex-ante envy-freeness can be substantially smaller than the

welfare of the (unconstrained) ex-ante efficient allocation.

To be precise, the price of envy-freeness has a lower bound

of Ω(n) (Theorem 6.4), where n is the number of agents,

which is asymptotically tight for concave valuation functions

(Theorem 6.5).

(4) The problem of maximising the ex-ante social welfare under

ex-ante envy-freeness is strongly NP-hard even for continu-

ous and concave valuation functions, and uniform probabili-

ties (Theorem 7.2).

(5) We devise an integer program to calculate the optimal ex-

ante envy-free allocation for linear but satiable functions

(see Equations 1 - 4 in Section 8).

The first three results are obtained by relatively straightforward

arguments and/or constructions. The insights they provide are nev-

ertheless valuable. The proof of the intractability is rather involved

and is the most interesting from a technical perspective.

In the remainder of this paper we discuss related work, formally

introduce the model, and provide our results in the aforementioned

order. Due to space limitations some proofs are omitted or sketched.

Most of these proofs are either straightforward to obtain or tech-

nical but the meaning of the statements are intuitively clear and

sufficient to explain the proofs of the main theorems.

2 RELATEDWORK
Computational social choice is a prosperous research field and

fair division is certainly within its core [6]. However, our prob-

lem is related to and has features of a wide array of problems and

areas. From within the field of fair division these include cake cut-

ting [28, 29] and estate or land division [27], and, from related fields,

divisible auctions, divisible task scheduling [17, 25] and packing

problems [30]. We have motivated our model by the requirements

and constraints of local energy markets with renewable energy

sources but this model can be applied to other important areas

including emission permits for greenhouse gases [1], fair load shed-

ding [26], and uncertain computational resources [3, 18].
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As mentioned, the work of Feige and Tennenholtz [12] on a

single homogeneous divisible resource is the most closely related

to our work. However, in contrast to our consideration of envy-

freeness, they are using a fairness criterion that adapts the concept

of proportionality which ordinarily means each agent gets at least

one n-th of his total utility. Additionally, there are other works

on divisible goods, where these usually consider several divisible

items [6, 20, 27] or auctioning the divisible resource [19, 21].

Gajdos and Tallon [15] study the relationship of ex-ante and

ex-post envy-freeness under ex-ante efficiency when agents have

different perceptions of the availability. They focus on two very

simple cases where the amount of resource is equal for all events.

They show that, for their setting, ex-ante optimal allocations are

included in ex-post optimal ones and that ex-post envy-free allo-

cations are a subset of ex-ante envy-free solutions. In contrast, we

show that ex-post and ex-ante efficiency are the same when we do

not require envy-freeness, and quantify the degradation of ex-ante

efficiency from ex-ante envy-freeness as well as the complexity of

calculating ex-ante envy-free efficient allocations.

The important area of cake cutting, in contrast to our homoge-

neous resource, considers a heterogeneous resource. Bei et al. [4]

show that, for the measure of proportionality, efficiency is NP-hard

to approximate within a factor of Ω(1/√n) for general piecewise con-
stant valuation functions and they give a PTAS for linear functions.

Furthermore, Chen et al. [9] develop fair cake cutting algorithms

focusing on piecewise uniform valuation functions.

Another extensive field is that of indivisible goods where whole

items have to be assigned [31]. However, this area is different as

envy-free allocations do not have to exist, and determining their

existence is already hard [6].

For the welfare loss of envy-free allocations we use the price

of envy-freeness. This measure was introduced by Bertsimas et al.

[5] for resource allocation problems. Furthermore, it has been used

to quantify the degradation of efficiency in cake cutting by, for

example, Aumann and Dombb [2], and [8].

Finally, the problem considered in our work has similarities to

several other areas. These include estate division [27] where parties

have claims on the items, and land division [29] which is cutting

across two dimensions. Furthermore, in scheduling, especially with

divisible tasks, jobs have to be assigned to machines which is similar

to agents getting resource from the events [10, 13, 25]. Additionally,

allocating the resources is also close to packing problems [30],

although this usually considers equal sized containers which differ

from our events with different available amounts.

3 PRELIMINARIES
There are n ∈ N agents which are interested in a resource whose

actual amount is uncertain. The uncertain amount of the resource

is represented by a random variableX ∈ [0, 1] (X : Ω → [0, 1]) with

a finite number of eventsm := |Ω | with Ω ⊊ [0, 1] and probability

mass function f . Note that, for simplicity, we have overloaded our

notation for events and let ω := X (ω) for ω ∈ Ω. The allocation
of the resource to the agents is represented by the vector A =
(a1,a2, . . . ,an ) where the allocation to an agent i is a function ai :
Ω → [0, 1]. An allocation A is valid if it satisfies these two validity

constraints: positivity that implies ai (ω) ≥ 0 ∀i ∈ [n], ∀ω ∈ Ω, and

respecting the maximal amount that implies

∑
i ∈[n] ai (ω) ≤ ω ∀ω ∈

Ω. It is important to notice that allocation functions are conditional

on the events. Let F ⊂ [0, 1]Ω be the set of all valid allocation

functions and let Λ = F n
be the set of all valid allocations.

