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ABSTRACT
A key assumption in Distributed Constraint Optimization Problem
(DCOP) model is that all constraints are fully specified or known
a priori, which may not hold in applications where constraints
encode preferences of human users. We extend the model to Incom-
plete DCOPs (I-DCOPs), where some constraints can be partially
specified. User preferences for these partially-specified constraints
can be elicited during the execution of I-DCOP algorithms, but they
incur some elicitation costs. Additionally, we extend the Synchro-
nous Branch-and-Bound (SyncBB) algorithm to solve I-DCOPs. Our
model extends the state of the art in distributed constraint reason-
ing to better model and solve distributed agent-based applications
with user preferences.
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1 INTRODUCTION
The field of Distributed Constraint Optimization Problem (DCOP)
has matured significantly over the past decade since its inception [3,
8, 11]. DCOP researchers have proposed a wide variety of solution
approaches, from complete approaches such as distributed search [6,
8, 16] and inference [11] algorithms to incomplete approaches such
as distributed local search [17], inference [2, 15], and sampling [9,
10] algorithms. One of the core limitations of all these approaches is
that they assume that the constraint costs in a DCOP are specified
or known a priori. In some applications, such as meeting scheduling
problems [7], constraints encode the preferences of human users.
As such, some of the constraint costs may be unspecified and must
be elicited from human users.

To address this limitation, researchers have proposed the pref-
erence elicitation problem for DCOPs [13]. However, this approach
suffers from two limitations: First, the authors assume that the cost
of eliciting constraints is uniform across all constraints. This is
unrealistic as providing the preferences for some constraints may
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require more cognitive effort than the preferences for other con-
straints. Second, it decouples the elicitation process from the DCOP
solving process since the elicitation process must be completed
before one solves the DCOP with elicited constraints. As both the
elicitation and solving process are actually coupled, this two-phase
decoupled approach prohibits the elicitation process from relying
on the solving process.

Therefore, we propose the Incomplete DCOP (I-DCOP) model,
which integrates both the elicitation and solving problems into a sin-
gle integrated optimization problem. In an I-DCOP, some constraint
costs are unknown and can be elicited. Elicitation of unknown
costs will incur elicitation costs, and the goal is to find a solution
that minimizes the sum of constraint and elicitation costs incurred.
To solve this problem, we extend Synchronous Branch-and-Bounds
(SyncBB) [6], a simple complete DCOP search algorithm.

2 INCOMPLETE DCOPS
An Incomplete DCOP (I-DCOP) extends a DCOP by allowing
some constraints to be partially specified. It is defined by a tuple
⟨A,X,D,F , F̃ , E,α⟩:
• A = {ai }

p
i=1 is a set of agents.

• X = {xi }
n
i=1 is a set of decision variables.

• D = {Dx }x ∈X is a set of finite domains and each variable x ∈ X

takes values from the set Dx .
• F = { fi }

m
i=1 is a set of constraints, each defined over a set of

decision variables: fi :
∏

x ∈xfi Dx → R ∪ {∞}, where infeasible
configurations have∞ costs and xfi ⊆ X is the scope of fi . Unlike
standard DCOPs, the set of constraints F are not known to an
I-DCOP algorithm. Instead, only the set of partially-specified
constraints F̃ = { f̃i }

m
i=1 are known. Each partially-specified

constraint is a function f̃i :
∏

x ∈xfi Dx → R∪ {∞, ?}, where ? is
a special element denoting that the cost for a given combination
of value assignment is not specified. The costs R ∪ {∞} that are
specified are exactly the costs of the corresponding constraints
fi ∈ F .

• E = {ei }
m
i=1 is the set of elicitation costs, where each elicitation

cost ei :
∏

x ∈xfi Dx → R specifies the cost of eliciting the
constraint cost of a particular ? in f̃i .

• α : X → A is a mapping function that associates each decision
variable to one agent.
An explored solution space x̃ is the union of all solutions ex-

plored so far by a particular algorithm. The cumulative elicita-
tion cost E(x̃) =

∑
e ∈E e(x̃) is the sum of the costs of all elic-

itations conducted while exploring x̃. The total cost F (x, x̃) =
αf · F (x) + αe · E(x̃) is the weighted sum of both the cumulative
constraint cost F (x) of solution x and the cumulative elicitation
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|A |

# of Without Elicitation Costs With Elicitation Costs
unknown # of unknown runtime constraint # of nodes # of unknown runtime total constraint elicitation #of nodes
costs costs elicited cost expanded costs elicited cost cost cost expanded

10 43 40.62 5.09E-01 51.86 1.65E+03 17.98 3.27E-02 237.90 59.64 178.26 5.92E+01
12 62 59.04 1.99E+00 76.30 6.76E+03 25.60 4.38E-02 349.54 87.96 261.58 1.14E+02
14 86 82.44 8.02E+00 107.14 2.36E+04 35.30 5.95E-02 484.64 122.22 362.42 1.17E+02
16 115 111.74 3.22E+01 145.32 9.35E+04 47.88 8.04E-02 636.10 163.20 472.90 1.58E+02
18 146 140.84 1.18E+02 185.06 3.48E+05 60.52 1.29E-01 803.50 205.50 598.00 2.67E+02
20 182 177.08 1.23E+03 231.64 1.36E+06 70.64 1.63E-01 978.00 258.88 725.12 2.79E+02

