
Coordination of Prosumer Agents via Distributed Optimal
Power Flow: an Edge Computing Hardware Prototype

Demonstration

Daniel Gebbran1, Gregor Verbič1, Archie C. Chapman2, Sleiman Mhanna3∗
1School of Electrical and Information Engineering, University of Sydney, NSW, Australia

2School of Information Technology and Electrical Engineering, University of Queensland, QLD, Australia
3Department of Electrical and Electronic Engineering, University of Melbourne, VIC, Australia

ACM Reference Format:
Daniel Gebbran1, Gregor Verbič1, Archie C. Chapman2, Sleiman Mhanna3.
2020. Coordination of Prosumer Agents via Distributed Optimal Power Flow:
an Edge Computing Hardware Prototype. In Proc. of the 19th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020),
Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 3 pages.

1 INTRODUCTION
With the rapid rise of distributed energy resources (DER), such as
rooftop photovoltaic (PV), electric vehicles and smart buildings in
general, the traditional role of electrical energy consumer is shifting
to one of a prosumer role [1]. However, the uncoordinated partic-
ipation of DER may result in network problems, as violations of
voltage limits or transformer capacity. One approach to implement-
ing large-scale resource coordination is to solve an AC (alternating
current) optimal power flow (OPF). This allows a network agent
to optimally allocate generation resources to meet the electricity
demand, respecting constraints of the physical network.

This demo presents a Raspberry Pi-based hardware prototype
that coordinates participating DER agents in a low-voltage electri-
cal network by solving a distributed optimal power flow (DOPF),
which respects network constraints. We decompose the problem
at the prosumer level, using the alternating direction method of
multipliers (ADMM) to solve the problem in a distributed fashion.
The demonstration will graphically present coordination benefits,
computation times, and network status. Participants in the demon-
stration will be able to choose prosumers’ data for the simulation,
the network configuration, and different communications technolo-
gies to simulate real-world behavior in the algorithm.

Conventionally, the OPF is computed centrally, after collecting
data about all agents in the network. However, the inclusion of
prosumers poses a challenge for this OPF formulation - many more
controllable devices are involved, and their owners have differing
preferences and energy requirements. A centralized problem with
hundreds or thousands of prosumers is likely to be coputationally
intractable. Moreover, it violates privacy of prosumers, in a sense
that each of these agents have to disclose all its information for
the central, coordinating agent. A distributed OPF (DOPF) problem,
instead, allows for the integration of prosumers’ DER in a way
that satisfies network constraints, better respecting privacy of the
agents, and reducing total computation time [4, 5].
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In our application, we decompose the OPF problem at the pro-
sumer level. That is, instead of solving the OPF centrally, we sepa-
rate it between the network agent (i.e., the aggregator)1 that solves
a single network subproblem (which minimizes network and pro-
sumers’ costs, subject to network constraints), and prosumer agents,
each with one subproblem that minimizes individual costs, subject
to their own constraints. These subproblems are coupled by com-
mon variables, and can be solved using the alternating direction
method of multipliers (ADMM) [3]. Only recently has this decou-
pling method been developed for DOPF problems [7]. Accordingly,
DOPF studies have not rigorously examined the actual distributed
hardware required for each agent involved.

In order to explore this space, we develop a Raspberry Pi (RPi)
edge computing prototype, using a cluster of five RPi 3B+ acting
as prosumer agents. In our demonstration, a laptop acts as the
aggregator, also hosting extra prosumer agents. We envisage the
aggregator running its network optimisation routines on edge com-
puting hardware located physically close to the customers, possibly
incorporated into existing power network assets (e.g., substations).

To the best of our knowledge, our prototype is the first edge com-
puting work that implements a DOPF on using multi-agent system
(MAS) methods. This better reflects conditions for actual deploy-
ment of DOPF, respecting privacy of the agents to a better degree
and considering communication and computation requirements.

