
Intention-Aware Multiagent Scheduling
Michael Dann
RMIT University

michael.dann@rmit.edu.au

John Thangarajah
RMIT University

john.thangarajah@rmit.edu.au

Yuan Yao
Zhejiang University of Technology

yaoyuan@zjut.edu.cn

Brian Logan
University of Nottingham

brian.logan@nottingham.ac.uk

ABSTRACT
The Belief Desire Intention (BDI) model of agency is a popular and
mature paradigm for designing and implementing multiagent sys-
tems. There are several agent implementation platforms that follow
the BDI model. In BDI systems, the agents typically have to pursue
multiple goals, and often concurrently. The way in which the agents
commit to achieving their goals forms their intentions. There has
been much work on scheduling the intentions of agents. However,
most of this work has focused on scheduling the intentions of a
single agent with no awareness and consideration of other agents
that may be operating in the same environment. They schedule
the intentions of the single-agent in order to maximise the total
number of goals achieved. In this work, we investigate techniques
for scheduling the intentions of an agent in a multiagent setting,
where an agent is aware (or partially aware) of the intentions of
other agents in the environment. We use a Monte Carlo Tree Search
(MCTS) based approach and show that our intention-aware sched-
uler generates better outcomes in cooperative, neutral (selfish) and
adversarial settings than the state-of-the-art schedulers that do not
consider other agents’ intentions.

KEYWORDS
Intention scheduling; Multiagent scheduling; Goal reasoning

ACM Reference Format:
Michael Dann, John Thangarajah, Yuan Yao, and Brian Logan. 2020. Intention-
Aware Multiagent Scheduling. In Proc. of the 19th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland,
New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
The Belief-Desire-Intention (BDI) agent paradigm is a well estab-
lished agent development paradigm with solid theoretical foun-
dations [18] and practical implementations in the form of agent
programming languages (e.g. JACK [35], JadeX[17] and Jason [3]).
In the BDI paradigm, the behaviour of an agent is specified in terms
of beliefs, goals, and plans – beliefs are what the agent knows about
the environment and itself; goals are the states the agent desires
to achieve; and plans are the means by which the agent achieve its
goals. For each top-level goal the agent has one or more pre-defined
plans that can be executed to achieve the goal. Each plan can in-
clude (primitive) actions and/or sub-goals. Each subgoal in turn has

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

plans that can be used to achieve it. This relationship between a top
level goal, its plans and sub-goals defines a tree structure for each
top-level goal, which is termed the goal-plan tree (GPT) [26, 27].

During the execution of a goal, the agent will select plans to
achieve the goal and subsequently further plans to achieve any
subgoals, which in essence is progressively selecting a path through
the goal’s GPT structure. The path that the agent commits to forms
the intentions of the agent and thus the GPT structures can be
viewed as a model of the agent’s potential intentions. The GPT
structures can therefore be used to schedule the agent’s intentions
in order to maximise the number of goals achieved, for example.
Logan et al. [15] proposed the Intention Progression Competition,
which aims to evaluate state-of-the-art approaches to the intention
scheduling problem that utilise these GPT structures.

Previous work has used GPTs to schedule the intentions of an
agent using techniques such as summary-information-based sched-
uling [25, 26], coverage-based scheduling [28, 32], and Monte Carlo
Tree Search (MCTS)-based scheduling [37, 40].

All of these existing works however, have focused on scheduling
the intentions of a single agentwith no awareness and consideration
of other agents that may be operating in the same environment.
The schedulers work on the assumption that the intentions of the
single agent are to be scheduled cooperatively, i.e. so as to maximise
the total number of goals achieved.

In this paper, we present the multiagent intention-aware sched-
uler, IA, a novel framework for scheduling the intentions of an agent
in a multiagent setting, where an agent is aware (or partially aware)
of the intentions of other agents in the environment. IA adapts and
extends the work of Yao et al. [37] to a multiagent setting. We do
this not only because their work was shown to outperform other
approaches, but because the MCTS-based approach is inherently
well-suited to the multiagent case. In the multiagent setting, we
consider the case where each agent is aware of the other agents’
intentions, in the form of the set of GPT structures. In this work, we
do not explore how these may be attained or inferred, and assume
they are a true reflection of the other agent’s intentions. We do
however consider the case of partial vision – where only some of
the other agent’s intentions are known.

