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ABSTRACT
In this paper, we introduce and analyze new envy-based fairness

concepts for agents with weights that quantify their entitlements

in the allocation of indivisible items. We propose two variants of

weighted envy-freeness up to one item (WEF1) – strong (where

the envy can be eliminated by removing an item from the envied

agent’s bundle) and weak (where the envy can be eliminated either

by removing an item as in the strong version or by replicating

an item from the envied agent’s bundle in the envious agent’s

bundle). We prove that for additive valuations, an allocation that is

both Pareto optimal and strongly WEF1 always exists; however, an

allocation that maximizes the weighted Nash social welfare may

not be strongly WEF1 but always satisfies the weak version of the

property. Moreover, we establish that a generalization of the round-

robin picking sequence produces in polynomial time a strongly

WEF1 allocation for an arbitrary number of agents; for two agents,

we can efficiently achieve both strong WEF1 and Pareto optimality

by adapting the classic adjusted winner algorithm. We also explore

the connections of WEF1 with approximations to the weighted

versions of two other fairness concepts: proportionality and the

maximin share guarantee.
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1 INTRODUCTION
The fair allocation of resources to interested parties is a central issue

in economics, with several fairness criteria having been studied in

the vast literature on fair division. One of the most fundamental

criteria is envy-freeness, which requires that all agents find their

assigned bundle to be the best among all assigned bundles [18, 27].

Envy-freeness is a compelling notion when all agents have the

same entitlement to the resource; indeed, in an envy-free allocation,

no agent would rather take the place of another agent with respect

to the assigned bundles. However, in many division problems, dif-

ferent agents have varying claims on the resource. For instance,

∗
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consider a facility that has been jointly funded by Alice and Bob,

where Alice’s contribution to the facility is twice of Bob’s. One could

then expect Alice to be envious if she does not value her share at

least twice as much as Bob’s share when they divide the usage of

the facility. Besides this interpretation as the cost of participating
in the resource allocation “game”, the weights may also represent

other publicly known and accepted measures of entitlement such as

eligibility or merit. Envy-freeness can be naturally extended to this

general setting with weights. When the resource to be allocated

is infinitely divisible (e.g., time to use a facility), it is known that

a weighted envy-free allocation exists for any set of weights and

valuations [24, 28].

In this paper, we studyweighted envy-freeness for the ubiquitous

situation where the resource consists of indivisible items. Envy-free

allocations cannot always be attained in such situations even in the

absence of weights, thereby prompting the need for approximate

notions that can be satisfied. The goal of our work is to extend

these notions to the weighted case, and explore their relationship

to other important welfare notions such as Pareto optimality.

1.1 Our Contributions
In Section 2, we propose two extensions of the popular fairness

concept envy-freeness up to one item (EF1) [10, 19] to the weighted

setting: (strong) weighted envy-freeness up to one item (WEF1) and
weak weighted envy-freeness up to one item (WWEF1). We assume

for most of the paper that the agents are endowed with additive

valuation functions. In addition to some negative results, we estab-

lish in Section 3 that a WEF1 allocation always exists and can be

computed efficiently using a weight-based picking sequence — this

generalizes a well-known result from the unweighted setting. In

Section 4, we show by adapting an algorithm of Barman et al. [5]

that the existence of a Pareto optimal and WEF1 allocation is always

guaranteed for any number of agents; in particular, for two agents,

we exhibit that a weighted variant of the classic adjusted winner

procedure allows us to efficiently compute an allocation that is

both WEF1 and Pareto optimal. In Section 5, we prove that while an

allocation with maximum weighted Nash welfare may fail to satisfy

WEF1, such an allocation is both Pareto optimal and WWEF1, thereby
generalizing an important result of Caragiannis et al. [11]. We ex-

plore the relationship between weighted envy-freeness and the

weighted versions of other fairness concepts in Section 6, and show

through experiments in Section 7 that envy-freeness is often harder

to satisfy in the weighted setting than in the unweighted setting.
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Finally, we conclude in Section 8 with some thoughts on extending

our ideas and results beyond additive valuation functions.

1.2 Related Work
There is a long line of work on fair division of indivisible items; see,

e.g., the survey by Bouveret et al. [8] for an overview. Prior work

on the fair allocation of indivisible items to asymmetric agents has

tackled fairness concepts that are not based on envy. Farhadi et al.

[17] introduce and studyweightedmaxmin share (WMMS) fairness, a
generalization of an earlier fairness notion of Budish [10]. Aziz et al.

[2] explore WMMS fairness in the allocation of indivisible chores
— items that, in contrast to goods, are valued negatively by the

agents — where agents’ weights can be interpreted as their shares

of the workload. Babaioff et al. [4] study competitive equilibrium

for agents with different budgets. Recently, Aziz et al. [3] propose a

polynomial-time algorithm for computing an allocation of a pool of

goods and chores that satisfies both Pareto optimality and weighted

proportionality up to one item (PROP1) for agents with asymmetric

weights. Unequal entitlements have also been considered in the

context of divisible items with respect to proportionality [15, 24, 25].

In addition to expressing the entitlement of individual agents,

weights can also be applied to settings where each agent represents

a group of individuals [6, 7] — here, the size of a group can be used as
its weight.

1
Specifically, in the model of Benabbou et al. [7], groups

correspond to ethnic groups (namely, the major ethnic groups in

Singapore, e.g., Chinese, Malay, and Indian). Maintaining provable

fairness guarantees amongst the ethnic groups is highly desirable;

in fact, it is one of the major tenets of Singaporean society.

2 PRELIMINARIES
Throughout the paper, we denote by [𝑟 ] the set {1, 2, . . . , 𝑟 } for
any positive integer 𝑟 . We are given a set 𝑁 = [𝑛] of agents, and
a set 𝑂 = {𝑜1, . . . , 𝑜𝑚} of items or goods. Subsets of 𝑂 are referred

to as bundles, and each agent 𝑖 ∈ 𝑁 has a valuation function 𝑣𝑖 :

2
𝑂 → R≥0 over bundles; the valuation function for every 𝑖 ∈ 𝑁

is normalized (i.e., 𝑣𝑖 (∅) = 0) and monotone (i.e., 𝑣𝑖 (𝑆) ≤ 𝑣𝑖 (𝑇 )
whenever 𝑆 ⊆ 𝑇 ). We denote 𝑣𝑖 ({𝑜}) simply by 𝑣𝑖 (𝑜) for any 𝑖 ∈ 𝑁
and 𝑜 ∈ 𝑂 .

An allocation 𝐴 of the items to the agents is a collection of 𝑛

disjoint bundles 𝐴1, . . . , 𝐴𝑛 such that

⋃
𝑖∈𝑁 𝐴𝑖 ⊆ 𝑂 ; the bundle 𝐴𝑖

is allocated to agent 𝑖 and 𝑣𝑖 (𝐴𝑖 ) is agent 𝑖’s realized valuation under
𝐴. Given an allocation 𝐴, we denote by 𝐴0 the set 𝑂\ (

⋃
𝑖∈𝑁 𝐴𝑖 ),

and its elements are referred to as withheld items. An allocation 𝐴

is said to be complete if 𝐴0 = ∅, and incomplete otherwise.
In our asymmetric setting, each agent 𝑖 ∈ 𝑁 has a fixed weight

𝑤𝑖 > 0: these weights regulate how agents value their own allo-

cated bundles relative to those of other agents, and hence bear on

the overall (subjective) fairness of an allocation. More precisely,

we define the weighted envy of agent 𝑖 towards agent 𝑗 under an

allocation 𝐴 as max

{
0,

𝑣𝑖 (𝐴 𝑗 )
𝑤𝑗
− 𝑣𝑖 (𝐴𝑖 )

𝑤𝑖

}
. An allocation is weighted

envy-free (WEF) if no agent has positive weighted envy towards

1
Note that in this model, each group has a valuation function that represents the overall

preference of its members. Other group fairness notions do not assume the existence

of such aggregate functions and instead take directly into account the preferences of

the individual agents in each group [14, 20, 26].

another agent. Weighted envy-freeness reduces to traditional envy-

freeness when 𝑤𝑖 = 𝑤 , ∀𝑖 ∈ 𝑁 for some positive real constant 𝑤 .