An agent i ∈ [n] values the amount of received resource accord-

ing to a monotonically increasing valuation functionvi : [0, 1] → R
which also satisfies non-negativity (v(x) ≥ 0 ∀x ∈ [0, 1]) and no

valuation for zero (v(0) = 0). The monotonicity reflects that agents

can drop excess resource which does not decrease their valuation.

Let Θ ⊂ R[0,1] be the set of all valid valuation functions. Addition-

ally, let Vi : F → R denote an agent i’s utility given an allocation

function which is equal to the expected valuation of the allocation

function, that is,Vi (aj ) :=
∑
ω ∈Ω vi (aj (ω))f (ω) for any j ∈ [n]. We

note here, for motivational reasons, the valuations are not scaled to

not give all the agents the same weight. Moreover, normalisation is

non-trivial in our setting and would not affect the negative results.

The goal is, given the agents’ valuation functions, to find a valid

ex-ante envy-free allocationA, that is an allocation where, in terms

of utility, an agent weakly prefers his allocation over every other

agent’s allocation, Vi (ai ) ≥ Vi (aj ) for all i, j ∈ [n], such that A
maximises ex-ante social welfareW (A) :=

∑
i ∈[n]Vi (ai ). This is in

contrast to ex-post envy-freeness that impliesvi (ai (ω)) ≥vi (aj (ω))
for all i, j ∈ [n], and the maximisation of ex-post social welfare∑
i ∈[n]vi (ai (ω)) with respect to one event ω ∈ Ω. We note that,

henceforth, any reference to envy-freeness or social welfare without

preposition refers to the respective ex-ante notion. Furthermore,

an allocation of maximum social welfare is called efficient.
Finally, the price of envy-freeness is the ratio maxθ ∈Θ

W (AE (θ ))
W (AEF (θ ))

where AE is an unrestricted ex-ante efficient allocation and AEF is

an ex-ante envy-free and efficient solution. It expresses the degrada-

tion of efficiency due to the enforcement of ex-ante envy-freeness

and a higher value indicates a higher efficiency loss.

4 EFFICIENT ALLOCATION
We begin by focusing on the efficiency of unconstrained allocations,

i.e. when not requiring ex-ante envy-freeness. We show that any

efficient allocation is also ex-post efficient and vice versa, which

means that, under concave valuation functions, an efficient solution

can be found in polynomial time. This gives us a reference for the

price of envy-freeness and also for any future approximation.

Lemma 4.1. An allocation is ex-ante efficient if and only if the
allocation is ex-post efficient for every ω ∈ Ω.

Proof Sketch. By linearity of expectation, ex-post efficiency

implies ex-ante efficiency. For the reverse, we assume for contra-

diction that an allocation A is ex-ante efficient but not ex-post

efficient for a number of events Ψ ⊆ Ω. Using A and an allocation

Ae = (ae
1
, . . . ,aen ) that is ex-post efficient for every ω ∈ Ψ, i.e.∑

i ∈[n]vi (a
e
i (ω)) >

∑
i ∈[n]vi (ai (ω)), we create allocation A′

with

a′i (ω) = ai (ω) ifω < Ψ and a′i (ω) = aei (ω) ifω ∈ Ψ. Efficiency ofAe

for allω ∈ Ψ and linearity of expectation imply thatA′
has a higher

social welfare than A. Hence, A cannot be ex-ante efficient. □

Therefore, we can construct an ex-ante efficient allocation by

using the ex-post efficient allocations for every event. This calcula-

tion for one event can be represented as an optimisation problem

with the ex-ante social welfare as the optimisation function and
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two linear constraints which require that the allocation does not

exceed the available amount and that it is not negative for any

agent. Hence, we have that, for concave valuations functions, the

optimisation function is concave and the problem can be solved

in polynomial time within some restrictions [7]. Since there arem
events we can find the entire allocation in polynomial time.

5 ENVY-FREE ALLOCATION
In contrast to the unconstrained efficiency of the previous section,

allocations for the envy-freeness constraint problem can vary sig-

nificantly. Our result is that there is always an envy-free allocation

where all resources are allocated, denoted as equal share allocation:

Definition 5.1 (Equal Share Allocation). The equal share allocation
AES is the allocation with ai (ω) =

ω
n for all i ∈ [n] and ω ∈ Ω.

In order to establish that this allocation is envy-free we prove

that, for envy-freeness, the set of ex-post allocations is a subset of

the set of ex-ante allocations.

Lemma 5.2. If an allocation function is ex-post envy-free for every
ω ∈ Ω, it is also ex-ante envy-free.

