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ABSTRACT

Transfer Learning (TL) has shown great potential to ac-
celerate Reinforcement Learning (RL) by leveraging prior
knowledge from past learned policies of relevant tasks. Exist-
ing TL approaches either explicitly computes the similarity
between tasks or select appropriate source policies to provide
guided explorations for the target task. However, how to
directly optimize the target policy by alternatively utilizing
knowledge from appropriate source policies without explicitly
measuring the similarity is currently missing. In this paper,
we propose a novel Policy Transfer Framework (PTF) by
taking advantage of this idea. PTF learns when and which
source policy is the best to reuse for the target policy and
when to terminate it by modeling multi-policy transfer as the
option learning problem. PTF can be easily combined with
existing deep RL approaches. Experimental results show it
significantly accelerates the learning process and outperforms
state-of-the-art policy transfer methods in both discrete and
continuous action spaces.
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1 INTRODUCTION

Recent advance in Deep Reinforcement Learning (DRL) has
obtained expressive success of achieving human-level control
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in complex tasks [7, 9]. However, DRL is still faced with
sample inefficiency problems especially when the state-action
space becomes large, which makes it difficult to learn from
scratch. TL has shown great potential to accelerate RL [13]
via leveraging prior knowledge from past learned policies of
relevant tasks [4, 10, 16]. One major direction of transfer in
RL focused on measuring the similarity between two tasks
either through mapping the state spaces between two tasks
[2, 17], or computing the similarity of two Markov Decision
Processes (MDPs) [12], and then transferring value functions
directly according to their similarities.

Another direction of policy transfer focuses on selecting a
suitable source policy for explorations [3, 6]. However, such
single-policy transfer cannot be applied to cases when one
source policy is only partially useful for learning the target
task. Although some transfer approaches utilized multiple
source policies during the target task learning, they suffer
from some limitations, e.g., Laroche and Barlier [4] assumed
that all tasks share the same transition dynamics and differ
only in the reward function; Li et al. [5] proposed Context-
Aware Policy reuSe (CAPS) which required the optimality
of source policies. Furthermore, it manually adds primitive
policies to the policy library which limits its generality and
cannot be applied to problems of continuous action spaces.

To address the above problems, we propose a novel Policy
Transfer Framework (PTF) which combines the above two
directions of policy reuse. Instead of using source policies as
guided explorations in a target task, we adaptively select a
suitable source policy during target task learning and use it as
a complementary optimization objective of the target policy.
The backbone of PTF can still use existing DRL algorithms
to update its policy, and the source policy selection problem
is modeled as the option learning problem. In this way, PTF
does not require any source policy to be perfect on any
subtask and can still learn toward an optimal policy in case
none of the source policy is useful. Besides, we propose an
adaptive and heuristic mechanism to ensure the efficient reuse
of source policies and avoid negative transfer.
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2 POLICY TRANSFER FRAMEWORK

We describe PTF applying in A3C [8]: PTF-A3C in detail.
Our proposed Policy Transfer Framework (PTF) contains
two main components, one is the agent module (here is an
example of an A3C model), which is used to learn the target
policy with guidance from the option module. The other is
the option module, which is used to learn when and which
source policy is useful for the agent module. Given a set
of source policies Π𝑠 = {𝜋1, 𝜋2, · · · , 𝜋𝑛} as the intra-option
policies, the PTF-A3C agent first initializes a set of options
𝒪 = {𝑜1, 𝑜2, · · · , 𝑜𝑛} together with the option-value network
with random parameters. At each step, it selects an action
following its policy, and also selects an option 𝑜𝑖 according
to the option-value function and the termination probabili-
ties. For the update, except for calculating the original A3C
loss, the PTF-A3C agent introduces a complementary loss
LH which transfers knowledge from the intra-option policy
𝜋𝑖 through imitation, weighted by an adaptive adjustment
factor. The reuse of the policy 𝜋𝑖 terminates according to
the termination probability of 𝑜𝑖 and then another option is
selected for reuse following the policy over options, which is
𝜖-greedy to the option-value 𝑄𝑜.