Since a complete envy-free allocation may not always exist (see,

e.g., [8]), it follows trivially that a complete WEF allocation may not

exist in general.

We now state the main definitions of our paper, which naturally

extend envy-freeness up to one item (EF1) [10, 19] to the weighted

setting.

Definition 2.1. An allocation 𝐴 is said to be (strongly) weighted
envy-free up to one item (WEF1) if for any pair of agents 𝑖, 𝑗 with

𝐴 𝑗 ≠ ∅, there exists an item 𝑜 ∈ 𝐴 𝑗 such that

𝑣𝑖 (𝐴𝑖 )
𝑤𝑖

≥
𝑣𝑖 (𝐴 𝑗\{𝑜})

𝑤 𝑗
.

More generally, 𝐴 is said to be weighted envy-free up to 𝑐 items
(WEF𝑐) for an integer 𝑐 ≥ 1 if for any pair of agents 𝑖, 𝑗 , there exists

a subset 𝑆𝑐 ⊆ 𝐴 𝑗 of size at most 𝑐 such that

𝑣𝑖 (𝐴𝑖 )
𝑤𝑖

≥
𝑣𝑖 (𝐴 𝑗\𝑆𝑐 )

𝑤 𝑗
.

Definition 2.2. An allocation 𝐴 is said to be weakly weighted
envy-free up to one item (WWEF1) if for any pair of agents 𝑖, 𝑗 with

𝐴 𝑗 ≠ ∅, there exists an item 𝑜 ∈ 𝐴 𝑗 such that

either

𝑣𝑖 (𝐴𝑖 )
𝑤𝑖

≥
𝑣𝑖 (𝐴 𝑗\{𝑜})

𝑤 𝑗
or

𝑣𝑖 (𝐴𝑖 ∪ {𝑜})
𝑤𝑖

≥
𝑣𝑖 (𝐴 𝑗 )
𝑤 𝑗

.

A valuation function 𝑣 : 2
𝑂 → R≥0 is said to be additive if 𝑣 (𝑆) =∑

𝑜∈𝑆 𝑣 (𝑜) for every 𝑆 ⊆ 𝑂 . We will assume additive valuations for

most of the paper; this is a very common assumption in the fair

division literature. Under this assumption, both WEF1 and WWEF1
reduce to EF1 in the unweighted setting. Moreover, one can check

that under additive valuations, an allocation satisfies WWEF1 if and

only if for any pair of agents 𝑖, 𝑗 with 𝐴 𝑗 ≠ ∅, there exists an item

𝑜 ∈ 𝐴 𝑗 such that

𝑣𝑖 (𝐴𝑖 )
𝑤𝑖

≥
𝑣𝑖 (𝐴 𝑗 )
𝑤 𝑗

− 𝑣𝑖 (𝑜)
min{𝑤𝑖 ,𝑤 𝑗 }

.

The criterion WEF1 can be criticized as being too demanding in

certain circumstances, when the weight of the envied agent is much

larger than that of the envying agent. To illustrate this, consider a

problem instance where agent 1 has an additive valuation function

and is indifferent among all items taken individually, e.g., 𝑣1 (𝑜) = 1

for every 𝑜 ∈ 𝑂 . Now, if𝑤1 = 1 and𝑤2 = 100, then eliminating one

item from agent 2’s bundle reduces agent 1’s weighted valuation of

this bundle by merely 0.01. As such, we might trigger a substantial

adverse effect on the welfare/efficiency of the allocation by aiming

to (approximately) eliminate 1’s weighted envy towards 2. This line

of thinking was our motivation for introducing the weak weighted

envy-freeness concept. We also note that WWEF1 can be viewed as

a stronger version of what we refer to as transfer weighted envy-
freeness up to one item: agent 𝑖 is transfer weighted envy-free up to

one item towards agent 𝑗 under the allocation 𝐴 if there is an item

𝑜 ∈ 𝐴 𝑗 that would eliminate the weighted envy of 𝑖 towards 𝑗 upon

being transferred from𝐴 𝑗 to𝐴𝑖 , i.e., 𝑣𝑖 (𝐴𝑖 ∪{𝑜}) ≥ 𝑤𝑖

𝑤𝑗
·𝑣𝑖 (𝐴 𝑗\{𝑜}).

In addition to fairness, we often want our allocation to satisfy

an efficiency criterion. One important such criterion is Pareto op-

timality. An allocation 𝐴′ is said to Pareto dominate an allocation
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𝐴 if 𝑣𝑖 (𝐴′𝑖 ) ≥ 𝑣𝑖 (𝐴𝑖 ) for all agents 𝑖 ∈ 𝑁 and 𝑣 𝑗 (𝐴′𝑗 ) > 𝑣 𝑗 (𝐴 𝑗 ) for
some agent 𝑗 ∈ 𝑁 . An allocation is Pareto optimal (or PO for short)

if it is not Pareto dominated by any other allocation.

Allocations maximizing the Nash welfare — defined as NW(𝐴) :=∏
𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 ) — are known to offer strong guarantees with respect

to both fairness and efficiency in the unweighted setting [11]. For

our weighted setting, we define a natural extension called weighted
Nash welfare: WNW(𝐴) := ∏

𝑖∈𝑁 𝑣𝑖 (𝐴𝑖 )𝑤𝑖
. Since it is possible that the

maximum attainable WNW(𝐴) is 0, we define a maximum weighted
Nash welfare or MWNW allocation along the lines of [11] as follows:

given a problem instance, we find a maximum subset of agents,

say 𝑁max ⊆ 𝑁 , to which we can allocate bundles of positive value,

and compute an allocation to the agents in 𝑁max that maximizes∏
𝑖∈𝑁max

𝑣𝑖 (𝐴𝑖 )𝑤𝑖
. To see why the notion of MWNW makes intuitive

sense, consider a setting where agents have a value of 1 for each

item they receive; furthermore, assume that the number of items is

exactly

∑𝑛
𝑖=1𝑤𝑖 . In this case, one can verify (using standard calculus)

that an allocation maximizing MWNW assigns to agent 𝑖 exactly 𝑤𝑖

items. Indeed, following the interpretation of𝑤𝑖 as the number of

members of group 𝑖 , the expression 𝑣𝑖 (𝐴𝑖 )𝑤𝑖
can be thought of as

each member of group 𝑖 deriving the same value from the set 𝐴𝑖 ;

the group’s overall Nash welfare is thus 𝑣𝑖 (𝐴𝑖 )𝑤𝑖
.

We also examine the extent to which (approximate) weighted

envy-freeness relates to the weighted versions of two other key

fairness notions: proportionality and the maximin share guarantee.
An allocation 𝐴 is said to be weighted proportional or WPROP

if, for every agent 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑤𝑖∑
𝑗∈𝑁 𝑤𝑗

𝑣𝑖 (𝑂). For additive
valuations, an allocation 𝐴 is weighted proportional up to 𝑐 items
or WPROP𝑐 if, for every 𝑖 ∈ 𝑁 , there exists a subset of items not

allocated to 𝑖 , i.e., 𝑆𝑐 ⊆ 𝑂 \𝐴𝑖 , of size at most 𝑐 such that 𝑣𝑖 (𝐴𝑖 ) ≥
𝑤𝑖∑

𝑗∈𝑁 𝑤𝑗
·𝑣𝑖 (𝑂) −𝑣𝑖 (𝑆𝑐 ); this is a natural extension of the (weighted)

PROP1 concept in [3, 13].