Proof. Let A ∈ Λ be a valid allocation satisfying the lemmas

statement, i.e. vi (ai (ω)) ≥ vi (aj (ω)) for all i, j ∈ [n] and ω ∈ Ω.
Then, Vi (ai ) =

∑
ω ∈Ω vi (ai (ω))f (ω)

≥
∑
i ∈[n]

∑
ω ∈Ω vi (aj (ω))f (ω) = Vi (aj ), ∀i, j ∈ [n]. □

Note, the opposite is not necessarily true and this is exactly

why it is possible to find allocations with increased ex-ante social

welfare. Additionally, since the equal share allocation is trivially

ex-post envy-free, it is also ex-ante envy-free by Lemma 5.2.

Corollary 5.3. The equal share allocation is ex-ante envy-free.

6 PRICE OF ENVY-FREENESS
We next consider the extent to which both efficiency and envy-

freeness can be achieved. Specifically, we show in Theorem 6.4

that, without restricting the valuation functions, the price of envy-

freeness is at least in the order of the number of agents. This follows

since, in the case of linear and non-equal valuation functions, the

most efficient solution is to give everything to one agent (see Lemma

6.2), and that, under ex-ante envy-freeness, it is not possible to

achieve a higher efficiency than the equal share allocation (see

Lemma 6.3). Finally, we show that the bound is asymptotically tight

for concave valuation functions (see Theorem 6.5).

For this section, we assume all valuation functions are linear, i.e.

vi (x) = ci · x with ci ∈ R+ for i ∈ [n]. Then, an ex-ante efficient

allocation, which we callmaximal slope allocation, gives everything
to an agent with the highest slope. The ex-ante social welfare is a

function of the maximal slope and the probability distribution.

Definition 6.1 (Maximal Slope Allocation). A maximal slope al-
location is the allocation where an agent j ∈ argmaxi ∈[n]{ci } gets
all of the resource.

Lemma 6.2. A maximal slope allocation is efficient and has an
ex-ante social welfare of c j · E[X ] for j ∈ argmaxi ∈[n]{ci }.

In comparison, the maximum possible social welfare under envy-

freeness is achieved by the equal share allocation and is a function of

the average of the slopes of all agents. This demonstrates that there

is an inherent trade-off between social welfare and envy-freeness.

Lemma 6.3. No ex-ante envy-free allocation can have more ex-ante
social welfare than meani ∈[n]{ci } · E[X ] which is matched by the
equal share allocation.

Proof sketch. The key point is that under linearity of the val-

uations ex-ante envy-freeness implies that the expected allocations

are the same, i.e. E[ai ] = E[aj ] for all i, j ∈ [n]. Hence, the ex-ante
social welfare is determined by the allocations and the average

slope, i.e.W (A) = n · meani ∈[n]{ci } · E[ak ] for any k ∈ [n]. Then,
since every allocation is limited by the available amount, we have

that n ·E[ak ] ≤ E[X ] which implies the claimed limit on the achiev-

able ex-ante social welfare. It is straightforward to show that this

is matched by the equal share allocation. □

Finally, we construct an instance for the price of envy-freeness.

Theorem 6.4. The division of a homogeneous resource has a price
of envy-freeness of Ω(n).

Proof. Let X be arbitrary but have at least one event with pos-

itive amount and probability. Let the valuation function of the

first agent be v1(x) = 2x and the remaining valuation functions

vi (x) =
1

n−1 · x for i ∈ {2, . . . ,n}. Then, the ratio of the effi-

cient to the envy-free allocation is, by Lemma 6.2 and 6.3, (c j ·
E[X ])/(meani ∈[n]{ci } ·E[X ]) = 2/3 ·n which implies the claim. □

For arbitrary valuation functions the upper bound can be un-

bounded. However, for the realistic assumption of concave valua-

tion functions the bound is asymptotically tight.

Theorem 6.5. For concave valuation functions, the division of a
homogeneous resource has a price of envy-freeness of at most n.

The results of the theorems 6.4 and 6.5 are the same as the bounds

for every event ex-post. However, the results of the theorems extend

the ex-post results by showing that irrespective of the probability

distribution, the results also holds ex-ante. In other words, the

bounds confirm that there is still no worst-case improvement.

7 COMPLEXITY
The results from the previous section show that, for linear valuation

functions, equal share already attains maximum possible efficiency.

However, Example 1.1 shows that, if the valuation functions of

some of the agents are non-linear, there are allocations with higher

ex-ante social welfare. Hence we ask: how difficult would it be to

find more efficient allocations in general. We show that the problem

of maximising ex-ante social welfare under ex-ante envy-freeness

is strongly NP-hard. In order to prove this we consider the decision

version of our problem which we call decision version of uncertain
amount fair division (D-UAFD).

Definition 7.1 (Decision Version of Uncertain Amount Fair Division
(D-UAFD)).

Instance: ⟨X , (vi )i ∈[n],B⟩ where X : Ω → [0, 1] with finite

Ω ⊊ [0, 1] is a discrete random variable, (vi )i ∈[n] withvi ∈ Θ
are valuation functions and B ∈ R is a bound.

Problem: Does there exist a valid allocation A = (ai )i ∈[n] ∈
F n

such that Vi (ai ) ≥ Vi (aj ) for all i, j ∈ [n] andW (A) ≥ B.
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Θ, F , Vi andW (A) are defined as in the preliminaries.

