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ABSTRACT
This paper studies a coalitional game of task allocation where the

characteristic function is not known and it is controlled by some

private information from the players. Hence, the challenge here is

twofold: (i) incentivize players to reveal their private information

truthfully, (ii) incentivize them to collaborate together. Existing

reward distribution mechanisms or auctions cannot solve the chal-

lenge. Hence, we propose a novel mechanism for the problem from

the perspective of both mechanism design and coalitional games.
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1 INTRODUCTION
In this paper, we study a coalitional game where the characteristic

function is defined by some private information owned by the

coalition. Specifically, we study a task allocation problem, where a

group of players collaborate to accomplish a sequence of ordered

tasks and there is a deadline to finish all the tasks [2].

Due to the deadline, we need to find the best set of players to

perform the tasks. Each player’s capability is modelled by howmuch

time she needs to complete a task. However, the completion time is

a random variable following some distribution, known only to the

player. Because of the uncertainty, the objective is to maximize the

probability to meet the deadline [3]. In order to find the best set of

players to meet the objective, we need to first know their private

distributions (which defines the probability to meet the deadline

for each coalition). That is, the characteristic function is defined by

the private distributions of the players in each coalition.

We model the problem as a coalitional game, but the value for

each coalition (the characteristic function) is controlled by the

players’ private information. On one hand, we want the players

to expose their true private information in order to make the best

decision, and on the other hand, we want the reward to be fairly
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distributed among the players. Coalitional games are often used

to take care of the reward distribution to enforce collaboration,

while mechanism design is good at eliciting private information in

a competitive environment [5]. We show that the challenge cannot

be solved by just using techniques from one of the two paradigms.

Thus, our goal is to design new reward sharing mechanisms

such that players are incentivized to report their private distribu-

tions truthfully, and the reward are distributed fairly among all

players. To combat this problem, we propose a novel mechanism

to solve both challenges using the techniques from both cooper-

ative game theory and mechanism design. Our solution is based

on a modified Shapley value that distributes the reward according

to the players’ capabilities, but at the same time incentivizes all

players to reveal their true capabilities. The price to solve both

challenges is overpayment, i.e., the total reward distributed by the

mechanism might be larger than the value the coalition can get.

However, the overpayment is bounded and it is fairly low according

to our simulations. For comparison, we also studied a solution from

a non-cooperative perspective by using Vickrey-Clarke-Groves

(VCG) mechanism [1, 4, 7]. VCG is very good at eliciting private

information, but it does not distribute the reward properly.

2 THE MODEL
We consider herein a task allocation problem. The problem is of

a project that consists of a sequence of 𝑚 different tasks 𝑇 =

(𝜏1, · · · , 𝜏𝑚) to be finished in order, i.e. 𝜏𝑖 cannot be started un-

til all tasks before 𝜏𝑖 have been finished. There is a deadline 𝑑 to

finish the entire project. Finishing all tasks before the deadline

generates a value 𝑉 , otherwise, the vlaue is zero.

There are 𝑛 agents (players) denoted by 𝑁 = {1, · · · , 𝑛} who
can perform the tasks with different capabilities. We assume that

each player is only capable of doing one of the tasks (our results

can be generalized to the general case). Let 𝑁𝜏𝑖 ⊆ 𝑁 be the set of

players who can handle task 𝜏𝑖 . We have 𝑁𝜏𝑖 ≠ ∅ for all 𝜏𝑖 ∈ 𝑇 , and

∪𝜏𝑖 ∈𝑇𝑁𝜏𝑖 = 𝑁 .

For each player 𝑖 ∈ 𝑁𝜏 𝑗 , her capability to handle task 𝜏 𝑗 is mea-

sured by the time she needs to complete 𝜏 𝑗 . However, player 𝑖 does

not know the exact time she will need to finish 𝜏 𝑗 , but she does

privately know a duration distribution.

Let the discrete random variable 𝐸𝑖 denote the execution time of

player 𝑖 on task 𝜏 𝑗 . We use 𝑒𝑖 ∈ {1, 2, · · · } to denote a realization of

𝐸𝑖 . Let 𝑓𝑖 be the probability mass function of 𝐸𝑖 , i.e., 𝑃𝑟 [𝐸𝑖 = 𝑒𝑖 ] =
𝑓𝑖 (𝑒𝑖 ). There might be a cost 𝑐𝑖 for 𝑖 to execute task 𝜏 𝑗 . We assume

the cost is public and it can be ignored for the current analysis.