Let Π(𝑂) denote the collection of all (ordered) 𝑛-partitions of

the set of items 𝑂 , or, in other words, the collection of all complete

allocations of𝑂 to 𝑛 agents. Then, the weighted maximin share [17]
of agent 𝑖 is defined as:

WMMS𝑖 := max

(𝐴1,𝐴2,...,𝐴𝑛) ∈Π (𝑂)
min

𝑗 ∈𝑁
𝑤𝑖

𝑤 𝑗
𝑣𝑖 (𝐴 𝑗 ) .

An allocation𝐴 is called WMMS if 𝑣𝑖 (𝐴𝑖 ) ≥ WMMS𝑖 for every 𝑖 ∈ 𝑁 ; for

any approximation ratio 𝛼 ∈ (0, 1], 𝐴 is called 𝛼-WMMS if 𝑣𝑖 (𝐴𝑖 ) ≥
𝛼 · WMMS𝑖 for every 𝑖 ∈ 𝑁 .

Due to space constraints, some proofs are omitted and deferred

to the full version of our paper [12].

3 WEF1 ALLOCATIONS
Although it is known that for arbitrary monotone valuation func-

tions, a complete (unweighted) EF1 allocation always exists and can

be efficiently computed assuming polynomial-time oracle access to

the valuation functions [19], this fact does not imply the existence

of the more general complete WEF1 allocations for arbitrary weights
and valuation functions.

As far as envy in the traditional sense is concerned, what an agent

actually “envies” is an allocated bundle regardless of who owns

that bundle. However, both the subjective valuations of allocated

bundles and the relative weights interact in non-trivial ways to

determine weighted envy. It is easy to see that weighted envy of

𝑖 towards 𝑗 does not imply (traditional) envy of 𝑖 towards 𝑗 , and

vice versa. A crucial implication is that even if agent 𝑖’s bundle

is replaced with the bundle of an agent 𝑗 towards whom 𝑖 has

weighted envy, 𝑖’s realized valuation (and hence the ratio of her

realized valuation to her weight) may decrease as a result. Indeed,

consider a problem instance with 𝑁 = [2],𝑂 = {𝑜1, 𝑜2, 𝑜3}; weights
𝑤1 = 3 and𝑤2 = 1; and identical, additive valuation functions such

that 𝑣𝑖 (𝑜) = 1, ∀𝑖 ∈ 𝑁 , ∀𝑜 ∈ 𝑂 . Under the complete allocation with

𝐴1 = {𝑜1, 𝑜2}, agent 1 has weighted envy towards agent 2 since

𝑣1 (𝐴2)/𝑤2 = 1/1 = 1 > 2/3 = 𝑣1 (𝐴1)/𝑤1, although agent 1 would

not prefer to replace 𝐴1 with 𝐴2 since that reduces her realized

valuation from 2 to 1. On the other hand, agent 2 could benefit

from replacing𝐴2 with𝐴1 even though she does not have weighted

envy towards agent 1. As such, the natural extension of Lipton et al.

[19]’s seminal envy cycle elimination algorithm does not guarantee

a complete WEF1 allocation except in special cases. One such special

case is when the agents all have identical valuations.

Proposition 3.1. The weighted version of Lipton et al.’s envy cycle
elimination algorithm (where an edge exists from agent 𝑖 to agent 𝑗 if
and only if 𝑖 has weighted envy towards 𝑗 ) produces a complete WEF1
allocation whenever agents have identical (not necessarily additive)
valuations, i.e., 𝑣𝑖 (𝑆) = 𝑣 (𝑆) for some 𝑣 : 2

𝑂 → R≥0, ∀𝑖 ∈ 𝑁 ,
∀𝑆 ⊆ 𝑂 .

Proof. By construction of the algorithm [19], the (incomplete)

allocation at the end of each iteration is guaranteed to be WEF1 as
long as we can find an agent, say 𝑖 , towards whom no other agent

has weighted envy at the beginning of the iteration: we give the

item under consideration to agent 𝑖 and thus any resulting weighted

envy towards 𝑖 can be eliminated by removing this item. If there

is no unenvied agent, then the weighted envy graph consists of

at least one cycle; however, under identical valuations, the envy

graph cannot have cycles. Indeed, suppose that agents 1, 2, . . . , ℓ

form a cycle (in that order) for some ℓ ∈ [𝑛]. Since agents have
identical valuations, it must be that 𝑣 (𝐴1)/𝑤1 < 𝑣 (𝐴2)/𝑤2 < · · · <
𝑣 (𝐴ℓ )/𝑤ℓ < 𝑣 (𝐴1)/𝑤1, a contradiction. □

Unfortunately, the positive results for utilizing the envy cycle

elimination algorithm end with Proposition 3.1.

Proposition 3.2. If agents do not have identical valuation func-
tions, then the weighted version of Lipton et al. [19]’s envy cycle
elimination algorithm may not produce a complete WEF1 allocation,
even in a problem instance with two agents and additive valuations.

3.1 Picking Sequence Protocols
When all agents have equal weight and additive valuations, it is

well-known that a round-robin algorithm, wherein the agents take

turns picking an item, produces an EF1 allocation. This is in fact

easy to see: If agent 𝑖 is ahead of agent 𝑗 in the ordering, then in

every “round”, 𝑖 picks an item that she likes at least as much as 𝑗 ’s

pick; by additivity, 𝑖 does not envy 𝑗 . On the other hand, if agent 𝑖

picks after agent 𝑗 , then by considering the first round to begin at

𝑖’s first pick, it follows that 𝑖 does not envy 𝑗 up to the first item

that 𝑗 picks.

We show next that in the general setting with weights, we can

construct a weight-dependent picking sequence which guarantees
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WEF1 for any number of agents and arbitrary weights. However, un-

like in the unweighted case, the proof is much less straightforward

and requires making several intricate arguments.

Theorem 3.3. For any number of agents with additive valuations
and arbitrary positive real weights, a complete WEF1 allocation always
exists and can be computed in polynomial time.

Algorithm 1 Pick the Least Weight-Adjusted Frequent Picker

1: Remaining items 𝑂 ← 𝑂 .

2: Bundles 𝐴𝑖 ← ∅, ∀𝑖 ∈ 𝑁 .

3: 𝑡𝑖 ← 0, ∀𝑖 ∈ 𝑁 . /*number of times each agent has picked
so far*/

4: while 𝑂 ≠ ∅ do
5: 𝑖∗ ← argmin𝑖∈𝑁

𝑡𝑖
𝑤𝑖

, breaking ties lexicographically.

6: 𝑜∗ ← argmax
𝑜∈𝑂 𝑣𝑖∗ (𝑜), breaking ties arbitrarily.

7: 𝐴𝑖∗ ← 𝐴𝑖∗ ∪ {𝑜∗}.
8: 𝑂 ← 𝑂\{𝑜∗}.
9: 𝑡𝑖∗ ← 𝑡𝑖∗ + 1.
10: end while

Proof. Our proof is constructive: we construct a picking se-

quence such that at each turn, an agent with the lowest weight-

adjusted picking frequency picks the next item (Algorithm 1). We

claim that after the allocation of each item, for any agent 𝑖 , every

other agent is weighted envy-free towards 𝑖 up to the item that 𝑖

picked first.

To this end, first note that choosing an agent who has had the

minimum (weight-adjusted) number of picks thus far ensures that

the first 𝑛 picks are a round-robin over all of the agents; in this

phase, the allocation is obviously WEF1 since each agent has at

most one item at any point. We will show that, after this phase, the

algorithm generates a picking sequence over the agents with the

following property:

Lemma 3.4. Consider an agent 𝑖 chosen by Algorithm 1 to pick an
item at some iteration 𝑡 , and suppose that this is not her first pick.
Let 𝑡𝑖 and 𝑡 𝑗 be the numbers of times agent 𝑖 and some other agent
𝑗 appear in the prefix of iteration 𝑡 in the sequence respectively, not
including iteration 𝑡 itself. Then 𝑡 𝑗

𝑡𝑖
≥ 𝑤𝑗

𝑤𝑖
.