Theorem 7.2. D-UAFD is NP-complete in the strong sense.

We prove this by reducing from the 3-partition problem, that is

known to be NP-complete in the strong sense [16].

Definition 7.3 (3-Partition Problem).
Instance: ⟨S,B⟩, where S ⊂ N is a finite multiset of 3m ele-

ments s1 . . . s3m and B ∈ Z+ is a bound such that B/4 < si <
B/2 ∀i ∈ [3m] and

∑
i ∈[3m] si =mB.

Problem: Can S be partitioned intom disjoint subsets

S1, . . . , Sm such that

∑
x ∈Si x = B for all i ∈ [m].

(Notice that the item size requirements imply that each subset must

contain exactly 3 elements.)

We reduce a given instance of 3-partition problem to an instance

of our fair distribution problemwhichwe call envy partition instance.
In short, we scale the 3-partition instance down and transform it

into an instance of D-UAFT where the sets are the events and the

3-partition elements are the agents. To achieve this, the agents’

valuation functions are chosen so that the opposing goals of envy-

freeness and efficiency require that every agent gets allocated ex-

actly the amount specified by the corresponding 3-partition element

in a single event. Therefore, allocating this amount to the agents

corresponds to choosing a set for the corresponding 3-partition

element. Additionally, to address that every event has to have a

different amount, we slightly increase the size of the events and

add additional agents who desire exactly these amounts.

Definition 7.4 (Envy Partition Instance). An envy partition in-
stance ⟨X , (vi )i ∈[n],B′⟩ is an instance of D-UAFD constructed given

a 3-partition instance ⟨S,B⟩ in the following way. We assume with-

out loss of generality that the 3-partition elements are ordered in a

non-decreasing way, i.e. s1 ≤ s2 ≤ . . . ≤ s3m .

Firstly, there are 4m agents in total; i.e. n = 4m. The agents

m+1, . . . , 4m correspond to the elements of the 3-partition instance.

The remainingm agents correspond to both the partitioning subsets

of the 3-partition instance and the events as defined for this instance.

In particular, let s ′i :=
si/(mB) for all i ∈ [3m], let ε be chosen such

that 0 < ε < 2/(m2B(m + 1)), and let Z :=
∑m
i=1 i · ε . Then the valuation

functions are defined as follows.

vi (x) =


0 if x ≤ 0

i · x if 0 < x ≤ ŝi

i · ŝi if x > ŝi

with ŝi =

{
i · ε if i ≤ m

s ′i−m ifm + 1 ≤ i ≤ 4m

for i ∈ [4m]. We refer to ŝi as agent i’s saturation amount. Note

that ŝi ’s are weakly increasing in i .
The second step is the construction of the random variable

X . The set of events consists of m elements which are of size

1

m plus an additional small and increasing offset. Formally, Ω =

{ω1, . . . ,ωm } =
{
1

m + ε,
1

m + 2 · ε, . . . ,
1

m +m · ε
}
. Additionally,

our random variable is uniformly distributed, i.e. has the prob-

ability mass function f (ω) = 1

|Ω |
= 1

m for all ω ∈ Ω. Note that∑
ω ∈Ω ω = 1 + Z =

∑
i ∈[4m] ŝi .

Finally, B′ = 1

m ·
∑
3m
i=1 i · s

′
i +

ε
6

(
2m2 + 3m + 1

)
+ 1.

This construction can be done in polynomial time, the con-

structed instance is of polynomial size, and the constructed values

are polynomial in the values of the 3-partition instance.

Given the constructed envy partition instance, we first show

that an allocation A achieves the required social welfare B′
and

satisfies ex-ante envy-freeness only if it allocates to each agent,

except maybe agent 1, his saturation amount in exactly one event

and zero in all other events; that is, ai (ω
′) = ŝi for one ω

′ ∈ Ω and

ai (ω) = 0 for allω ∈ Ω\{ω ′}. We then show that such an allocation,

satisfying envy-freeness and having social welfare of at least B′
,

exists if and only if a 3-partition exists.

Intuitively speaking, to maximise social welfare we need to give

the agents with higher index larger allocations, as they have higher

valuations, but we cannot allocate to them too much as then the

agents with lower index will envy them.

For the purpose of our proof, we introduce a new representation

of an allocation which we call allocation by pieces. In this repre-

sentation, we allocate up to the entire amount of resource over all

events

∑
ω ∈Ω ω = 1 + Z to agents as pieces, independent of the

events. Each agent receivesm pieces. We then map events to pieces.

Definition 7.5 (Allocation by Pieces). An allocation by pieces con-

sists of functions a
p
i : [m] → [0, 1] for each agent i ∈ [4m] such

that 0 ≤ a
p
i (j) ≤ ŝi , ∀j ∈ [m] and

∑
i ∈[n]

∑
j ∈[m] a

p
i (j) ≤ 1 + Z , and

a function Φ : [n] × Ω → [m] where Φ(i,ω) , Φ(i,ω ′), ∀i ∈ [n],
∀ω , ω ′ ∈ Ω.