We evaluate our approach in three types of multiagent setting
that are characterised by the nature of the agents’ behaviour to-
wards one another:
• allied, where the agents collaborate to maximise the combined
goal achievement;
• neutral, where they neither collaborate nor compete but are only
interested in pursuing their own goals (i.e. they act selfishly); and
• adversarial, where the agents compete with each other.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

285

Whilst there could be systems with a combination of agent be-
haviour types, we present these distinct cases for simplicity and
clarity to better understand the effect of our approach in these
different types of systems. We benchmark IA in terms of goal com-
pletions, against the single-agent schedulers mentioned above and
also the standard round-robin, first-in-first-out, and random sched-
ulers. We show that IA outperforms all of them.

The remainder of the paper is structured as follows. In Section 2
we present a brief overview of BDI agents and closely related work
on intention scheduling, including the MCTS-based scheduler of
Yao et al. We describe our approach and the IA scheduler in Section
3. The evaluation of our approach, including the experimental setup
and findings are presented in Section 4. We discuss related work in
Section 5 and conclude with some future directions.

2 BACKGROUND
As explained above, the behaviour of a BDI agent is specified in
terms of beliefs, goals, and plans. We assume that the agent’s beliefs
and goals are represented by sets of literals. Each plan is of the
form: e : ψ ← δ , where e is the event goal the plan is going
to achieve, ψ is the context condition, and δ is plan body. The
context condition is a set of literals that must be true for the plan
to be considered an applicable means of achieving e in the current
context. The plan body consists of a sequence of steps that are either
primitive actions or subgoals. Each primitive action is specified by
its precondition and postcondition which are respectively the states
of the environment that must hold immediately before the action is
executed, and the set of literals that are brought about by executing
the action.

The relationship between goals, plans and actions can be rep-
resented by a goal-plan tree [25, 26, 36]. The root of a goal-plan
tree is a top-level goal (goal-node), and its children are plan nodes

G0:GoToAirport
Effects: AtAirport

P0:DriveToAirport
Pre: HaveCar

Post: AtAirport

P1:TaxiToAirport
Pre: HaveMoney
Post: AtAirport

A0:WalkToCar
Pre: HaveCar

Post: CloseToCar

A1:EnterCar
Pre: CloseToCar
Post: InTheCar

G1�DriveOverAirport
Effects: AtAirport

P3: ViaGasStation
Pre: LowGas, InTheCar

Post: AtAirport

A3:DriveOverGS
Pre:LowGas,InTheCar

Post: AtGasStation

A4: FillUp
Pre: AtGasStation
Post: EnoughGas

P2: DirectlyToAirport
Pre: EnoughGas�

InTheCar
Post: AtAirport

A2: DriveOverAirport
Pre: EnoughGas,

InTheCar
Post: AtAirport

A5: DriveOverAirport
Pre:EnoughGas,InTheCar

Post: AtAirport

OR

OR

AND

AND

A6:Parking
Pre:AtAirport

Post:CarParked

…..

Figure 1: Example GPT; circles, rectangles and octagons rep-
resent respectively goal, plan and action nodes.

representing the potential plans to achieve the top-level goal. Each
plan may contain actions (action nodes) and subgoals (goal-nodes).
The leaf nodes are action-nodes representing the primitive actions
that directly change the state of the environment. An example
goal-plan tree for the goal G0 of going to the airport is shown in
Figure 1. There are two plans to achieve G0, P0 and P1, only one
of which needs to be executed to achieve the goal. Therefore, in
a goal-plan tree, the children of a goal-node can be seen as “OR”
nodes. In contrast, all the subgoals and actions in a plan must be
achieved or executed successfully in order for the plan to succeed.
Hence, the children of a plan-node can be seen as “AND” nodes. For
example, the plan P0 contains four execution steps, i.e., WalkToCar,
EnterCar, DriveOverAirport and Parking. If we want P0 to succeed
such that the top-level goal G0 is achieved, then all these steps
need to be executed in sequence. For an action to be executable, its
preconditions must hold in the current environment.For example,
the action A1 has the precondition that the agent is close to the car
and executing the action has the effect of the agent being in the car.

The progression of an agent’s intentions can be seen as choosing
an appropriate interleaving of paths through the goal-plans trees
corresponding to the agent’s top-level goals.

2.1 Single-Agent Intention Scheduling
A number of GPT-based approaches to scheduling the intentions
of a single agent have been proposed in the literature. (We discuss
other approaches to intention scheduling in Section 5.)