This property is sufficient to ensure that the latest picker does

not attract weighted envy up to more than one item towards herself

after her latest pick:

Lemma 3.5. Suppose that, for every iteration 𝑡 in which agent 𝑖
picks an item after her first pick, the numbers of times that agent 𝑖
and some other agent 𝑗 appear in the prefix of the iteration in the
sequence, not including iteration 𝑡 itself — 𝑡𝑖 and 𝑡 𝑗 respectively —
satisfy the relation 𝑡 𝑗

𝑡𝑖
≥ 𝑤𝑗

𝑤𝑖
. Then, in the partial allocation up to and

including 𝑖’s latest pick, agent 𝑗 is weighted envy-free towards 𝑖 up to
the first item 𝑖 picked.

Obviously, directly after an agent picks an item, her envy to-

wards other agents cannot get any worse than before. Since the

partial allocation after the initial round-robin phase is WEF1 and

every agent is weighted envy-free up to one item towards every

subsequent picker due to Lemmas 3.4 and 3.5, the allocation is WEF1
at every iteration, and in particular at the end of the algorithm.

Hence, for the proof of correctness, it suffices to prove the two

lemmas.

Proof of Lemma 3.4. Since agent 𝑖 is picked at iteration 𝑡 , it

must be the case that 𝑖 ∈ argmin𝑘∈𝑁
𝑡𝑘
𝑤𝑘

. This means that
𝑡𝑖
𝑤𝑖
≤ 𝑡 𝑗

𝑤𝑗
,

i.e.,

𝑡 𝑗
𝑡𝑖
≥ 𝑤𝑗

𝑤𝑖
since 𝑡𝑖 > 0. □

Proof of Lemma 3.5. Let 𝛾 :=
𝑤𝑗

𝑤𝑖
. Consider any iteration 𝑡 in

which agent 𝑖 is chosen after her first pick. Let agent 𝑗 ’s values

for the items allocated to agent 𝑖 in the latter’s second, third, . . . ,

(𝑡𝑖 + 1)st picks (the last one occurring at the iteration 𝑡 under

consideration) be 𝛽1, 𝛽2, . . . , 𝛽𝑡𝑖 respectively. If 𝑜
∗
is the first item

picked by agent 𝑖 and 𝐴𝑡
the partial allocation up to and including

iteration 𝑡 , then clearly 𝑣 𝑗 (𝐴𝑡
𝑖
\{𝑜∗}) = ∑𝑡𝑖

𝑥=1
𝛽𝑥 . Let the number

of times agent 𝑗 appears in the prefix of agent 𝑖’s second pick

be 𝜏1; that between agent 𝑖’s second and third picks be 𝜏2; . . . ;

that between agent 𝑖’s 𝑡 th
𝑖

and (𝑡𝑖 + 1)st picks be 𝜏𝑡𝑖 . Let agent

𝑗 ’s values for the items she herself picked during phase 𝑥 ∈ [𝑡𝑖 ]
be 𝛼𝑥

1
, 𝛼𝑥

2
, . . . , 𝛼𝑥𝜏𝑥 respectively, where the phases are defined as in

the previous sentence. Then, 𝑣 𝑗 (𝐴𝑡
𝑗
) = ∑𝑡𝑖

𝑥=1

∑𝜏𝑥
𝑦=1

𝛼𝑥𝑦 . Now, since∑𝑟
𝑥=1 𝜏𝑥 and 𝑟 are the numbers of times agents 𝑗 and 𝑖 appear in

the prefix of the latter’s (𝑟 + 1)st pick respectively, the condition of

the lemma dictates that

𝑟∑
𝑥=1

𝜏𝑥 ≥ 𝑟𝛾 ∀𝑟 ∈ [𝑡𝑖 ] . (1)

Note that 𝜏1 ≥ 𝛾 > 0; however, 𝜏𝑥 can be zero for 𝑥 ∈ {2, 3, . . . , 𝑡𝑖 }
— this corresponds to the scenario where agent 𝑖 picked more than

once without agent 𝑗 picking in between. Moreover, every time

agent 𝑗 was chosen, she picked one of the items she values the most

among those available, including the items picked by agent 𝑖 later.

Hence, if 𝜏𝑥 > 0 for some 𝑥 ∈ [𝑡𝑖 ], then
𝛼𝑥𝑦 ≥ max{𝛽𝑥 , 𝛽𝑥+1, . . . , 𝛽𝑡𝑖 } ∀𝑦 ∈ [𝜏𝑥 ]

⇒
𝜏𝑥∑
𝑦=1

𝛼𝑥𝑦 ≥ 𝜏𝑥 max{𝛽𝑥 , 𝛽𝑥+1, . . . , 𝛽𝑡𝑖 }. (2)

Note that Inequality (2) holds trivially if 𝜏𝑥 = 0 since both sides are

zero; hence it holds for every 𝑥 ∈ [𝑡𝑖 ].
We claim that for each 𝑟 ∈ [𝑡𝑖 ],
𝑟∑

𝑥=1

𝜏𝑥∑
𝑦=1

𝛼𝑥𝑦 ≥ 𝛾
𝑟∑

𝑥=1

𝛽𝑥 +
(

𝑟∑
𝑥=1

𝜏𝑥 − 𝑟𝛾
)
max{𝛽𝑟 , 𝛽𝑟+1, . . . , 𝛽𝑡𝑖 }.

To prove the claim, we proceed by induction on 𝑟 . For the base case

𝑟 = 1, we have from Inequality (2) that

𝜏1∑
𝑦=1

𝛼1𝑦 ≥ 𝜏1max{𝛽1, 𝛽2, . . . , 𝛽𝑡𝑖 }

≥ 𝛾𝛽1 + (𝜏1 − 𝛾)max{𝛽1, 𝛽2, . . . , 𝛽𝑡𝑖 }.
For the inductive step, assume that the claim holds for 𝑟 − 1; we
will prove it for 𝑟 . We have

