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ABSTRACT
The paper introduces a generic approach to solving Sequential Se-
curity Games (SGs) which utilizes Evolutionary Algorithms (EAs).
Formulation of the method (named EASG) is general and largely
game-independent, which allows for its application to a wide range
of SGs with just little adjustments addressing game specificity. Ex-
periments performed on 3 different types of games (with 300 in-
stances in total) demonstrate robustness and stability of EASG,
manifested by repeatable achieving optimal or near-optimal solu-
tions in the vast majority of the cases. The main advantage of EASG
is time efficiency. The method scales better than state-of-the-art ap-
proaches and can be applied to sequential SGs with bigger numbers
of steps compared to the existing methods. Due to anytime charac-
teristics, EASG is very well suited for time-critical applications.
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1 STACKELBERG SECURITY GAMES
We consider 𝑛 step games with two players: the Defender (𝐷) and
the Attacker (𝐴). In each time step (𝜏1, . . . , 𝜏𝑛) player 𝑝 chooses
action 𝑎

𝑝

𝑖
(𝑝 ∈ {𝐷,𝐴}, 𝑖 = 1, . . . , 𝑛) from the set of available ac-

tions 𝑀 (𝑠𝑝
𝑖
) where 𝑠

𝑝

𝑖
is a state of player 𝑝 in step 𝜏𝑖 . State 𝑠

𝑝

𝑖
is determined by previous player’s actions, his initial position
and the opponent’s actions. Players are not aware of the oppo-
nent’s actions. For each state 𝑠 there are four predefined payoffs
𝑈 𝑘 (𝑠) (𝑘 ∈ {𝐴+, 𝐴−, 𝐷+, 𝐷−}) representing the Attacker’s reward
(𝑈𝐴+ (𝑠)), their penalty (𝑈𝐴− (𝑠)), the Defender’s reward (𝑈𝐷+ (𝑠))
and their penalty (𝑈𝐷− (𝑠)), resp. Some of the states (usually those
with high𝑈𝐴+ (𝑠) values) are distinguished as targets. If in any step
𝜏𝑖 (𝑖 = 1, . . . , 𝑛) the Attacker and the Defender move to the same
state (say 𝑠𝑘 ), then the game ends (the Attacker is intercepted) and
players receive payoffs𝑈𝐴− (𝑠𝑘 ) and𝑈𝐷+ (𝑠𝑘 ), resp. If the Attacker
reaches any of the targets (say 𝑠 𝑗 ) and is not intercepted, then the
game ends with the respective payoffs equal𝑈𝐴+ (𝑠 𝑗 ) and𝑈𝐷− (𝑠 𝑗 ).
Otherwise, the game ends with neutral payoffs after 𝑛 steps.

A pure strategy of a player is an assignment of one action to
each potentially reachable state of the game. Let’s denote a set
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of all pure strategies of player 𝑝 by Σ𝑝 . A mixed strategy 𝜋𝑝 is a
probability distribution over Σ𝑝 . The game model employs Stack-
elberg Game (StG) principles: first the Defender commits to their
mixed strategy 𝜋𝐷 and then the Attacker, being aware of 𝜋𝐷 , deter-
mines their strategy 𝜋𝐴 . Let’s denote by 𝑈 𝑝 (𝜋𝐷 , 𝜋𝐴) an expected
utility value of player 𝑝 as a result of the game played accord-
ing to mixed strategies 𝜋𝐷 and 𝜋𝐴 . Strong Stackelberg Equilib-
rium (SStE) [7] is defined as a pair (𝜋𝐷∗, 𝜋𝐴∗) satisfying the fol-
lowing equations: 𝜋𝐷∗ = argmax𝜋𝐷 𝑈𝐷 (𝜋𝐷 , 𝜋𝐴∗) where 𝜋𝐴∗ =

argmax𝜋𝐴 𝑈𝐴 (𝜋𝐷 , 𝜋𝐴). The second one defines the Attacker’s best
(optimal) response to Defender’s strategy 𝜋𝐷 and the first one se-
lects the best Defender’s strategy against the optimal Attacker’s
response. Additionally, it is assumed that the Attacker breaks ties
in favor of the Defender. Solving StG means finding Defender’s
SStE strategy. EASG method is proposed to accomplish this task.

2 EVOLUTIONARY ALGORITHM FOR SGS
We consider a classical EA definition in which population of indi-
viduals of size 𝑝𝑠𝑖𝑧𝑒 is maintained through generations until one
of the stopping conditions is met: either the limit for generation
number is reached or there is no solution improvement in a certain
number of generations. Each chromosome (individual) represents
some Defender’s mixed strategy (a candidate SStE solution) in the
form of a vector of pure strategies 𝜋𝑞

𝑖
and their respective prob-

abilities 𝑝𝑞
𝑖
: 𝐶𝐻𝑞 = {(𝜋𝑞1 , 𝑝

𝑞

1 ), . . . , (𝜋
𝑞

𝑙𝑞
, 𝑝

𝑞

𝑙𝑞
)}, ∑𝑙𝑞

𝑖=1 𝑝
𝑞

𝑖
= 1, where

𝑙𝑞 is the number of pure strategies included in the mixed strategy
represented by that chromosome (𝑙𝑞 varies between individuals). A
particular form of a pure strategy depends on game specificity. In
the most common case, a pure strategy is represented as a list of
Defender’s actions in consecutive time steps. Each chromosome in
the initial is composed of one pure strategy, randomly sampled.