One strand of work involves reasoning about possible interac-
tions between intentions. Thangarajah et al. [25, 26] describe an
approach based on summary information that avoids conflicts by
reasoning about necessary and possible preconditions and postcon-
ditions of different ways of achieving a goal. They give algorithms
for computing summary information at compile time, and for dy-
namically updating it at run-time. They also present mechanisms
to determine whether a newly adopted (sub)goal will definitely be
safe to execute without conflicts, will definitely result in conflicts,
or may result in conflicts. If the goal cannot be executed safely,
execution of the intention is deferred.

Another approach that uses the goal-plan tree structure is the
coverage-based approach proposed by Thangarajah et al. [28]. The
coverage of an intention is defined as the percentage of world
states for which there is some applicable plan for any subgoal
within an intention. In the coverage-based approach, the intention
with the lowest coverage, i.e., the highest probability of becoming
non-executable due to changes in the environment, is selected for
execution. Waters et al. [32, 33] implemented two versions of the
coverage-based approach, and showed a significant improvement
compared to round-robin and FIFO in scheduling agent’s intentions
in dynamic environments.

Arguably the state-of-the-art in GPT-based intention scheduling
for a single agent is that of Yao et al. [37–40]. They present an
anytime stochastic approach to intention progression based on
Monte-Carlo and Single-Player Monte-Carlo Tree Search [6, 14,
20], which uses random sampling to guide the expansion of the
search tree. Given a set of goal-plan trees representing an agent’s
intentions, the MCTS-based scheduler estimates how good a next
step will be based on random sampling of possible interleaving of

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

286

paths through each goal-plan tree. The estimation results of each
node becomemore andmore accurate as the search tree is iteratively
expanded. When the algorithm halts, the step which leads to the
best child node of the root node is returned for execution. In [37],
Yao et al. show that their approach outperforms most existing
methods used for intention progression including first-in-first-out,
round-robin, summary information approaches and coverage-based
approaches.

2.2 MCTS-based Intention Scheduling
In this section, we briefly recall the MCTS-based scheduler of Yao
et al. [37] which forms the starting point for our approach to sched-
uling in a multiagent setting, as presented in Section 3.

The MCTS-based intention scheduler takes 4 parameters as
input: (1) The current state of the environment, E. (2) A set of
goal-plan trees and their step pointer, corresponding to the agent’s
intentions, I . (3) The number of node expansions to be performed, α .
(4) The number of simulations performed per node expansion, β .
The parameters E and I represent the agent’s current state, while
α and β together define the computational budget, i.e., how much
effort is to be spent on intention selection.

The root node of the MCTS tree, n0, captures the agent’s cur-
rent intentions I and the current state of the environment E. The
algorithm then iteratively builds a search tree from n0 based on
stochastic simulations. The edges in the search tree represent either
the selection of a plan or the execution of an action, which connect
the (parent) node representing the original state and the (child)
node, which is the state resulting from the plan selection or subgoal
selection. In addition, each node in the MCTS tree contains not only
the agent’s current intention base and the environment states, but
also the statistics resulting from the random simulations, including
the total simulation value of the node and the number of times the
node has been visited.

The algorithm for building the search tree consists of 4 phases:

Selection: In the selection phase, the leaf node ne with the great-
est urgency is selected for expansion. A policy called UCT (Upper
Confidence Bound for Trees) is used to determine the urgency, by
balancing the exploration of less visited nodes with the exploitation
of high reward nodes.

Expansion: A list of nodes representing the state after execut-
ing one step from ne are generated and added as the children of ne .
Each child represents a different choice of plan or intention.

Simulation:After the expansion phase, one of the newly generated
child nodes ns is selected for random simulation. The simulation
starts from the selected node ns , and continues via the random
selection of executable steps until a terminal state is reached, i.e.,
a state where all intentions have been achieved or the remaining
intentions cannot be executed any further. An action or a plan
is executable if its precondition or context condition holds in the
current environment. When a terminal state is reached, the simu-
lation stops and a reward value based on the evaluation function
is returned. The evaluation function represents the criteria used
to measure the performance of the agent and can be tailored for

different problem domains. For example, one criteria used in [37]
is the fairness in achieving the agent’s top-level goals.

Back-propagation: Finally, after β simulations, the results are
back-propagated from ns to all nodes on the path to the root node.

The MCTS-based intention scheduler runs α iterations and then
returns the step leading to the child node with the most favourable
simulation statistics.