𝑟∑
𝑥=1

𝜏𝑥∑
𝑦=1

𝛼𝑥𝑦 =

𝑟−1∑
𝑥=1

𝜏𝑥∑
𝑦=1

𝛼𝑥𝑦 +
𝜏𝑟∑
𝑦=1

𝛼𝑟𝑦
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≥ 𝛾
𝑟−1∑
𝑥=1

𝛽𝑥 +
(
𝑟−1∑
𝑥=1

𝜏𝑥 − (𝑟 − 1)𝛾
)
max{𝛽𝑟−1, 𝛽𝑟 , . . . , 𝛽𝑡𝑖 }

+
𝜏𝑟∑
𝑦=1

𝛼𝑟𝑦

≥ 𝛾
𝑟−1∑
𝑥=1

𝛽𝑥 +
(
𝑟−1∑
𝑥=1

𝜏𝑥 − (𝑟 − 1)𝛾
)
max{𝛽𝑟−1, 𝛽𝑟 , . . . , 𝛽𝑡𝑖 }

+ 𝜏𝑟 max{𝛽𝑟 , 𝛽𝑟+1, . . . , 𝛽𝑡𝑖 }

≥ 𝛾
𝑟−1∑
𝑥=1

𝛽𝑥 +
(
𝑟−1∑
𝑥=1

𝜏𝑥 − (𝑟 − 1)𝛾
)
max{𝛽𝑟 , 𝛽𝑟+1, . . . , 𝛽𝑡𝑖 }

+ 𝜏𝑟 max{𝛽𝑟 , 𝛽𝑟+1, . . . , 𝛽𝑡𝑖 }

= 𝛾

𝑟−1∑
𝑥=1

𝛽𝑥 +
(

𝑟∑
𝑥=1

𝜏𝑥 − (𝑟 − 1)𝛾
)
max{𝛽𝑟 , 𝛽𝑟+1, . . . , 𝛽𝑡𝑖 }

= 𝛾

𝑟−1∑
𝑥=1

𝛽𝑥 + 𝛾 max{𝛽𝑟 , 𝛽𝑟+1, . . . , 𝛽𝑡𝑖 }

+
(

𝑟∑
𝑥=1

𝜏𝑥 − 𝑟𝛾
)
max{𝛽𝑟 , 𝛽𝑟+1, . . . , 𝛽𝑡𝑖 }

≥ 𝛾
𝑟−1∑
𝑥=1

𝛽𝑥 + 𝛾𝛽𝑟 +
(

𝑟∑
𝑥=1

𝜏𝑥 − 𝑟𝛾
)
max{𝛽𝑟 , 𝛽𝑟+1, . . . , 𝛽𝑡𝑖 }

= 𝛾

𝑟∑
𝑥=1

𝛽𝑥 +
(

𝑟∑
𝑥=1

𝜏𝑥 − 𝑟𝛾
)
max{𝛽𝑟 , 𝛽𝑟+1, . . . , 𝛽𝑡𝑖 },

where the first inequality follows directly from the inductive hy-

pothesis, the second from Inequality (2), and the third from Inequal-

ity (1) as well as the fact that

max{𝛽𝑟−1, 𝛽𝑟 , . . . , 𝛽𝑡𝑖 } ≥ max{𝛽𝑟 , 𝛽𝑟+1, . . . , 𝛽𝑡𝑖 }.
This completes the induction and establishes the claim.

Now, taking 𝑟 = 𝑡𝑖 in the claim, we get

𝑡𝑖∑
𝑥=1

𝜏𝑥∑
𝑦=1

𝛼𝑥𝑦 ≥ 𝛾
𝑡𝑖∑
𝑥=1

𝛽𝑥 +
(
𝑡𝑖∑
𝑥=1

𝜏𝑥 − 𝑡𝑖𝛾
)
𝛽𝑡𝑖

≥ 𝛾
𝑡𝑖∑
𝑥=1

𝛽𝑥 ,

where we use Inequality (1) again for the second inequality. This

implies that 𝑣 𝑗 (𝐴𝑡
𝑗
) ≥ 𝑤𝑗

𝑤𝑖
· 𝑣 𝑗 (𝐴𝑡

𝑖
\{𝑜∗}), i.e., agent 𝑗 is weighted

envy-free towards agent 𝑖 up to one item, concluding the proof of

the lemma and therefore the proof of correctness. □

For the time-complexity, note that there are 𝑂 (𝑚) iterations of
thewhile loop. In each iteration, determining the next picker takes

𝑂 (𝑛) time, while letting the picker pick her favorite item takes

𝑂 (𝑚) time. Since we may assume that𝑚 > 𝑛 (otherwise it suffices

to allocate at most one item to every agent), the algorithm runs in

time 𝑂 (𝑚2). □

If 𝑤𝑖 equals a positive constant 𝑤 for every 𝑖 ∈ 𝑁 , then Algo-

rithm 1 degenerates into the traditional round-robin procedure

which is guaranteed to return an EF1 allocation for additive valua-

tions, but may not be PO; as such, Algorithm 1 may not produce a

PO allocation either. This is easily seen in the following example:

𝑁 = [2], 𝑂 = {𝑜1, 𝑜2}; 𝑤1 = 𝑤2 = 1; 𝑣1 (𝑜1) = 0.5, 𝑣1 (𝑜2) = 0.5,

𝑣2 (𝑜1) = 0.8, 𝑣2 (𝑜2) = 0.2. With lexicographic tie-breaking for

both agents and items, our algorithm will give us 𝐴1 = {𝑜1} and
𝐴2 = {𝑜2}, which is Pareto dominated by 𝐴′

1
= {𝑜2} and 𝐴′

2
= {𝑜1}.

4 WEF1 AND PO ALLOCATIONS
Our next question is whether WEF1 notion can be achieved in con-

junction with economic efficiency. When agents have equal weight,

it is known that fairness and efficiency are compatible: Caragian-

nis et al. [11] show that an allocation maximizing the Nash social

welfare satisfies PO and EF1. Unfortunately, this approach is not

applicable to our setting: we show that the MWNW allocation may fail

to be WEF1. In fact, we prove an even stronger negative result: for

any fixed 𝑐 , the allocation may fail to be WEF𝑐 .

Proposition 4.1. Let 𝑐 be an arbitrary positive integer. There
exists a problem instance with two agents having identical additive
valuations for which any MWNW allocation is not WEF𝑐 .

Given that an MWNW allocation may not be WEF1 in our setting, a

natural question is whether there is an alternative approach to guar-

antee the existence of a PO and WEF1 allocation. We first show that

this is indeed the case for two agents: we establish that an allocation

satisfying PO and WEF1 exists and can be computed in polynomial

time for two agents with additive valuations, by adapting the classic

adjusted winner procedure [9] to the weighted setting.

Theorem 4.2. For two agents with additive valuations and arbi-
trary positive real weights, a complete WEF1 and PO allocation always
exists and can be computed in polynomial time.

Algorithm 2 Weighted Adjusted Winner

Require: 𝑣1 (𝑜1)
𝑣2 (𝑜1) ≥

𝑣1 (𝑜2)
𝑣2 (𝑜2) ≥ · · · ≥

𝑣1 (𝑜𝑚)
𝑣2 (𝑜𝑚) w.l.o.g.

1: 𝑑 ← 1.

2: while 1

𝑤1

∑𝑑
𝑟=1 𝑣1 (𝑜𝑟 ) <

1

𝑤2

∑𝑚
𝑟=𝑑+2 𝑣1 (𝑜𝑟 ) do

3: 𝑑 ← 𝑑 + 1.
4: end while
5: 𝐴1 ← {𝑜1, . . . , 𝑜𝑑 }.
6: 𝐴2 ← {𝑜𝑑+1, . . . , 𝑜𝑚}.

Proof sketch. Our proof is constructive: the Weighted Ad-

justed Winner algorithm as delineated in Algorithm 2 produces an

allocation satisfying the theorem statement whenever 𝑣1 (𝑜) > 0

and 𝑣2 (𝑜) > 0 for every 𝑜 ∈ 𝑂 .2 Note that we can safely disregard

items valued at zero by both agents; in case there is an item val-

ued positively by only one agent, we initialize the bundle 𝐴𝑖 with

items valued positively by agent 𝑖 ∈ {1, 2} only, i.e., 𝐴0

1
= {𝑜 ∈ 𝑂 :

𝑣1 (𝑜) > 0, 𝑣2 (𝑜) = 0} and 𝐴0

2
= {𝑜 ∈ 𝑂 : 𝑣2 (𝑜) > 0, 𝑣1 (𝑜) = 0}, then

run Algorithm 2 on the remaining items and use its output (𝐴1, 𝐴2)
to augment the respective bundles. The proof of correctness is a

natural extension of that for the original adjusted winner proce-

dure [9]: if the while loop terminates with 𝑑 = 𝑑∗, then agent 1

(resp., agent 2) becomes weighted envy-free towards agent 2 (resp.,

2
For 𝑑 ≥𝑚 − 1, we set the right-hand side of the while loop condition to zero.
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agent 1) upon dropping item 𝑜𝑑∗+1 (resp., 𝑜𝑑∗ ) from the latter’s

bundle. Since each new while loop condition can be checked in

𝑂 (1) time, the time complexity is dominated by the sorting of the

𝑚 ratios and hence is 𝑂 (𝑚 log𝑚). □

4.1 WEF1 and PO Allocations for 𝑛 ≥ 2 Agents
Having resolved the existence question of PO and WEF1 for two

agents, we now investigate whether such an allocation always

exists for any number of agents, answering the question in the

affirmative. To this end, we employ a weighted modification of the

algorithm by Barman et al. [5], who design a pseudo-polynomial

time algorithm to find a PO and EF1 allocation when agents have

additive valuations in the unweighted setting. As in Barman et al.