Social welfare and envy-freeness fora
p
i ’s are defined as in the pre-

liminaries. Furthermore, an allocation by pieces is valid ifa
p
i (Φ(i,ω))

is valid ∀i ∈ [n],∀ω ∈ Ω, where validity is defined as in the

preliminaries. Given a
p
i ’s and given a Φ, we say that Φ is valid

if a
p
i (Φ(i,ω))’s are valid.
We will show that taking any allocation by pieces and modifying

it so that the pieces for a given agent i are reduced to a number

of pieces of size ŝi and maximum one piece of size less than ŝi
(see Definition 7.7) does not change social welfare (see Lemma 7.8).

Furthermore, if a
p
i ’s are ex-ante envy-free and a valid Φ exists then

a
p
i (Φ(i,ω))’s are ex-ante envy-free (see Lemma 7.9).

Note that an agent’s valuation in any given event does not in-

crease after reaching his saturation amount. Therefore, reducing

his allocation to his saturation amount and changing nothing else

maintains the social welfare and envy-freeness.

Proposition 7.6. It suffices to consider allocationsAwith ai (ω) ≤
ŝi for all i ∈ [n].

From now on we only consider allocations in which each agent

receives in each event at most his saturation amount.

Any allocation A = (a1, . . . ,an ) is equivalent to the allocation

by pieces Ap with a
p
i (j) = ai (ωj ) and Φ(i,ωj ) = j. Considering the

whole amount of the allocation, we can observe that the pieces can

be reduced to a number of pieces allocating exactly the saturation

amount and at most one piece with less than the saturation amount.

This means that we can create a new allocation by pieces which

allocates to each agent the same total amount as in A. We denote

this allocation as total amount allocation.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

208



Definition 7.7 (Total Amount Allocation). An agent i’s allocation
can be represented as a total amount allocationAi = ni · ŝi +di with

0 ≤ di < ŝi . This corresponds to the allocation in pieces a
p
i (j) = ŝi

for j ∈ [ni ] with ni ∈ ([m] ∪ {0}) and a
p
i (ni + 1) = di .

Given an allocation by pieces, a total amount allocation can

be created in a stepwise manner. For example, assume that agent

i has two pieces (1, 2) below his saturation amount and that his

allocation under 1 is weakly less than his allocation under 2; i.e.

a
p
i (1) ≤ a

p
i (2) < ŝi . Then it is possible to reduce the allocation by

d := min{a
p
i (2), ŝi − a

p
i (1)} in piece 2 (a

p′
i (2) := a

p′
i (2) + d) and

increase it in piece 1 (a
p′
i (1) := a

p′
i (1) + d).

We remark again that we ignore Φ here. Generally, a valid Φ
does not have to exist for all total amount allocations. However, the

aim is to show that for any allocation to achieve a social welfare

of B′
, any agent i’s allocation has to be exactly ŝi in one event and

zero in all other events. This is independent of the choice of the

event in which the agent gets his saturation amount. In this respect,

the total amount allocation is suitable since its social welfare is the

same as the social welfare of the allocation it is based on, and if the

original allocation is ex-ante envy-free and a valid Φ exists, then

the allocation (a
p
i (Φ(i,ω)))i ∈[n],ω ∈Ω is also ex-ante envy-free. The

social welfare is unaffected since the valuation functions are linear.

Lemma 7.8. The ex-ante social welfare of an allocation and its
representing total amount allocation are equivalent.

The envy-freeness of (a
p
i (Φ(i,ω)))i ∈[n],ω ∈Ω can be argued with

the shifts to create a total amount allocation. An agent i is indifferent
between the allocation before and after a shift since he receives the

same amount in total and all events are equally likely. Every other

agent j’s utility of agent i’s allocation after the shift is weakly less

than before the shift, since it is the same amount but all utilities are

subject to agent j’s saturation amount. Hence, the difference in the

ex-ante envy-freeness inequalities can only increase.

Lemma 7.9. If api ’s are ex-ante envy-free then the total amount
allocation is ex-ante envy-free.

Lemma 7.10. If api ’s are ex-ante envy-free and a valid Φ exists then
(ai (Φ(i,ω)))i ∈[n],ω ∈Ω is ex-ante envy-free.

The following lemmata are used in the shifting procedure in the

proof of Theorem 7.2. If any shift based on the following lemmata

ends in an allocation for which a valid Φ exists then by Lemmata

7.9 and 7.10 we have reached an envy-free allocation.

Lemma 7.11. Fixing an allocation A and an agent 1 ≤ k < 4m, if
all agents i where i < k have a total amount allocation ofAi = ŝi and
agent k’s total amount allocation is Ak > ŝk , then shifting allocation
to create allocationA′ such that any excess is shifted to the next agent,
i.e. A′

k = ŝk and A′
k+1 = Ak+1 +Ak − ŝk , increases social welfare.

Envy-freeness stipulates that, if an agent receives less than his

saturation amount, then all agents of higher index also receive less

than their saturation amounts.