Crossover. First, a subset of 𝑝𝑐 · 𝑝𝑠𝑖𝑧𝑒 individuals are randomly
selected from the population, where 𝑝𝑐 is crossover rate. Then,
individuals from this subset are randomly paired and from each
pair one new offspring chromosome is created in the following
way. All pure strategies from the parent chromosomes are merged
into one mixed strategy with their probabilities halved. Next, each
pure strategy 𝜋

𝑞

𝑖
in this newly created chromosome, except for

the one with the highest probability, is removed with probability
(1−𝑝𝑞

𝑖
)2 . Afterwards, probabilities of the remaining pure strategies

are normalized.
Mutation is applied to each chromosome independently with

some probability 𝑝𝑚 . First, one pure strategy in the chromosome
is randomly chosen. Then iteratively, starting from a randomly
selected time step 𝑡𝑖 up to the last time step 𝑡𝑛 , an action in a
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(a) Accuracy. (b) Warehouse Games. (c) Search Games. (d) FlipIt Games.

Figure 1: Left: histogram of differences between the optimal Defender’s payoffs and the payoffs obtained by EASG (for all
games with known optimal solutions). Next: EASG time scalability vs state-of-the-art methods (logarithmic scales).

considered time step 𝑡 𝑗 , 𝑖 ≤ 𝑗 ≤ 𝑛 is changed to an action uniformly
chosen among all actions feasible in that state.

Evaluation and Selection. Chromosome fitness equals a De-
fender’s payoff when they play a mixed strategy encoded in that
chromosome. Following [3] it is sufficient to iteratively check all
pure Attacker’s strategies and select the one with the highest At-
tacker’s payoff (breaking ties in favor of the Defender - SStE con-
dition). The Defender’s payoff against the above best Attacker’s
response is a chromosome fitness value.

In selection, first 𝑒 highest-fitted individuals (including the off-
springs) are promoted. Next, a binary tournament is repeatedly
executed until the next generation reaches 𝑝𝑠𝑖𝑧𝑒 individuals. In the
tournament two individuals are sampled with return from the cur-
rent generation and the offsprings. A higher-fitted one is promoted
with probability 𝑝𝑠 , otherwise a lower-fitted one is promoted.

3 EXPERIMENTAL EVALUATION
Benchmark games. Properties of EASG are tested on 3 sets of
multi-step games with variable characteristic:Warehouse Games
(WHG) [4], SearchGames (SEG) [1], and FlipIt Games (FIG) [9].

In WHG there is one Defender’s unit which in a given turn can
either move to an adjacent vertex or stay. Games of 𝑇 = 3 − 8 steps
were considered which led to game trees of 102 − 108 nodes. For
each 𝑇 , 25 games downloaded from [8] were tested. In SEG the
Defender controls several units and mobility of each of them is
restricted to a subset of vertices. Furthermore, the Attacker leaves
traces which makes them partially observable. In total, 90 games
with 𝑇 = 4 − 6, played on 3 different graph structures [1] were
used. In FIG the Attacker attempts to infect certain nodes and the
Defender may take actions to restore their control on the infected
units. 60 FIG instances played on 3 different graph structures [2]
with 𝑇 = 3 − 6 were used. For each graph, 5 different payoffs
structures were randomly drawn. Games were played in No-Info
variant [2] (players did not know the results of their actions).

Benchmark methods. EASG was tested against four state-of-
the-art methods for sequential general-sum extensive-form SGs
BC2015 [1], C2016 [10], CBK2018 [2] and O2UCT [5, 6]. The first
two are exact approaches, the remaining two yield approximate
solution. BC2015, C2016 and CBK2018 are MILP-based. O2UCT
relies on guided Monte-Carlo simulations.

Experimental setup. EASG is evaluated from three perspec-
tives: accuracy, stability, and scalability. All results are obtained in

30 independent runs per game instance. In total EASG assessment
is based on 9 000 trials (150 WHG, 90 SEG, 60 FIG, each tested 30
times) run on Intel Xeon Silver 4116 @ 2.10GHz with 256GB RAM.

Accuracy. A histogram of the differences between optimal and
EASG solutions in all runs, across all game instances with known
optimal solutions is presented in Fig. 1a. In the case of WHG, both
exact methods were able to calculate the SStE for 100 games with
3 − 6 time steps. In all tests involving larger games (𝑇 = 7, 8) the
solution could not be reached due to extensive time requirements.
For 72 out of these 100 games EASG obtained optimal solutions. The
mean difference between EASG best results and the optimal ones
was equal to 0.0013. For SEG, optimal solutions are known for 60
games with (𝑇 = 4, 5), out of which EASG found optimal strategies
in 28 cases (47%). The average divergence from the optimal results
equaled 0.0253. In FIG (which are recognized as highly challenging
for SGs methods due to extensive search space) EASG managed to
achieve optimal solutions in 73% of the cases (exact methods were
capable of finding solutions for 45 test games, out of which EASG
yielded the same solutions for 33 games). The average divergence
from the optimal results equaled 0.0087.

Stability. Since EASG is highly non-deterministic, the ability
to repeatedly reproduce good results is of paramount importance.
For 45% of games, standard deviation was equal to 0. The mean
standard deviation equaled 0.0059 with the maximal value 0.1629.

Time scalability. Figure 1 compares time efficiency of EASG
vs four state-of-the-art algorithms summarized above. First, all
games of a given type (separately WHG, SEG, FIG) were divided
into subsets of instances with pairwise comparable game tree sizes
(pairwise equal after rounding to the nearest power of 10). Then,
for each subset the running times of all game instances belonging
to that subset were averaged and plotted. Due to exceeding time
limit of 200 hours per trial, for biggest games the results of exact
methods (BC2015 and C2016) are not plotted.

Summary. EASG has proven to be a robust method which scales
in time visibly better than state-of-the-art approaches while pro-
viding optimal or close-to-optimal solutions. It can be regarded as a
MILP alternative when calculation of an exact solution is infeasible.
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