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ABSTRACT
One of the challenging problems of impartial combinatorial games

(ICGs) is to construct generalized winning strategies for possibly

infinitely many states. In this paper, we investigate synthesizing

generalized winning strategies for ICGs. To this end, we first pro-

pose a logical framework to formalize ICGs based on linear integer

arithmetic. We then propose an approach to generating the winning

strategy for ICGs. Experimental results on several games demon-

strate that our approach is effective in most of these games.
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1 INTRODUCTION
Strategy representation and reasoning has recently received much

attention in artificial intelligence, particularly, multi-agent systems

and game theory [3, 10, 13]. In the area of game theory, one class of

the elementary and fundamental games is impartial combinatorial

games (ICGs) where two players alternate moving with perfect

information [6].

One of the challenging problems of ICGs is to synthesize the

strategy for the player who can force to win. Given a state, the

winning strategy can be computed via off-the-shelf backward al-

gorithms [13]. However, this strategy holds for only one state but

not (infinitely) many states. Synthesizing a generalized winning

strategy that works for possibly infinitely many states is of interest.

Unfortunately, this problem is notoriously difficult even for simple

games, and undecidable in general [7].

In this paper, we concentrate on ICGs, and investigate synthe-

sizing generalized winning strategies. The contributions of this

paper are as follows: (1) We first propose a logical framework to
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formalize ICGs based on linear integer arithmetic. (2) We then pro-

pose an approach to synthesizing the arithmetic formula, called

the winning formula, which exactly captures the states in which

the player forces to win. (3) Furthermore, we give a method to syn-

thesize generalized winning strategies for impartial combinatorial

games. (4) Finally, we evaluate our approach on several games, and

experimental results demonstrate the effectiveness and scalability

of the proposed approach.

2 IMPARTIAL COMBINATORIAL GAMES
In this section, we briefly introduce impartial combinatorial games

and a logical framework to represent it. A game that satisfies the

following conditions is called an ICG [6]: (1) There are two players

and possible states such that the player can move from one state to

another one. (2) Two players alternate moving and have the same

choice of moving. (3) The game ends when it moves to an ending
state in which no player has a possible move, and always ends in

a finite number of moves. There are two play rules: normal and
misère. Under the normal rule, the last player to move wins. By

contrast, the last player loses under the misère rule.

By Zermelo’s Theorem, there always exists a winning strategy

for one player in ICGs [12].

For an ICG, we classify states into two types: winning and losing
states. A winning state is a state winning for the player. By contrast,

a losing state is a state where the player cannot force to win. The

formal definition is as follows:

Definition 2.1 ([6]). In an ICG, under the normal rule, winning

and losing states are recursively defined as follows:

(1) All ending states are losing states.

(2) All states such that there is at least one move to a losing

state are winning states.

(3) All states such that the only possible moves are to winning

states are losing states.

We then present a logical framework for describing ICGs based

on linear integer arithmetic (LIA). Let N be the set of integers, V

a set of variables and X ⊆ V a finite set of state variables. The

syntax of linear integer arithmetic is defined as follows. The sets

of arithmetic expressions (Exp), literals (Lit) and formulas (Form) is
defined by the following grammar:

e, e ′ ∈ Exp ::= c | v | e + e ′ | e − e ′

l ∈ Lit ::= e=e ′ |e,e ′ |e <e ′ |e >e ′ |e ≤e ′ |e ≥e ′ |e≡c ′ c |e .c ′ c

ϕ,ϕ ′ ∈ Form ::= l | ϕ ∧ ϕ ′ | ϕ ∨ ϕ ′ | ∀vϕ | ∃vϕ
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where c, c ′ ∈ N and v ∈ V .

We remark that the literal e ≡c c
′
denotes that e and c are con-

gruent modulo c ′ (i.e., e − c are divisible by c ′), and its negation

is e .c c ′. We use FormX for the set of formulas of which free

variables are state variables.

Definition 2.2. An ICG is defined as a tuple Π = ⟨X,A, C, E⟩

where

• X: a finite set of state variables.

• A: a finite set of actions.

• C: a formula of FormX denoting all legal states.

• E: a formula of FormX denoting all ending states.

We use an arithmetic formula to represent all winning states,

called the winning formula.

Definition 2.3. Let Π = ⟨X,A, C, E⟩ be an ICG and ϕ ∈ FormX .
We call ϕ the winning formula of Π, if

(1) For any ending state s s.t. s |= E, we have s |= ¬ϕ;
(2) For any legal state s s.t. s |= ϕ, there is an action a applicable

in s s.t. do(a, s) |= ¬ϕ;
(3) For any legal state s and action a s.t. s |= ¬ϕ and a is appli-

cable in s , we have do(a, s) |= ϕ.

We hereafter define winning strategies as a set of pairs of for-

mulas and actions over state variables.