Lemma 7.12. For two agents i,k ∈ [4m]with i > k , if agent k has a
total amount allocation of less than, or equal to, his saturation amount,
i.e. Ak ≤ ŝk , then the same must be true for agent i , i.e. Ai ≤ ŝi . The
same holds for the strict case, i.e. if Ak < ŝk then Ai < ŝi .

Further, envy-freeness imposes the following conditions on Φ.

Lemma 7.13. If for an envy-free allocation every agent has an
allocation of once his saturation amount then agents 2, . . . , 4m have
to have their saturation amount in exactly one event or piece.

Proof sketch. If the allocation of ŝi for i ∈ [n]\{1} is in one

event, the utility of agent 1 for the allocation of agent i will be ŝ1
(the remainder ŝi − ŝ1 is of no value to him). If ŝi is split between
two or more events, then agent 1 will receive some additional utility

from ŝi − ŝ1 and hence his utility for agent i’s allocation will be

more than ŝ1, implying that agent 1 envies agent i’s allocation. □

Finally, we are able to prove the main theorem.

Proof of Theorem 7.2. It is easy to see that given an allocation,

we can calculate the social welfare and verify the envy-freeness

in polynomial time. Therefore D-UAFD is in NP. To prove NP-

completeness, we show that the constructed envy partition instance

(see Definition 7.4) is a yes-instance if and only if the given 3-

partition instance is a yes-instance.

First, consider the case where there is a valid partition S1, . . . , Sm
for the 3-partition instance. Consider the allocation A where for

si ∈ Sj agent i +m is allocated ŝi+m in ωj for all i ∈ [3m] and for

i ∈ [m] agent i gets assigned ŝi in ωi . Recall that ŝi+m = s ′i =
si
mB

∀i ∈ [3m], and ŝi = i .ε ∀i ∈ [m]. It is thus easy to verify that

allocationA is valid as

∑
si ∈Sj s

′
i =

∑
si ∈Sj

si
mB =

1

m . The utility for

an agent i ∈ [n]with respect to his own allocation isVi (ai ) =
i
m · ŝi ,

and his utility with respect to the allocation of agent j ∈ [n] is
Vi (aj ) =

i
m · ŝi if j > i and Vi (aj ) =

i
m · ŝj ≤ i

m · ŝi if i > j.
Hence, A is ex-ante envy-free. Furthermore, the sum of the utilities

is

∑
i ∈[n]Vi (ai ) =

1

m

(∑
3m
i=1(i +m) · s ′i +

∑m
i=1 i

2 · ε
)
= B′

, which

concludes this case.

Now, consider the case where there is an envy-free allocation A
with social welfare at least B′

for the constructed envy partition

instance. By Observation 7.6, we can assume that every agent re-

ceives in every event at most his saturation amount. Therefore, A
can be represented as an allocation by pieces (Definition 7.5), and

hence has a total amount allocation representation (A1, . . . ,A4m )

(Definition 7.7) that has the same ex-ante social welfare as A (by

Lemma 7.8) and is ex-ante envy-free (by Lemma 7.9). This gives us

a framework in which we show that, independent of Φ, to achieve

B′
every agent, except maybe agent 1, has to get his saturation

amount exactly once; i.e. ai (ω
′) = ŝi for one ω

′ ∈ Ω and ai (ω) = 0

for all ω ∈ Ω \ {ω ′}, for all agents i , 2 ≤ i ≤ 4m.

Starting from the total amount allocation (A1, . . . ,A4m ) and

considering agents one by one in increasing order of indices, we

construct another allocation A′
using the following procedure. If

the current agent i is agent 4m or has a total amount allocation

Ai < ŝi , we stop. If the current agent i has a total amount allocation

Ai > ŝi the additional amount is shifted to the next agent.

If the procedure reaches agent 4m and no amount has been

shifted, then for each agent i < 4m we have that Ai = ŝi and, by
Lemma 7.12, we have that A4m ≤ ŝ4m . An allocation where every

agent is allocated exactly his saturation amount has social welfare

of B′
. Thus, if A4m < ŝ4m thenW (A) < B′

which contradicts our

assumption. If A4m = ŝ4m then, by Lemma 7.13, every agent in A,
except maybe agent 1, is allocated his saturation amount exactly
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once in one event. If the procedure reaches agent 4m and some

amount has been shifted during the procedure, then by Lemma 7.11,

W (A′) > W (A). Furthermore, each agent i < 4m is allocated ex-

actly his saturation amount in A′
and the total amount of resource

available stipulates that agent 4m is allocated at most his saturation

amount. An allocation where every agent is allocated exactly his

saturation amount has social welfare of B′
. ThereforeW (A′) ≤ B′

,

and henceW (A) < B′
which contradicts our assumption. If the

procedure stops at an agent i < 4m, then we have that (1) every

agent j < i is allocated exactly his saturation amount in A′
, and (2)

since Ai < ŝi then, by Lemma 7.12, for each agent j ≥ i we have
thatAj < ŝj and hence each such agent is allocated less than his sat-

uration amount in A′
. An allocation where every agent is allocated

exactly his saturation amount has social welfare of B′
. Therefore

W (A′) < B′
. By Lemma 7.11,W (A′) ≥W (A), and henceW (A) < B′

which contradicts our assumption. Hence we can conclude that

either each agent, except maybe agent 1, is allocated his saturation

amount exactly once, orW (A) < B′
which is a contradiction.