2 PROBLEM FORMULATION
In an AC-OPF problem, the objective is to find the lowest-cost dis-
patch of generators that satisfies the system demand. The problem
abides by physical laws (i.e. Kirchhoff’s and Ohm’s Laws) and tech-
nical restrictions, such as limits on bus voltages, transformer capac-
ity and line ampacity. Additionally, including DER in the problem
introduces intertemporal couplings, since they often have energy
storage capacity which may act over a time horizon T = {0, 1, ...,𝑇 }.
This gives them flexibility to provide support to the grid and reduce
the total operation cost over T . A multiperiod OPF seeks the lowest-
cost dispatch of generators and DER over T while accounting for
operational constraints on flexible devices and all underlying 𝑇 + 1
OPF problems. Since the DER are prosumer-owned, we model them
as independent home energy management (HEM) formulations
[2], controlled by a HEM computational agent. These agents form
subproblems within the OPF problem, seeking to minimize their
own energy cost.

1We envision the network agent in charge to be a Distributed System Operator (DSO).
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Figure 1: Demonstration flowchart for each iteration 𝑘 .

Formally, a centralized, multiperiod OPF has the form [6]:

minimize
𝒙 ∈ X, {𝒛𝒉 ∈ Zℎ }ℎ∈H

𝑓 (𝒙) +
∑
ℎ∈H

𝑔ℎ (𝒛ℎ), (1)

where 𝑓 is the objective function associated with the aggregator
agent; 𝒙 is a set of aggregator variables, in a feasible set X defined
by network constraints (e.g., voltage and power limits, nodal and
power flow equations); 𝑔ℎ is the objective function and constraints
associated with each prosumer agent ℎ ∈ H ; and 𝒛ℎ is a set of pro-
sumer variables, in a feasible set Zℎ defined by constraints of each
prosumer (e.g., battery constraints, power balance equations). Here,
the objective function of the OPF is to minimize the connection
cost 𝑓 (𝒙) (i.e. a quadratic function for the sake of generality), plus
the sum of all prosumers’ costs 𝑔(𝒛ℎ).

However, solving this problem centrally incurs: (i) lack of privacy:
the aggregatorwould have all information for each distributed agent
𝒛ℎ , for each and every connected device used in the respective HEM;
and (ii) problem intractability: the problem computation time grows
rapidly with an increase in the number of prosumers.

To enable distributed computation of (1) within an edge com-
puting framework, we need to duplicate variables that appear in
between feasible sets [6]. In this formulation, we duplicate the net
power profile of each prosumer for both the aggregator agent and
the prosumer agent. This duplication of variables enables us to
rewrite problem (1) as:

minimize
𝒙̂ ∈ X̂, {𝒛𝒉 ∈ Zℎ }ℎ∈H

𝑓 (𝒙) +
∑
ℎ∈H

𝑔ℎ (𝒛ℎ), (2a)

subject to: 𝑝ℎ,𝑡 = 𝑝ℎ,𝑡 , ∀ ℎ ∈ H, 𝑡 ∈ T, (2b)

where 𝑝ℎ,𝑡 is a copy for the network problem, and 𝑝ℎ,𝑡 is a copy
for the prosumer problem, 𝑝ℎ,𝑡 ; 𝒙̂ is the original set of problem
variables in (1) with the addition of 𝑝ℎ,𝑡 ; and X̂ is the new feasible
region of the network problem. Now, the sets of variables X̂ and
Zℎ are decoupled, and (2a) is separable if (2b) is relaxed.

The aggregator, therefore, no longer has or needs all the infor-
mation about all agents in the system (only their aggregated power
profile) but retains a full view of its own electrical network. In addi-
tion, HEM agents are self-interested and self-directed, and maintain
a high degree of autonomy even if abiding by the aggregator coor-
dination, which is driven by price signals.