[5], we consider the artificial market where each item has a price

and agents purchase a bundle of items with the highest ratio of

value to price, called bang per buck ratio. This allows us to measure

the degree of fairness of a given allocation in terms of the prices.

Formally, a price vector is an𝑚-dimensional non-negative real

vector 𝒑 = (𝑝1, 𝑝2, . . . , 𝑝𝑚) ∈ R𝑂≥0; we call 𝑝𝑜 the price of item
𝑜 ∈ 𝑂 , and write 𝑝 (𝑋 ) = ∑

𝑜∈𝑋 𝑝𝑜 . Let 𝐴 be an allocation and 𝒑 be

a price vector. We call each 𝑝 (𝐴𝑖 ) the spending and
1

𝑤𝑖
𝑝 (𝐴𝑖 ) the

weighted spending of agent 𝑖 . We now define a weighted version of

the price envy-freeness up to one item (pEF1) notion introduced by

Barman et al. [5].

Definition 4.3. Given an allocation 𝐴 and a price vector 𝒑, we
say that 𝐴 is weighted price envy-free up to one item (WpEF1) with
respect to 𝒑 if for any pair of agents 𝑖, 𝑗 , either𝐴 𝑗 = ∅ or 1

𝑤𝑖
𝑝 (𝐴𝑖 ) ≥

1

𝑤𝑗
min𝑜∈𝐴 𝑗

𝑝 (𝐴 𝑗 \ {𝑜}).

The bang per buck ratio of item 𝑜 for agent 𝑖 is
𝑣𝑖 (𝑜)
𝑝𝑜

; we write

the maximum bang per buck ratio for agent 𝑖 as 𝛼𝑖 (𝒑). We refer to

the items with maximum bang per buck ratio for 𝑖 as 𝑖’s MBB items
and denote the set of such items by MBB𝑖 (𝒑) for each 𝑖 ∈ 𝑁 . The

following lemma is a straightforward adaptation of Lemma 4.1 in

[5] to our setting; it ensures that one can obtain the property of

WEF1 by balancing among the spending of agents under the MBB

condition.

Lemma 4.4. Given a complete allocation 𝐴 and a price vector 𝒑,
suppose that allocation𝐴 satisfies WpEF1 with respect to 𝒑 and agents
are assigned to MBB items only, i.e., 𝐴𝑖 ⊆ MBB𝑖 (𝒑) for each 𝑖 ∈ 𝑁 .
Then 𝐴 is WEF1.

It is also known that if each agent 𝑖 only purchases MBB items,

i.e., 𝑖 maximizes his utility under the budget 𝑝 (𝐴𝑖 ), then the corre-

sponding allocation is Pareto optimal.

Lemma 4.5 (First Welfare Theorem; Mas-Colell et al. [22],

Chapter 16). Given a complete allocation𝐴 and a price vector𝒑, sup-
pose that agents are assigned to MBB items only, i.e., 𝐴𝑖 ⊆ MBB𝑖 (𝒑)
for each 𝑖 ∈ 𝑁 . Then 𝐴 is PO.

Now, the problem of finding a PO and WEF1 allocation reduces

to that of finding an allocation and price vector pair satisfying the

MBB condition and WpEF1. Similarly to Barman et al. [5], we develop

an algorithm that alternates between two phases: the first phase

consists of reallocating items from large to small spenders, and the

second phase consists of increasing the prices of the items owned

by small spenders. We show that by increasing prices gradually,

the algorithm converges to an allocation which is guaranteed to be

both PO and WEF1 by Lemmas 4.4 and 4.5.

Theorem 4.6. For any number of agents with additive valuations
and arbitrary positive real weights, there exists a WEF1 and PO alloca-
tion.

5 WWEF1 AND PO ALLOCATIONS
In the previous section, we saw that MWNW allocations may fail to

satisfy WEF1, showing that Caragiannis et al. [11]’s result from the

unweighted setting does not extend to the weighted setting via

WEF1. Do MWNW allocations provide any fairness guarantee? The

answer is positive: we show that a MWNW allocation indeed satisfies

WWEF1, a weaker fairness notion that also generalizes EF1.

Theorem 5.1. For any number of agents with additive valuations
and arbitrary positive real weights, a MWNW allocation is always WWEF1
and PO.

Proof sketch. Let 𝐴 be a MWNW allocation, with 𝑁max being the

subset of agents having strictly positive realized valuations under

𝐴. If it were not PO, there would exist an allocation 𝐴 such that

𝑣𝑖 (𝐴𝑖 ) > 𝑣𝑖 (𝐴𝑖 ) for some 𝑖 ∈ 𝑁 and 𝑣 𝑗 (𝐴 𝑗 ) ≥ 𝑣 𝑗 (𝐴 𝑗 ) for every
𝑗 ∈ 𝑁 \{𝑖}. If 𝑖 ∈ 𝑁 \𝑁max, we would have 𝑣 𝑗 (𝐴 𝑗 ) > 0 for every

𝑗 ∈ 𝑁max ∪ {𝑖}, which contradicts the assumption that 𝑁max is

a largest subset of agents to which it is possible to give positive

valuations simultaneously. If 𝑖 ∈ 𝑁max, then

∏
𝑗 ∈𝑁max

𝑣 𝑗 (𝐴 𝑗 )𝑤𝑗 >∏
𝑗 ∈𝑁max

𝑣 𝑗 (𝐴 𝑗 )𝑤𝑗
, which violates the optimality of the right-hand

side. This proves that 𝐴 is PO.
As in Caragiannis et al. [11], we will start by proving that 𝐴

is WWEF1 for the scenario 𝑁max = 𝑁 and then address the case

𝑁max ≠ 𝑁 . Assume that 𝑁max = 𝑁 . If 𝐴 is not WWEF1, then there

exists a pair of agents 𝑖, 𝑗 ∈ 𝑁 such that 𝑖 has weak weighted envy

towards 𝑗 up to more than one item. Clearly, there must be at least

two items in 𝑗 ’s bundle that 𝑖 values positively. Moreover, 𝑗 must

value these items positively as well — otherwise we can transfer

them to 𝑖 and obtain a Pareto improvement.

Let 𝐴𝑖
𝑗
:= {𝑜 ∈ 𝐴 𝑗 : 𝑣𝑖 (𝑜) > 0}. We construct another allocation

𝐴′ by transferring an item 𝑜∗ (to be chosen later) from 𝑗 to 𝑖 so that

𝐴′
𝑖
= 𝐴𝑖 ∪ {𝑜∗}, 𝐴′𝑗 = 𝐴 𝑗\{𝑜∗}, and 𝐴′𝑟 = 𝐴𝑟 , ∀𝑟 ∈ 𝑁 \{𝑖, 𝑗}. We

have

WNW(𝐴′)
WNW(𝐴) =

(
𝑣𝑖 (𝐴𝑖 ∪ {𝑜∗})

𝑣𝑖 (𝐴𝑖 )

)𝑤𝑖
(
𝑣 𝑗 (𝐴 𝑗\{𝑜∗})

𝑣 𝑗 (𝐴 𝑗 )

)𝑤𝑗

=

(
𝑣𝑖 (𝐴𝑖 ) + 𝑣𝑖 (𝑜∗)

𝑣𝑖 (𝐴𝑖 )

)𝑤𝑖
(
𝑣 𝑗 (𝐴 𝑗 ) − 𝑣 𝑗 (𝑜∗)

𝑣 𝑗 (𝐴 𝑗 )

)𝑤𝑗

=

(
1 + 𝑣𝑖 (𝑜∗)

𝑣𝑖 (𝐴𝑖 )

)𝑤𝑖
(
1 −

𝑣 𝑗 (𝑜∗)
𝑣 𝑗 (𝐴 𝑗 )

)𝑤𝑗

.