So far we have established that allocation A is equivalent to

the allocation by pieces Ap where a
p
i (1) = ŝi and a

p
i (j) = 0 for

j ∈ ([m]\{1}), for all i ∈ [4m] \ {1}. In the remainder of the proof

we show that a valid Φ exists only if there exists a 3-partition and,

moreover, agent 1 too receives his saturation amount exactly once

in A. Since by assumption A is valid, hence a valid Φ must exist and

thus a 3-partition exists and, moreover, every agent receives his

saturation amount exactly once in A.
For easier presentation, we multiply saturation amounts and the

amount of events bymB which results in saturation amounts of

agentsm + 1 . . . 4m to be equal to 3-partition elements, which are

all integers, and the amount of resource in each event j ∈ [m] to

be equal to B + B ·m · j · ε . Recall that integer B denotes the size of

each set. Furthermore, by the choice of ε , B ·m · j · ε < 1, ∀j ∈ [m].

We now investigate what must hold for a valid Φ to exist. We first

claim that each agent i with 2 ≤ i ≤ m must be assigned to event i .
For if not, then there must be an event j ∈ [m] with a remaining

unallocated amount of less than B. Hence, since no event has an

amount of B + 1 or more, this implies that we have a total amount

of less thanmB that we can assign to agentsm + 1 . . . 4m. But then

these agents’ saturation amounts add up tomB so it impossible to

have these agents assigned. A similar argument holds if agent 1 is

not assigned to event 1, and hence we conclude that each agent

i ∈ [m] is assigned to event i . Therefore, the remaining amount in

each event is exactly B. We have that the saturation amounts of

agents m + 1 . . . 4m are equal to their corresponding 3-partition

elements, hence the existence of a valid Φ implies that there exists

a 3-partition, which can be directly derived from Φ.
Therefore, the envy partition instance is a yes-instance if and

only if the 3-partition instance is a yes-instance. Finally, since the

envy partition instance can be constructed in polynomial time and

is of polynomial size this concludes the strong completeness. □

8 INTEGER PROGRAM
Unfortunately, the instances of both the NP-hardness proof and the

price of envy-freeness together imply that there is no reasonable

relaxation which allows easy solutions. Essentially, linear functions

do not allow any increase above equal share and, in all other cases,

the envy-freeness is a non-linear constraint. Nevertheless, in this

section we consider linear satiable valuations and formulate an

integer program to calculate the efficient envy-free allocation.

It is straightforward to represent the problem in this work as

an optimisation problem. However, this program, depending on

the valuation functions, may be non-linear and non-concave. In

the setting of linear satiable valuation functions we can rewrite

the utility functions and envy-freeness constraint with minima

functions. These can be transformed into a series of constraints to

reformulate the mathematical program into an integer program to

calculate the optimal envy-free solution.

More explicitly, the linear satiable valuation for agent i ∈ [n] is
defined as vi (x) = ui/qi · x if x ≤ qi and vi (x) = ui otherwise, with
saturation amount qi ∈ [0, 1] and maximal value ui ∈ R+.

Like in the proof of Theorem 7.2 the utility of any allocation

depends on the minimum of the agent’s saturation amount and the

allocated amounts. This fact allows us to rewrite the utility as well

as the equations representing envy-freeness.

Proposition 8.1. The utility for agent i ∈ [n] with (ui ,qi ) ∈

([0, 1],R+) is Vi (a) =
ui
qi ·

∑
ω ∈Ω

min{a(ωj ),qi } f (ω).

Proposition 8.2. The envy-freeness constraint for agents i,k ∈

[n] is represented by the equation
EF (i,k) :=

∑
ω ∈Ω

(min{ai (ω),qi } −min{ak (ω),qi }) f (ω) ≥ 0

Altogether, we can formulate the problem as the following op-

timisation program with decision variables xi j for i ∈ [n] and
j ∈ [m].

max

∑
i ∈[n]

Vi
(
(xi j )j ∈[m]

)
(1)

s.t.

∑
i ∈[n]

xi j ≤ ωj ∀j ∈ [m] (2)

EF (i,k) ≥ 0 ∀i,k ∈ [n] (3)

xi j ≥ 0 ∀i ∈ [n], j ∈ [m] (4)

The optimisation function is the social welfare rewritten using

Proposition 8.1. The first constraint limits the allocation xi j for
agent i ∈ [n] in event j ∈ [m] to the maximal available amount. The

second constraint is envy-freeness and the last constraint ensures

only positive allocations are attained.

In this formulation neither the optimisation function nor the

envy-freeness constraint appear linear. However, in a series of

replacements we can replace those with linear constraints and

integer variables.