We exploit this structure to solve (2), since ADMM exploits the
decomposable structure of Problem (2) by executing alternatingmin-
imization operations over X̂ andZ, using the two decoupled sets of
variables. On a given iteration 𝑘 , using a iterate set (𝒙, 𝒛𝑘 ,𝝀𝑘 ), the
aggregator calculates its next iterate 𝒙𝑘+1 by solving the aggregator

subproblem (until desired convergence is obtained):

𝒙̂𝑘+1 B arg min
𝒙̂ ∈ X̂

𝑓 (𝒙) +
∑
ℎ∈H

(
𝑔 (𝒛ℎ)+∑

𝑡∈T

(
𝜆𝑘
ℎ,𝑡

(𝑝ℎ,𝑡 − 𝑝𝑘
ℎ,𝑡

) + 𝜌
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(𝑝ℎ,𝑡 − 𝑝𝑘
ℎ,𝑡

)
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) )
,

(3)

where 𝜌 is a penalty parameter and 𝜆ℎ,𝑡 is a dynamic price, which
is the dual variable associated with each coupling constraint.

The aggregator then communicates [𝒑̂𝑘+1
ℎ

,𝝀ℎ]ℎ∈H to each pro-
sumer ℎ, respectively. The message passing between agents and
their respective subproblems is illustrated in Figure 1. Next, each
HEMcalculates an update for 𝒛𝑘+1

ℎ
using the iterate set (𝒙𝑘+1

ℎ
, 𝒛ℎ,𝝀

𝑘
ℎ
):

𝒛𝑘+1
ℎ
B arg min

𝒛ℎ ∈ Zℎ

𝑔 (𝒛ℎ)+∑
𝑡∈T

(
𝜆𝑘
ℎ,𝑡

(𝑝𝑘+1
ℎ,𝑡

− 𝑝ℎ,𝑡 ) +
𝜌
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2
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(4)

and communicates the resulting 𝒑𝑘+1
ℎ

back to the aggregator. The
final step at iteration 𝑘 is the dual update:

𝜆𝑘+1
ℎ,𝑡
B 𝜆𝑘

ℎ,𝑡
+ 𝜌 (𝑝𝑘+1

ℎ,𝑡
− 𝑝𝑘+1

ℎ,𝑡
) ∀ ℎ ∈ H , 𝑡 ∈ T , (5)

which takes place at the aggregator.
On one hand, under the ADMM scheme the HEM agents better

preserve their privacy because the only variable they share is their
aggregate power consumption profile2. Moreover, they are in con-
trol of their own subproblem, with its scope clearly defined as a
self-interest optimization problem. On the other hand, using this
edge computing framework greatly alleviates the computational
burden imposed at the aggregator (3).

Literature analyzing computation and communication require-
ments for real-world hardware deployment of this technique is
scarce. Our demonstration innovates in implementing this MAS in
distributed hardware with autonomous HEM agents.

3 DEMONSTRATION
The test cases are composed of twenty-five or fifty prosumer agents
and one aggregator agent. A 24-hour receding horizon time window
is used for the DOPF, with 𝑇 = 48 time steps. Each prosumer
has fixed loads, PV generation and a battery, and is subject to a
time-of-use (ToU) and feed-in (FiT) tarrifs. Five prosumer agents
are modeled in RPis (each with 1 GB RAM, 1.4 GHz) and execute
subproblem (4) within the RPi. The laptop (16 GB RAM, 2.80 GHz)
executes the aggregator subproblem (3), the dual update (5), and
any remaining prosumers.

Attendees will be able to interact by choosing two different
power networks; modifying the PV power generated; and select-
ing different communications technologies (e.g., 3G, 4G). This will
allow for attendees to explore different problems’ complexity, PV
penetration, and the impact of latency in the distributed algorithm.

The output of the simulation will show, in graphical format:
(i) number of iterations and total algorithm execution time; (ii)
prosumers’ tariffs; (iii) system power flow; (iv) prosumers’ power
consumption; and (v) end-of-line voltage profile over time.

2There is no disclosure of sensitive information such as individual appliances, or
battery and vehicle charging rates or states.
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