The objective here is to find the optimal task allocation (one

task is allocated to at most one player) such that the tasks 𝑇 can be
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finished before deadline 𝑑 with the highest probability. This would

generate the highest expected value for the players. That is, the

characteristic function 𝑣 : 2
𝑁 → R is defined by

𝑣 (𝑆) equals the highest probability that the coalition

𝑆 ⊆ 𝑁 can finish all the tasks 𝑇 alone before 𝑑 .

Since 𝑓 is private and 𝑣 (𝑆) is not publicly known, if we use

standard techniques for coalitional games, the players canmisreport

𝑓 to influence the outcomes. Hence, the goal is to design new reward
sharing mechanisms such that players are incentivized to report their
time distributions truthfully.

The reward sharing mechanism requires each player to report

her execution time distribution, but the player may not necessarily

report her true distribution. For each player 𝑖 ∈ 𝑁 , let 𝑓𝑖 be the

density function of her true distribution, and 𝑓 ′
𝑖
be her report. Let

𝑓 = (𝑓1, · · · , 𝑓𝑛) be the true density function profile of all players

and 𝑓 ′ = (𝑓 ′
1
, · · · , 𝑓 ′𝑛 ) be their report profile. We also denote 𝑓 by

(𝑓𝑖 , 𝑓−𝑖 ) and 𝑓 ′ by (𝑓 ′
𝑖
, 𝑓 ′−𝑖 ). Let F𝑖 be the density function space of

𝑓𝑖 and F = (F1, · · · , F𝑛) be the space of density function profile 𝑓 .

Definition 2.1. A reward sharing mechanism is defined by

𝑥 = (𝑥𝑖 )𝑖∈𝑁 , where 𝑥𝑖 : F → R defines the reward player 𝑖 receives.

3 TRUTHFUL SHAPLEY VALUE
Shapley value is a well-known solution concept for cooperative

games [6]. It divides the reward in a coalition according to their

marginal contributions. It has many desirable properties such as

efficiency (the reward is fully distributed to the players), symme-
try (equal players receive equal rewards) and null player (dummy

players receive no reward).

If we simply apply the Shapley value in our setting, players can

report a more promising execution time distribution to receive a

higher value. This is because the Shapley value mechanism only

depends on their reports. In reality, we could actually observe how

much time a player has actually spent to finish her task. Therefore,

we can pay them according to their execution outcomes [8].

Definition 3.1. Given all players’ report profile 𝑓 ′ = (𝑓 ′
1
, · · · , 𝑓 ′𝑛 ),

for each coalition 𝑆 ⊆ 𝑁 , 𝜋
𝑓 ′

𝑆
: 𝑇 → 𝑁 ∪ {⊥} is the task as-

signment to define 𝑣 (𝑆). 𝜋 𝑓 ′

𝑆
(𝜏 𝑗 ) =⊥ means that 𝜏 𝑗 has not been

assigned to any player under coalition 𝑆 with reports 𝑓 ′.

Next are some specific notations for the new mechanism.

• Let 𝑣 (𝑆, 𝑓 ′) be the highest probability to finish all the tasks before
the deadline under the report profile 𝑓 ′.

• Let 𝑣 (𝜋 𝑓 ′

𝑆
, 𝑓 ′′) be the probability to finish all the tasks before the

deadline given that the task assignment is defined by 𝜋
𝑓 ′

𝑆
but the

actual probability to finish the tasks is calculated by 𝑓 ′′. In our

mechanism, 𝑓 ′ represents their reports and 𝑓 ′′ represents what
we observed.

Our first modification is defined as follows.

Shapley Value with Execution Verification (SEV)
Given all players’ report profile 𝑓 ′:

• For each player 𝑖 who has been assigned a task under 𝜋
𝑓 ′

𝑁
, if her

realised execution time is 𝑒𝑖 , then her Shapley value is updated:

𝑥𝑠𝑒𝑣
𝑖

(𝑓 ′, 𝑒𝑖 ) =
∑

𝑆⊆𝑁 \{𝑖 }

|𝑆 |!(𝑛 − |𝑆 | − 1)!
𝑛!

