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ABSTRACT
When studying extensive-form games it is typically assumed that

players make their decisions individually and that it is not possible

for them to make formally binding agreements about future moves.

As a consequence, many non-zero-sum games have been shown to

have equilibria that are suboptimal and arguably counter-intuitive.

For this reason we explore a new line of research in which game-

playing agents are allowed to negotiate binding agreements. We

analyze what happens under such assumptions and define a new

equilibrium solution concept to capture this (the Negotiation Value).
We show that the outcomes predicted by this new solution con-

cept are more efficient than the Subgame Perfect Equilibrium and,

therefore, arguably more realistic. Furthermore, we demonstrate

experimentally that a bounded rational agent is able to approxi-

mate our solution concept in several games and that it strongly

outperforms non-negotiating rational players.
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1 INTRODUCTION
Research on game-playing algorithms has mostly focused on zero-

sum-games, like Chess, Poker, and Go, even though many real-life

problems are better modeled as non-zero-sum games. For example,

a market economy is essentially a non-zero-sum game. Traditional

game-playing algorithms such as Minimax and Monte Carlo Tree

Search (MCTS), therefore, do not take into account the ability of an

agent to negotiate its actions with its opponent(s), which may result

in inefficient outcomes when applied to non-zero-sum games.

Non-zero-sum games have been studied extensively from a for-

mal point of view, but commonly used solution concepts such as the

Nash Equilibrium and the Subgame Perfect Equilibrium (SPE) are

based on the assumption that players choose their actions individu-

ally. Again, one does not take into account that players may be able

to negotiate binding agreements about their actions. We argue that
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for this reason such equilibrium concepts often predict outcomes

that are suboptimal compared to the outcomes one could expect to

achieve in reality. For example, when two people find themselves

in a real-life situation comparable to the Prisoner’s Dilemma, the

natural thing to do would be to discuss the situation and agree

to cooperate. Even if they do not trust each other they could still

cooperate, by signing a legally binding contract.

The field of Automated Negotiations, on the other hand, has

given little attention to scenarios with the complexity of extensive-

form games. Most work in this field assumes the utility of any deal

can always be determined exactly and without much computational

effort, while for games like Chess and Go it is generally unfeasible

to determine the exact value of any action.

Therefore, we aim to bridge the gap between Automated Negoti-

ations and extensive-form games. We aim to answer the following

question: “Given some extensive-form game, we know that without
negotiations two perfectly rational players would play the SPE, but
what would happen if we did allow those players to negotiate binding
agreements about their actions?” To answer this question we define

a new solution concept for extensive-form games (the Negotiation
Value), which takes into account the possibility that players make

binding agreements. We have calculated the Negotiation Values of

three traditional games, namely the Iterated Prisoner’s Dilemma [1],

the Centipede Game [21], and the Dollar Auction [24], and show

that they dominate the outcomes prescribed by the traditional SPE.

Furthermore, we have defined another new solution concept to

predict the outcome of a bilateral negotiation, which is an alterna-

tive to the Nash Bargaining Solution [20]. The difference is that

our solution works for discrete agreement spaces, whereas Nash’s

solution assumes convex agreement spaces.

2 RELATEDWORK
The earliest work on Automated Negotiations mainly focused on

proving formal properties of idealized scenarios [20]. Later, focus

shifted more towards heuristic approaches [4, 5]. However, such

heuristic approaches still often assumed there is only a small set of

possible agreements, that the utility functions are linear and that

they can be calculated without much computational cost [2].

Recently, more attention has been given to large domains with

non-linear utility functions [9, 18, 19], but these works still assumed

the value of any given contract can be calculated easily. Therefore,

[11] studied domains with utility functions that are computationally

hard to calculate. An even more complex negotiation scenario is the

game of Diplomacy [3, 6, 10, 12, 22]. This is an extensive-form game

that involves negotiations before each round. These negotiations

are complex, because the players’ utility functions are not directly

defined in terms of the agreements they make, but more indirectly
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through the moves they make in the game, which in turn are subject

to the negotiated agreements.

The field of General Game Playing (GGP) [8] studies algorithms

for game-playing agents that only know the rules of the game at

run-time. Therefore, when developing a GGP agent, one cannot use

any game-specific heuristics. Common techniques applied in GGP

are minimax [25], alpha-beta pruning [16] and MCTS [7, 17, 23].

The idea of combining GGP with Automated Negotiations was

brought forward by us in [13] and [14].

3 ASSUMPTIONS
We consider a setting in which two agents play a non-zero-sum

extensive-form game that takes place over multiple rounds. Before

each round the players have the opportunity to negotiate with each

other and make binding agreements about which strategies they

will follow throughout the rest of the game. Our goal is to implement

an algorithm for one of these two agents that aims to maximize that

agent’s utility by choosing the right moves, and by negotiating the

right deals with its opponent. Furthermore, we make the following

assumptions: 1) Each agent is purely self-interested, so they are

not interested in any form of ‘social welfare’. 2) The opponent is
unknown, so our agent cannot make any assumptions about the

opponent, except that it is (bounded) rational and aims to maximize

its own utility. 3) Agreements are always obeyed, because there
is some mechanism in place that can enforce them, even if it would

be rational for the agents not to obey them. This makes the analysis

of our games-with-negotiations different from the classical analysis

of extensive-form games. 4) A bounded rational agent should be

able to approximate the theoretically optimal outcomes. 5) The

agents are general game players, so the rules of the games they

are playing are only known to them at run-time. 6) We only con-

sider games of full information and with no random events. This

means that agents have a complete description of each others’ util-

ity functions. These descriptions, however, may be very complex,

so in general it may be too hard to calculate utilities exactly.