Table 1: Preliminary Experimental Results

cost E(x̃) of the explored solution space x̃, where αf ∈ (0, 1] and
αe ∈ [0, 1] such thatαf +αe = 1. Theweights represent the tradeoffs
between the importance of solution quality and the cumulative elici-
tation cost. The goal is to find an optimal complete solution x∗ while
eliciting only a cost-minimal set of preferences from a solution space
x̃∗. More formally, the goal is to find (x∗, x̃∗) = argmin(x, x̃) F (x, x̃).

3 USING SYNCBB TO SOLVE I-DCOPS
Synchronous Branch-and-Bound (SyncBB) [6] is a complete, syn-
chronous, search-based algorithm that can be considered as a dis-
tributed version of a depth-first branch-and-bound algorithm. It
uses a complete ordering of the agents to extend a Current Partial
Assignment (CPA) via a synchronous communication process. The
CPA holds the assignments of all the variables controlled by all
the visited agents, and, in addition, functions as a mechanism to
propagate bound information. The algorithm prunes those parts of
the search space whose solution quality is sub-optimal by exploit-
ing the bounds that are updated at each step of the algorithm. In
other words, an agent backtracks when the cost of its CPA is no
smaller than the cost of the best complete solution found so far. The
algorithm terminates when the root backtracks (i.e., the algorithm
has explored or pruned the entire search space).

To solve I-DCOPs, we extend SyncBB in the following way: The
SyncBB algorithm operates on a search tree, constructed based
on the complete ordering of the agents/variables. When SyncBB
evaluates a node n after exploring search space x̃, it considers the
cumulative elicitation cost so far E(x̃) and the constraint costs of
the CPA at node n, which we will refer to as д-values, denoted by
д(n). (We use A* notations [5] here.) We refer to the weighted sum
of these values as f -values, denoted by f (n, x̃) = αf ·д(n)+αe ·E(x̃).
The algorithm expands the node with the smallest f -value. In other
words, it chooses the value from its domain that has the smallest
constraint cost. If the constraint cost is unknown, the algorithm
replaces the unspecified cost with a lower bound L on all the
constraint costs, and calculates its f -value. If the f -value of the
node is smaller than the cost of the best complete solution so far,
the algorithm elicits the unknown constraint costs and accumulates
the elicitation costs. Otherwise, it prunes the node, and explores
the remaining part of the search space.

4 RELATEDWORK
Aside from the work proposed by Tabakhi et al. [13] discussed
in Section 1, the body of work that is most related to ours is the

work on Incomplete Weighted Constraint Satisfaction Problems (IWC-
SPs) [12, 14], which can be seen as centralized versions of I-DCOPs.
Aside from IWCSPs, similar centralized constraint-based models
include Incomplete Fuzzy CSPs and Incomplete Soft CSPs [4]. Re-
searchers have proposed a family of algorithms based on depth-first
branch-and-bound to solve these centralized models.

5 PRELIMINARY EMPIRICAL EVALUATIONS
We evaluate our SyncBB algorithm on random graphs, where we
measure various costs of the solutions found – the cumulative
constraint costs, cumulative elicitation costs, and their aggregated
total costs – the number of unknown costs elicited, the number of
nodes expanded after the algorithm terminates, and the runtime
(i.e., wall clock time) of the algorithm (in seconds). In all experiments
we set αf = αe = 0.5.

We generate 50 random (binary) graphs [1], where we vary the
number of agents/variables |A| from 10 to 20, set the domain size
|{Dx }| = 2 for all x ∈ X, the constraint density p1 = 0.4, the
tightness p2 = 0, and the fraction of unknown costs in the problem
to 0.6. All constraint costs are randomly sampled from [2, 5] and all
elicitation costs are randomly sampled from [0, 20]. Table 1 tabulates
our preliminary empirical results demonstrating the feasibility of
this approach. As expected, the runtimes and number of unknown
costs elicited by our algorithm increase with increasing number of
agents |A|. The reason is that the size of the problem, in terms of
the number of constraints in the problem, increases with increasing
|A|. And our algorithm needs to elicit more unknown costs and
evaluate the costs of more constraints before terminating.

6 CONCLUSIONS AND FUTUREWORK
Distributed Constraint Optimization Problems (DCOPs) have been
used to model a variety of cooperative multi-agent problems. How-
ever, they assume that all constraints are fully specified, which may
not hold in applications where constraints encode preferences of
human users. To overcome this limitation, we propose Incomplete
DCOPs (I-DCOPs), which extends DCOPs by allowing some con-
straints to be partially specified and the elicitation of unknown
costs in such constraints incur elicitation costs. We use the SyncBB
search algorithm as the underlying solver for I-DCOPs. In the fu-
ture, we will investigate the use of various heuristics in conjunction
with complete search algorithms to solve I-DCOPs.
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