The remaining issue is how to update the option-value net-
work and the termination network. First, the agent samples
a batch of 𝑁 transitions from the replay buffer and up-
dates the option-value network by minimizing the loss: 𝐿 =
1
𝑁

∑︀
𝑖(𝑟 + 𝛾𝑈(𝑠′, 𝑜|𝜃𝑜) − 𝑄𝑜(𝑠𝑖, 𝑜|𝜃𝑜))2, where 𝑈(𝑠′, 𝑜|𝜃𝑜) =

(1−𝛽(𝑠′, 𝑜|𝜃𝛽))𝑄′
𝑜(𝑠

′, 𝑜|𝜃′𝑜)+𝛽(𝑠′, 𝑜|𝜃𝛽)max𝑜′∈𝑂 𝑄′
𝑜(𝑠

′, 𝑜′|𝜃′𝑜)
[14]. The objective of learning the termination probabili-
ty is to maximize the expected return 𝑈 , so the termina-
tion network parameters 𝜃𝛽 is updated as follows: 𝜃𝛽 =

𝜃𝛽 − 𝛼𝛽
𝜕𝛽(𝑠′,𝑜|𝜃𝛽)

𝜕𝜃𝛽
(𝐴(𝑠′, 𝑜|𝜃𝑜) + 𝜉) , where 𝛼𝛽 is the learning

rate, 𝐴(𝑠′, 𝑜|𝜃𝑜) is the advantage function, 𝜉 is a regulariza-
tion term which is used to ensure sufficient exploration that
the best option could be selected.

Finally, we propose an adaptive and heuristic way to
transfer knowledge from the selected source policy. Specif-
ically, we propose adaptively adjust the weighting factor
𝑓(𝛽𝑜, 𝑡) of the complementary loss 𝐿𝐻 as follows: 𝑓(𝛽𝑜, 𝑡) =
𝑓(𝑡)(1−𝛽(𝑠𝑡, 𝑜|𝜃𝛽)), where 𝑓(𝑡) is a discount function. When
the value of the termination function of option 𝑜 increases,
it means that the performance of the option 𝑜 is not the
best one among all options based on the current experience.
Thus we decrease the weighting factor 𝑓(𝛽𝑜, 𝑡) and vice versa.
𝑓(𝑡) controls the slow decrease in exploiting the transferred
knowledge from source policies which means at the beginning
of learning, we exploit source knowledge mostly. As learning
continues, past knowledge becomes less useful and we focus
more on the current self-learned policy. In this way, PTF
efficiently exploits useful information and avoids negative
transfer from source policies.

3 EXPERIMENTAL RESULTS

In this section, we evaluate PTF on three test domains, grid
world [3], pinball [1] and reacher [15] compared with several
DRL methods learning from scratch (A3C [8] and PPO [11]);

Table 1: Average rewards with std.dev.(±) in three
domains.

Games /

Methods
Grid world Pinball Reacher

A3C 3.9±0.03 2.4±0.35 50.9±7.3

PTF-A3C 4.0±0.02 6.7±0.05 59.5±3.2
Deep CAPS 3.9±0.54 4.7±0.36

PPO 3.9±0.02 2.2±0.24 51.6±8.7

PTF-PPO 4.0±0.01 6.6±0.03 61.4±3.9

and the state-of-the-art policy transfer method CAPS [5],
implemented as a deep version (Deep-CAPS). Results are
averaged over 20 random seeds 1.

Table 1 presents the average discounted rewards of dif-
ferent algorithms on three test domains. We can see that
PTF-A3C significantly accelerates the learning process and
outperforms A3C and CAPS. Similar results can be found
that PTF-PPO outperforms PPO. The reason is that PTF
enables the agent to quickly identify the optimal source policy
and exploit useful information from source policies, which
efficiently accelerates the learning process than learning from
scratch. The performance gap between PTF-A3C and deep-
CAPS is because the policy reuse module and the target task
learning module in PTF are loosely decoupled, apart from
reusing knowledge from source policies, PTF is also able to
utilize its own experience from the environment. However,
in deep-CAPS, these two parts are highly decoupled, which
means its explorations and exploitations are fully dependent
on the source policies inside the options. Thus, deep-CAPS
needs higher requirements on source policies than our PTF,
and finally achieves lower performance than PTF-A3C.

4 CONCLUSION AND FUTURE WORK

In this paper, we propose a Policy Transfer Framework (PTF)
which can efficiently select the optimal source policy and
exploit the useful information to facilitate the target task
learning. PTF also efficiently avoids negative transfer through
terminating the exploitation of current source policy and
selects another one adaptively. PTF can be easily combined
with existing deep policy-based and actor-critic methods.
Experimental results show PTF efficiently accelerates the
learning process of existing state-of-the-art DRL methods
and outperforms previous policy reuse approaches. As a
future topic, it is worthwhile investigating how to extend
PTF to multiagent settings. Another interesting direction is
how to learn abstract knowledge for fast adaptation in new
environments.
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