4 GAMES WITH NEGOTIATIONS
Let 𝐺 be an extensive-form game for two players denoted 𝛼0 and

𝛼1 respectively. For any state 𝑤 of 𝐺 and any joint strategy 𝜎⃗ for

𝐺 we define a Negotiation Domain 𝑁𝑤,𝜎⃗ for which the agreement

space is the set of all joint strategies of 𝐺 . This negotiation domain

represents the situation that the game has reached state𝑤 , while the

players have previously agreed to obey the joint strategy 𝜎⃗ , and they

are currently negotiating whether they can agree on some better

joint strategy 𝜎⃗ ′
. If negotiations in 𝑁𝑤,𝜎⃗ fail, the players remain

committed to 𝜎⃗ . We use 𝜏⃗ to denote the ‘empty commitment’, so

𝑁𝑤,𝜏 represents the situation where the agents have not yet made

any agreements at all.

For any given extensive-form game 𝐺 we define the correspond-

ing Extensive-Form Game with Negotiations 𝑁𝐺 to consist of

𝐺 together with a negotiation domain 𝑁𝑤,𝜎⃗ for every state𝑤 of 𝐺

and every joint strategy 𝜎⃗ of 𝐺 . We use 𝑟𝑣𝑤,𝜎⃗,𝑖 to denote the reser-

vation value of agent 𝛼𝑖 in negotiation domain 𝑁𝑤,𝜎⃗ , and 𝑠𝑝𝑒𝑤,𝜎⃗,𝑖

to denote the utility that 𝛼𝑖 obtains under the SPE of the subgame

starting at state𝑤 , while the players have committed themselves

to joint strategy 𝜎⃗ .

Theorem 4.1. Let𝐺 be an extensive-form game. Then for any state
𝑤 , any joint strategy 𝜎⃗ , and any player 𝛼𝑖 we have: 𝑟𝑣𝑤,𝜎⃗,𝑖 ≥ 𝑠𝑝𝑒𝑤,𝜎⃗,𝑖 .

Intuitively, this result states that if negotiations fail the agents

should each still be able to obtain at least the utility associated

with the SPE, which should be obvious. However, what is more

interesting, is that in some cases this inequality is strict. This is

because even if negotiations fail in the current round, the agents

may still come to an agreement in the following rounds, so they

can still expect to achieve utility values higher than the SPE.

For any negotiation domain 𝑁 we define 𝑛𝑣𝑖 (𝑁 ) to be the ex-

pected utility that player 𝛼𝑖 can expect to obtain from the negotia-

tion. This value is determined by modeling the negotiations as a

normal-form game and then calculating its Nash-equilibrium.

Given an extensive-form game 𝐺 and a player 𝛼𝑖 we define its

Negotiation Value as NV 𝑖 (𝐺) := 𝑛𝑣𝑖 (𝑁𝑤0,𝜏
), where 𝑤0 is the

initial state of 𝐺 . Similarly, we define 𝑆𝑃𝐸𝑖 (𝐺) := 𝑠𝑝𝑒𝑤0,𝜏,𝑖
.

Theorem 4.2. For any extensive-form game𝐺 we have NV 𝑖 (𝐺) ≥
SPE𝑖 (𝐺), and for some games this inequality is strict.

In our full paper [15] we show that for the Centipede Game and

the Iterated Prisoner’s Dilemma this inequality is strict.

5 THE CENTIPEDE GAME
We have analyzed the Centipede Game (CG) under the assumption

that players are able to negotiate binding agreements. We formally

show that, unlike in the traditional CG, the players no longer have

the incentive to break the game off at an early stage. Furthermore,

we make two interesting observations.

(1) Rational players may continue playingwithoutmaking any
agreements until they are close to the end of the game.

(2) Although the game has two terminal states that are Pareto-
optimal, and which both dominate the SPE, only one of them
is a rational outcome for negotiating players.

The first fact is surprising because we know that without the possi-

bility to make binding agreements, rational players would always

break the game off as quickly as possible. However, it turns out

that when they do have the possibility to negotiate, it becomes

perfectly rational to continue playing for several rounds without
actually making such agreements. It is the mere possibility to make

such agreements later on that makes this rational.

The second fact is surprising, because in classical automated

negotiations any outcome that is pareto-optimal and dominates

the conflict outcome is considered feasible. Here, however, we see

that these conditions are not sufficient, because the structure of the

game imposes extra constraints on the feasibility.

6 EXPERIMENTS
We have implemented an algorithm that we call Monte Carlo Ne-

gotiation Search (MCNS), which builds a negotiation algorithm on

top of an MCTS-based GGP player. We have tested it on the three

aforementioned traditional games. In the case of the Centipede

Game and the Dollar Auction it always agrees with its opponent

to play the theoretically optimal joint strategy (the one that yields

the Negotiation Values), and in the case of the Iterated Prisoner’s

Dilemma it comes to an agreement that closely approximates it.
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