First, note that 𝑣 𝑗 (𝑜) > 0, ∀𝑜 ∈ 𝐴𝑖
𝑗
; otherwise the above ratio

for 𝑜∗ with 𝑣 𝑗 (𝑜∗) = 0 equals

(
1 + 𝑣𝑖 (𝑜∗)

𝑣𝑖 (𝐴𝑖 )

)𝑤𝑖

> 1, contradicting

the assumption that 𝐴 is a MWNW allocation. However, even under

this condition, we will show that if agents 𝑖, 𝑗 violated the WWEF1
property, the above ratio would still exceed 1 for some item 𝑜∗.
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Case I. 𝑤𝑖 ≥ 𝑤 𝑗 . Let us pick an item 𝑜∗ ∈ argmin𝑜∈𝐴𝑖
𝑗

𝑣𝑗 (𝑜)
𝑣𝑖 (𝑜)

specifically to transfer from 𝑗 to 𝑖 for changing the allocation from

𝐴 to 𝐴′. This is well-defined by the definition of 𝐴𝑖
𝑗
. Consider[

WNW(𝐴′)
WNW(𝐴)

] 1

𝑤𝑗

=

(
1 + 𝑣𝑖 (𝑜∗)

𝑣𝑖 (𝐴𝑖 )

) 𝑤𝑖
𝑤𝑗

(
1 −

𝑣 𝑗 (𝑜∗)
𝑣 𝑗 (𝐴 𝑗 )

)
where 1 − 𝑣𝑗 (𝑜∗)

𝑣𝑗 (𝐴 𝑗 ) > 0 since 𝑣 𝑗 (𝐴 𝑗 ) > 𝑣 𝑗 (𝑜∗) > 0, and(
1 + 𝑣𝑖 (𝑜∗)

𝑣𝑖 (𝐴𝑖 )

) 𝑤𝑖
𝑤𝑗

≥
(
1 + 𝑤𝑖

𝑤 𝑗
· 𝑣𝑖 (𝑜

∗)
𝑣𝑖 (𝐴𝑖 )

)
from Bernoulli’s inequality, since

𝑣𝑖 (𝑜∗)
𝑣𝑖 (𝐴𝑖 ) > 0 and

𝑤𝑖

𝑤𝑗
≥ 1. As in

Caragiannis et al. [11], simple algebra shows that(
1 + 𝑤𝑖

𝑤 𝑗
· 𝑣𝑖 (𝑜

∗)
𝑣𝑖 (𝐴𝑖 )

) (
1 −

𝑣 𝑗 (𝑜∗)
𝑣 𝑗 (𝐴 𝑗 )

)
> 1

⇔ 𝑣𝑖 (𝐴𝑖 )
𝑤𝑖

<
𝑣𝑖 (𝑜∗)
𝑣 𝑗 (𝑜∗)

(
𝑣 𝑗 (𝐴 𝑗 ) − 𝑣 𝑗 (𝑜∗)

𝑤 𝑗

)
. (3)

The latter inequality is true under our assumptions for the fol-

lowing reasons: Since the “bigger” agent 𝑖 has weak weighted

envy towards the “smaller” agent 𝑗 up to more than one item,

𝑣𝑖 (𝐴𝑖 )
𝑤𝑖

<
𝑣𝑖 (𝐴 𝑗 )−𝑣𝑖 (𝑜∗)

𝑤𝑗
; due to our choice of 𝑜∗,

𝑣 𝑗 (𝑜∗)
𝑣𝑖 (𝑜∗)

≤

∑
𝑜∈𝐴𝑖

𝑗
𝑣 𝑗 (𝑜)∑

𝑜∈𝐴𝑖
𝑗
𝑣𝑖 (𝑜)

≤
∑
𝑜∈𝐴 𝑗

𝑣 𝑗 (𝑜)∑
𝑜∈𝐴 𝑗

𝑣𝑖 (𝑜)
=
𝑣 𝑗 (𝐴 𝑗 )
𝑣𝑖 (𝐴 𝑗 )

,

since

∑
𝑜∈𝐴 𝑗 \𝐴𝑖

𝑗
𝑣 𝑗 (𝑜) ≥ 0 and

∑
𝑜∈𝐴 𝑗 \𝐴𝑖

𝑗
𝑣𝑖 (𝑜) = 0. Plugging 𝑣𝑖 (𝐴 𝑗 ) ≤

𝑣𝑖 (𝑜∗)
𝑣𝑗 (𝑜∗) 𝑣 𝑗 (𝐴 𝑗 ) into the above strict inequality and simplifying, we

obtain (3). But chaining all these inequalities together, we get[
WNW(𝐴′)
WNW(𝐴)

] 1

𝑤𝑗

> 1 ⇒ WNW(𝐴′) > WNW(𝐴) .

This is a contradiction, which shows that 𝐴 is WWEF1 in this case.

Case II. 𝑤𝑖 < 𝑤 𝑗 . We can pick an item 𝑜∗ ∈ argmax𝑜∈𝐴𝑖
𝑗

𝑣𝑖 (𝑜)
𝑣𝑗 (𝑜)

and proceed similarly to Case I, noting that the smaller agent 𝑖

having weak weighted envy towards the bigger agent 𝑗 up to more

than one item implies having
𝑣𝑖 (𝐴𝑖 )+𝑣𝑖 (𝑜∗)

𝑤𝑖
<

𝑣𝑖 (𝐴 𝑗 )
𝑤𝑗

; this leads to

the same contradiction WNW(𝐴′) > WNW(𝐴).
If 𝑁max ⊊ 𝑁 , our argument mirrors the corresponding part of

the proof of Caragiannis et al. [11]’s Theorem 3.2. The key ideas

are: there can be no (weighted) envy towards any 𝑖 ∉ 𝑁max or weak

weighted envy up to more than one item between any two agents

𝑖, 𝑗 ∈ 𝑁max (from the proof for 𝑁max = 𝑁 ); if some 𝑖 ∈ 𝑁 \𝑁max

were not weakly weighted envy-free up to one item towards 𝑗 ∈
𝑁max, we could transfer one item from 𝑗 to 𝑖 and keep both 𝑖 and

𝑗 ’s valuations positive, contradicting the maximality of 𝑁max. □

6 WEF1 AND OTHER FAIRNESS NOTIONS
An allocation that satisfies multiple fairness guarantees is naturally

desirable but often elusive in the setting with indivisible items.

Hence, we will now explore the implications of the WEF1 property
for the other fairness criteria defined in Section 2.

For additive valuations, Aziz et al. [3] provide a polynomial-time

algorithm for computing a PO and WPROP1 allocation, whereas we

prove the existence of PO and WEF1 allocations in Section 4.1. It

is straightforward to show that, in the unweighted scenario, any

complete envy-free allocation is also proportional for subadditive

valuations and any complete EF1 allocation is PROP1 for additive
valuations (see, e.g., [3]). This begs the question: does the WEF1
property along with completeness also imply the WPROP1 condition?
Unfortunately, the answer is no in general — in fact, we establish a

stronger result in the following proposition.

Proposition 6.1. For any number 𝑛 ≥ 2 of agents with additive
valuations and arbitrary positive real weights, any complete WEF1
allocation is WPROP(𝑛 − 1). However, for any 𝑛 ≥ 3, there exists an
instance in which no complete WEF1 allocation is WPROP(𝑛 − 2).