(𝑣 (𝜋 𝑓 ′

𝑆∪{𝑖 }, (𝑓
𝑒𝑖
𝑖
, 𝑓 ′−𝑖 )) − 𝑣 (𝑆, 𝑓 ′)) (1)

where 𝑓
𝑒𝑖
𝑖

represents the realization 𝑒𝑖 and is defined as:

𝑓
𝑒𝑖
𝑖

(𝑒) =
{
1 if 𝑒 = 𝑒𝑖

0 otherwise

• For each player 𝑗 who has not been assigned a task in the as-

signment 𝜋
𝑓 ′

𝑁
, her Shapley value stays the same (as we cannot

observe 𝑗 ’s execution time):

𝑥𝑠𝑒𝑣
𝑗

(𝑓 ′) =
∑

𝑆⊆𝑁 \{ 𝑗 }

|𝑆 |!(𝑛 − |𝑆 | − 1)!
𝑛!

(𝑣 (𝑆 ∪ { 𝑗}, 𝑓 ′) − 𝑣 (𝑆, 𝑓 ′)) (2)

Theorem 3.2. The SEV mechanism is incentive compatible for all
players who are assigned a task, but it is not incentive compatible for
players who are not assigned a task.

Following Theorem 3.2, players who were not assigned a task

can misreport to gain a higher reward under the SEV mechanism,

because there is a lack of verification on their reports. It is certainly

not ideal to assign each task to all its players to try, which is also not

practical. Instead, we do the manipulation on behalf of the players

to maximize their rewards they could gain. For each player who

is not assigned the task, we treat this player as good as the player

who is assigned the task to calculate a new Shapley value as her

reward. This reward is the best the player could get by misreporting,

and therefore, there is no incentive for misreporting anymore. The

updated mechanism is defined as follows.

ShapleyValuewithExecutionVerification andBonus (SEVB)
Given all players’ report profile 𝑓 ′:

• For each player 𝑖 who is assigned a task under 𝜋
𝑓 ′

𝑁
, if her realised

execution time is 𝑒𝑖 , her Shapley value is defined as the same as

in SEV (Equation (1)), i.e., 𝑥𝑠𝑒𝑣𝑏
𝑖

(𝑓 ′, 𝑒𝑖 ) = 𝑥𝑠𝑒𝑣
𝑖

(𝑓 ′, 𝑒𝑖 ).
• For each player 𝑗 (assume 𝑗 ∈ 𝑁𝜏𝑖 ) who is not assigned the task

𝜏𝑖 in 𝜋
𝑓 ′

𝑁
, her Shapley value is upgraded as 𝑥𝑠𝑒𝑣𝑏

𝑗
(𝑓 ′) =∑

𝑆⊆𝑁 \{ 𝑗 }

|𝑆 |!(𝑛 − |𝑆 | − 1)!
𝑛!

(𝑣 (𝑆 ∪ { 𝑗}, (𝑓 ∗𝑗 , 𝑓
′
−𝑗 )) − 𝑣 (𝑆, (𝑓 ∗𝑗 , 𝑓

′
−𝑗 ))) (3)

where 𝑓 ∗
𝑗

= 𝑓 ′
𝑖∗ and 𝑖∗ = 𝜋

𝑓 ′

𝑁
(𝜏𝑖 ), i.e., 𝑖∗ is the player who is

assigned 𝜏𝑖 .

Theorem 3.3. The SEVB mechanism is incentive compatible.

Since the SEVBmechanismmay pay more than their actual Shap-

ley values for players who did not receive a task, the total payment

together might be greater than the total value the grand coalition

can get. Theorem 3.4 shows that the overpayment is bounded.

Theorem 3.4. Given any execution time distribution report profile
𝑓 , the total reward distributed under the SEVB mechanism is bounded

by argmax𝑘 (1 +
∑𝑘
𝑖=1

𝑖!(𝑚 − 1)!
(𝑚 + 𝑖)! (𝑛 −𝑚 − 𝑘 + 1))𝑣 (𝑁, 𝑓 ).

4 CONCLUSION
We have studied a task allocation setting that merges the infor-

mation revelation challenge in mechanism design and the payoff

distribution challenge in cooperative game theory. We proposed a

solution which guarantees that players will truthfully reveal their

private information and that the rewards they receive from the coali-

tion are fairly distributed. The price for achieving this is potential

overpayment, but the extra payment is bounded.
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