Firstly, similar to Proposition 7.6 allocating more to an agent

than the saturation amount does not increase the value. Further-

more, it can only negatively affect envy-freeness since the agents’

valuations do not increase but another agent might be envious of

the increased amount. Consequently, we can replace one of the

minimum functions in the optimisation program.

Lemma 8.3. The expression min{xi j ,qi } can be replaced with xi j
and constraint xi j ≤ qi for all i ∈ [n] and j ∈ [m].

The other minimum in the envy-freeness equation, min{xk j ,qi },
cannot be replaced that easily. We apply linearisation techniques
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and replace the minimum function with three more types of vari-

ables and a number of constraints. An overview of linearisation

techniques can be found for example in the work by Liberti [23].

Firstly, we substitute the minimum function min{xk j ,qi } with

a variable x ik j . Secondly, we use a second integer variable yik j to

ensure that the substitution is valid.

Lemma 8.4. The equation x ik j = min{xk j ,qi } for all i,k ∈ [n], j ∈

[m] holds for constraints qi · yik j ≤ x ik j ≤ qi and xk j · (1 − yik j ) ≤

x ik j ≤ xk j with yik j ∈ {0, 1}.

The general idea behind the technique is as follows: for the

equation to hold, the variable x ik j has to be smaller than both values

in the minimum; yet at the same time it also has to be greater than

one of the two, i.e. be exactly of that value. By setting yik j to one or

zero we can tighten one or the other constraint to be of the minimal

value. Considering the four cases of the two possible values of the

minimum and the two possible values of yik j , one can see that yik j
can only be chosen so that the equation x ik j = min{xk j ,qi } holds.

However, the constraint xk j · (1 − yik j ) ≤ x ik j still contains a

non-linear expression in the form of a product. We replace that

product xk j · y
i
k j with a new variable zik j which yields constraint

x ik j ≥ xk j − zik j and further constraints.

Lemma 8.5. The equation zik j = xk j ·y
i
k j for all i,k ∈ [n], j ∈ [m]

holds for constraints 0 ≤ zik j ≤ xk j and xk j + yik j − 1 ≤ zik j ≤ yik j .

The main observations for the linearisation are that xk j ∈ [0, 1]

and that yik j is binary. This implies that zik j has to be smaller than

both factors. Furthermore, the constraint xk j +y
i
k j − 1 is either xk j

or non-positive and therefore assures that the result holds.

Finally, replacing the minimum functions with the variables and

constraints from the Lemmata 8.3, 8.4 and 8.5 yields an integer

linear program. We can verify this by observing that all of the

resulting constraints are linear and we have continuous variables

xk j , x
i
k j and z

i
k j as well as the binary variables yik j . Due to space

limitations we omit the full integer program here.

8.1 Example
We ran a preliminary experiments on random instances to see the

efficiency of the ex-ante envy-free solution. Firstly, the main con-

straint of the optimisation program is the envy-freeness. Computa-

tionally, this is apparent from the fact that increasing the number of

agents increases the runtime significantly more than increasing the

number of events. We selected one example (see Figure 2) where

we show the social welfare of the equal share allocation, the un-

constrained efficient allocation and the ex-ante efficient envy-free

allocation for 30 events and 2 to 9 agents. The events are drawn uni-

formly from (0, 1], the agents’ maximal values are drawn uniformly

from [1, 20] and, in the case of satiable valuations, the agents’ satu-

ration amounts are drawn uniformly from (0, 1]. The plot shows

that the social welfare difference of the unconstrained efficient al-

location and the envy-free allocations increases. However, in the

case of satiable valuations, in comparison to the linear valuations

case, the social welfare is increasing for the envy-free allocations.

Figure 2: The social welfare of the equal share allocation, the
efficient ex-ante envy-free allocation and the unconstrained
efficient allocation for 30 events and an increasing number
of agents with linear or linear satiable valuation functions.

9 CONCLUSIONS
We consider a fair division variant where the amount of a homoge-

neous resource is uncertain which is reflected by a random variable

over a finite set of discrete events. We show that, while uncon-

strained efficiency optimisation can be solved in polynomial time

for concave and other reasonable valuation functions, this is not

no longer the case if ex-ante envy-freeness is required. In this case,

an ex-ante envy-free allocation always exists but might have a sig-

nificantly worse social welfare than the ex-ante efficient allocation.

More specifically, the price of envy-freeness is tightly bounded

by n for concave valuation functions, where n is the number of

agents. Principally, we show that the problem of finding an ex-

ante efficient allocation under ex-ante envy-freeness is strongly

NP-complete, even under simple continuous valuation functions

and with uniform probability over the events. Finally, we devise

an integer program for the optimal ex-ante envy-free solution for

linear satiable valuations.

The setting presented in this paper invites various directions for

future work. Firstly, our NP-hardness result calls for a polynomial-

time algorithm that approximates efficiency under ex-ante envy-

freeness. Secondly, it would be interesting to investigate the price

of envy-freeness in other restricted classes of valuation functions

(besides linear valuation functions). Thirdly, we have assumed that

the valuations are known. While this makes sense in some settings

it would be of interest to examine the strategic case where agents

can misrepresent their valuation.
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