For 𝑛 symmetric (unweighted) agents with additive valuations,

Amanatidis et al. [1, Prop. 3.6] show that any complete EF1 alloca-

tion is
1

𝑛 -MMS and this approximation guarantee is tight. Moreover,

as Caragiannis et al. [11, Thm. 4.1] prove, every maximum Nash

welfare allocation, which is EF1 and PO, is also Θ(1/
√
𝑛)-MMS. This

means that, for a small number of agents, the EF1 property pro-

vides a reasonable approximation to MMS fairness. However, for any
number of agents with asymmetric weights, the WEF1 condition

does not imply any positive approximation of the WMMS guarantee,

even in conjunction with Pareto optimality.

Proposition 6.2. For any constant 𝜖 > 0 and any number 𝑛 ≥ 2

of agents, there exists an instance with additive valuations in which
some PO and WEF1 allocation is not 𝜖-WMMS.

For the special case of 𝑛 = 2 agents, the first part of Proposi-

tion 6.1 implies that the output of the Weighted Adjusted Winner

Algorithm in Section 4, which is a complete WEF1 allocation, is

WPROP1; however, we show that it comes with no guarantee on the

WMMS approximation.

Proposition 6.3. The output of the Weighted Adjusted Winner
procedure for two agents (Algorithm 2) is always WPROP1. However,
for any constant 𝜖 > 0, it is not necessarily 𝜖-WMMS.

7 EXPERIMENTS
Thus far, we have thoroughly investigated the existence and com-

putational properties of approximations to weighted envy-freeness
(WEF). While the WEF notion itself obviously cannot always be satis-

fied with indivisible items, it is still interesting to ask how “likely”

it is for a problem instance with weighted agents to admit a WEF
allocation, and compare that to the unweighted setting.

In this section, we approach this question experimentally by

generating sets of 1000 instances with 𝑛 ∈ {2, 3, 4, 5} agents and
𝑚 ∈ {2, 3, . . . , 9} items wherein each agent’s value for each item is

drawn independently from a distribution. We determine by exhaus-

tive search over all allocations whether a WEF allocation exists for

each instance for two different weight vectors:𝑤𝑖 = 1 (unweighted)

and𝑤𝑖 = 𝑖 (weighted) for every 𝑖 ∈ 𝑁 . Figure 1 shows the results

for two common distributions. The main takeaway is that weighted

envy-free allocations are almost always harder to find than their

unweighted counterparts. This illustrates the difficulty of achiev-

ing weighted envy-freeness and further justifies our quest for the

(strong and weak) relaxations of the WEF property.
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(a) Uniform ditribution on [0, 1] (b) Exponential distribution with mean 1

Figure 1: Percentages of instances that admit EF and WEF allocations for two different valuation distributions in our experi-
ments; 𝑛-UW, depicted by dashed curves (resp., 𝑛-W, depicted by solid curves) refers to a scenario with 𝑛 unweighted (resp.,
weighted) agents with equal weights (resp., weights proportional to agent indices) in both graphs.

8 DISCUSSION AND FUTUREWORK
In this paper, we have defined and characterized natural extensions

of envy-freeness up to one good (EF1) for agents with asymmetric

weights. We conclude with some hurdles we faced while trying to

extend weighted envy concepts beyond additive valuations. First,

we show that even for simple non-additive valuations, the existence

of a WEF1 or WWEF1 allocation can no longer be guaranteed.

Proposition 8.1. There exists an instance with𝑛 = 2 such that one
of the agents has a (normalized and monotone) submodular valuation,
the other agent has an additive valuation, and a complete WWEF1
allocation (or a complete WEF1 allocation) does not exist.

Proof. Suppose 𝑁 = [2]; 𝑤1 = 1 and 𝑤2 = 2; 𝑚 > 5; the

valuation functions are: 𝑣1 (𝑆) = |𝑆 | and 𝑣2 (𝑆) = 1 for every 𝑆 ∈
2
𝑂\∅, 𝑣1 (∅) = 𝑣2 (∅) = 0. The functions are obviously normalized

and monotone; 𝑣1 (·) is additive and 𝑣2 (·) is submodular (agent

2 is indifferent among all non-empty bundles). Note that for any

allocated bundles𝐴1 and𝐴2 such that |𝐴1 | ≥ 2 and𝐴2 is non-empty,

𝑣2 (𝐴2)/𝑤2 = 1/2 but 𝑣2 (𝐴1\{𝑜})/𝑤1 = 1 > 𝑣2 (𝐴2)/𝑤2 for every

𝑜 ∈ 𝐴1, and 𝑣2 (𝐴2 ∪ {𝑜})/𝑤2 = 1/2 < 𝑣2 (𝐴1)/𝑤1 for every 𝑜 ∈ 𝐴1.

Thus, the only way to make agent 2 (weakly) weighted envy-free

up to one item towards agent 1 is to ensure that |𝐴1 | ≤ 1. Assume

without loss of generality that 𝐴1 = {𝑜1} (if 𝐴1 = ∅, agent 1 will be
even worse off in the argument that follows). To make the allocation

complete, we must have 𝐴2 = 𝑂\{𝑜1}, so that 𝑣1 (𝐴1) = 1 and

𝑣1 (𝐴2) = |𝐴2 | =𝑚 − 1. Since agent 1 has an additive valuation and

a smaller weight than agent 2, she would be weakly weighted envy-

free up to one item towards agent 2 if and only if there is an item

𝑜 ∈ 𝐴2 such that 𝑣1 (𝐴1 ∪ {𝑜})/𝑤1 ≥ 𝑣1 (𝐴2)/𝑤2 = (𝑚 − 1)/2 > 2,

since𝑚 > 5. However, for any 𝑜 ∈ 𝐴2, we have 𝑣1 (𝐴1 ∪ {𝑜})/𝑤1 =

𝑣1 ({𝑜1, 𝑜}) = 2. Hence the allocation cannot be WWEF1. □

One of the key ideas in the proof of Theorem 5.1 is what we

can call the transferability property: if agent 𝑖 has (weighted) envy

towards agent 𝑗 under additive valuations, then there is at least

one item 𝑜 in 𝑗 ’s bundle for which agent 𝑖 has positive (marginal)

utility, i.e., the item 𝑜 could be transferred from 𝑗 to 𝑖 to augment

𝑖’s realized valuation. Unfortunately, this property no longer holds

for non-additive valuations.

Proposition 8.2. There exists an instance such that an agent 𝑖
with a non-additive valuation function has weighted envy towards
agent 𝑗 under allocation𝐴, but there is no item in 𝑗 ’s bundle for which
𝑖 has positive marginal utility, i.e., �𝑜 ∈ 𝐴 𝑗 such that 𝑣𝑖 (𝐴𝑖 ∪ {𝑜}) −
𝑣𝑖 (𝐴𝑖 ) > 0.

Proof. Consider the example in Proposition 8.1. Under any al-

location with |𝐴1 | =𝑚 − 1 and |𝐴2 | = 1, agent 2 has weighted envy

towards agent 1 since 𝑣2 (𝐴2) = 1/2 < 1 = 𝑣2 (𝐴1)/𝑤1. However,

𝑣2 (𝐴2 ∪ {𝑜}) = 1 = 𝑣2 (𝐴2) for every 𝑜 ∈ 𝐴1. □

In addition to exploring weighted envy-based fairness notions

for non-additive (e.g., submodular) valuations, other potential di-

rections for future research include identifying conditions under

which WEF allocations are likely to exist (Section 7)
3
and investigat-

ing weighted envy in the allocation of chores (items with negative

valuations). It would also be interesting to consider weighted ver-

sions of other envy-freeness approximations, such as EFX [11, 23].
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This has been done for envy-freeness in the unweighted setting [16, 21].
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