Definition 2.4. Let Π = ⟨X,A, C, E⟩ be an ICG, and ϕ the win-

ning formula ofΠ. Awinning strategyδ is a set of pairs {(ψ1,a1), · · · ,
(ψn,an )} where eachψi ∈ FormX and ai is a semi-ground action, if

(1)

∨n
i=1ψi ≡ ϕ;

(2) ψi . ⊥ for 1 ≤ i ≤ n;
(3) For all winning states s and a ∈ δ (s), do(a, s) is a losing state.

Here, δ (s) = {ai | s |= ψi }.

3 SYNTHESIS OF WINNING STRATEGIES
In this section, we provide a synthesis approach to winning strate-

gies. Our approach consists of three steps: (1) synthesizing the win-
ning formula, (2) refining the winning formula, and (3) synthesizing
the winning strategy. The first and third steps are based on the

enumerative algorithm proposed in [9]. The enumerative algorithm

aims to synthesize objects satisfying a set of specifications that is

represented in LIA. For details, please refer to [9].

Synthesizing the winning formula. We give the constrains for

the winning formula based on the definition of winning formulas.

Definition 3.1. Let Π = ⟨X,A, C, E⟩ be an ICG. The constraints

for the winning formula ϕ of Π are as follows:

(1) E → ¬ϕ;
(2) (C ∧ ϕ) → ∃X′[T (A) ∧ ¬ϕ[X/X′]];

(3) (C ∧ ¬ϕ) → ∀X′[T (A) → ϕ[X/X′]].

where ϕ[X/X′] is the formula obtained by replacing every occur-

rence of v ∈ X in ϕ with v ′, and T(A) is the transition formula for

all actions a in A that reflects the relation between states before

and after performing a. The three constraints correspond to Items

1 - 3 of Definition 2.3 respectively.

The following is the completeness and soundness of the enumer-

ative algorithm that synthesizes the winning formula according to

the above constraints.

Theorem 3.2. Let Π = ⟨X,A, C, E⟩ be an ICG.
Soundness If the enumerative algorithm synthesizes the for-

mula ϕ satisfying the constraints illustrated in Definition 3.1,
then ϕ is the winning formula of Π.

Relatively Completeness If the winning formula of Π is LIA-
definable (i.e., it can be represented in by a LIA formula), then
the enumerative algorithm terminates with a winning formula
of the smallest size.

Refining the winning formula.We hereafter present a syntactic

method to refine the cover of the winning formula ϕ facilitating

synthesis of winning strategies. The method involves two syntactic

operations. We first obtain an equivalent formula ϕ ′ by replacing

in ϕ every occurrence of numeric literals of the form e1 , e2,
e1 ≤ e2, e1 ≥ e2 and e1 .e3 e2 by the disjunction of arithmetic

literals. Then, we obtain a formula of the form

∨n
i=1ψi where ψi

is a numeric term by transforming it via the distributive law and

removing contradictory arithmetic terms.

Synthesizing the winning strategy. Similarly to Step (1), we also

synthesize the winning strategy from the refinement of winning

formula {ψ1, · · · ,ψn } via the enumerative algorithm based on the

following two constraints:

(1) C ∧ψi → pre(a[Y/Σ]);
(2) C ∧ψi → ∀X′[T (a[Y/Σ]) → ϕ[X/X′]].

Intuitively, the first condition requires that a[Y/Σ] is applicable
over every legal state s satisfyingψi while the second one ensures

that performing a[Y/Σ] from any legal state s satisfyingψi leads
to a losing state.

Finally, we end with the soundness and completeness theorem

for synthesizing the winning strategy.

Theorem 3.3. Let Π = ⟨X,A, C, E⟩ be an ICG. Let ϕ be the
winning formula of Π and Ψ the cover of ϕ.

Soundness If the enumerative algorithm synthesizes the win-
ning strategyδ : {(ψ1,a1[Y1/Σ1]), · · · , (ψn,an [Yn/Σn ])} sat-
isfying the above two constraints for each pair (ψi ,ai [Yi/Σi ]),
then δ is the winning strategy of Π.

Bounded Completeness Suppose that for eachψi ∈ Ψ, there is
a semi-ground action ai [Yi/Σi ] s.t. each expression of Σi is of
at most sizem and {(ψ1,a1[Y1/Σ1]), · · · , (ψn,an [Yn/Σn ])}
is the winning strategy of Π. Then, the enumerative algorithm
terminates with a winning strategy δ .

4 EXPERIMENTAL EVALUATION
We have implemented our approach, proposed in the previous sec-

tion, to a system by using Python and Z3 [4]. We evaluate our

system on the following games: 2-rowed and L-shaped Chomp [8],

Empty-and-Divide [5], 2-piled Nim [2], the monotonic variation

of 2-piled Nim [1], the monotonic 2-diet variation of Wythoff [1],

Take-away [6], and Subtraction [11]. Under the normal rule, our

approach is able to solve all games except the monotonic 2-diet

Wythoff game in a reasonable amount of time (< 250s). This shows

the effectiveness and scalability of our approach on a wide range of

games under the normal rule. Under the misère rule, our approach

only solves the monotonic 2-piled Nim, Take-away and Subtraction

games in a fully automated way.
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