3 OUR APPROACH
In order to extend previous work to the multiagent setting as seam-
lessly as possible, we assume that the agents act in a turn-based
manner, as outlined in Algorithm 1. The agents are also assumed to
act in a decentralised manner, such that they may use completely
different scheduling strategies, and no agent knows exactly how
any other agent is going to schedule its intentions. For a given
agent acting in this environment, the intention scheduling problem
boils down to finding a scheduleAction() method that yields strong
performance with respect to its own objective (which may differ
from the objectives of the other agents).

As explained in the introduction, previous methods for sched-
uling BDI agents are not designed for multiagent environments.
However, since Yao and Logan’s approach [37] is based on MCTS,
which is known to perform well in many multiplayer games [4, 23],
we hypothesise that it ought to be adaptable to this setting. Our
central idea is just to replace the single player logic in Yao and Lo-
gan’s scheduler with the logic in multiplayer MCTS. However, this
high-level explanation belies a number of subtle changes that must
be made to the agent model, which we describe in detail below.

3.1 IA: Intention-Aware MCTS Scheduling
Since our approach is based on multiplayer MCTS, which involves
simulating the behaviour of other agents, it requires a model of how
the other agents act. In multiplayer MCTS, it is assumed during the
selection phase that external agents will seek to maximise their own
objective functions. Therefore, our model must include assumptions
about what these objectives are. For example, in a team-oriented
task, one might assume that all agents have the same objective;
namely, to maximise the total number of team goals completed.
However, in a less team-oriented task, such as driving a car in
heavy traffic, one might expect other agents to behave somewhat

Algorithm 1 Environment Loop
1: initialise environment state, s
2: while any agent has valid actions remaining do
3: for each aдent ∈ aдents do ▷ turn-based scheduling
4: a ← aдent .scheduleAction ()
5: if a , null and preconditions of a are met then
6: update s according to a
7: else
8: do nothing ▷ ignore null/invalid actions
9: end if
10: end for
11: end while

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

287

selfishly, i.e. to favour the completion of their own goals over the
completion of other agents’ goals.

Under our approach, we capture this information via two compo-
nents. First, we assume that for each of the n agents in the environ-
ment, the scheduler has a model of that agent’s plans, structured
as a forest of goal-plan trees. We denote the forest modelling agent
i’s plans as Ti :

Ti = {t
1
i , t

2
i , . . . , t

Ni
i } (1)

where Ni is the total number of top-level goals attributed to agent i ,
and each tki is a goal-plan tree for achieving the kth goal. Note that
agent i may in reality have fewer or greater than Ni top-level goals,
and that even if the goal of tki corresponds to a true goal of agent i ,
some details of the modelled GPT may be inaccurate. The question
of howwell our scheduler performs under faulty assumptions about
the other agents’ intentions is explored in our later experiments.

The second component of our model, which aims to capture the
overall objective of each agent (with respect to both its own goals
and the goals of the other agents acting in the environment) is a
payoff matrix, P:

P =



P11 P12 P13 . . . P1n
P21 P22 P23 . . . P2n
...

...
...

. . .
...

Pn1 Pn2 Pn3 . . . Pnn



(2)

where Pi j = ⟨p1i j ,p
2
i j , . . . ,p

Nj
i j ⟩ are the assumed payoffs that agent

i receives upon the completion of agent j’s goals. Payoffs may be
positive (implying a shared objective), zero (implying neutrality) or
negative (implying that agent i would prefer agent j not to complete
the corresponding goal).

Under this model, the total payoff to an agent at the end of a
simulation depends on the completion status of all agents’ goals.
Let Cj be a binary vector that captures the completion status of
agent j’s goals, i.e.

Cj = ⟨c
1
j , c

2
j , . . . , c

Nj
j ⟩ (3)

where ckj =



1, if tkj ∈ Tj has been completed
0, otherwise

(4)

Agent i’s total payoff can then be written as:

payoffi =
n∑
j=1
Pi j · Cj (5)

where the sum is taken over all agents in the environment.
In the selection phase of MCTS, actions are determined by max-

imising the UCB1 value [4], which is calculated by summing the
average payoff with an exploration bonus:

UCB1 value =
sum(payoffs)

n
+ c

√
2 lnN
n

(6)

where c is an exploration constant, n is the number of times the ac-
tion has been tried, N is the total number of simulations performed
so far, and payoffs are calculated according to Equation 5. In our
experiments we set c to the standard value of

√
2; we also tried

doubling and halving this value to little effect.
We name the overall scheduling approach, IA.

3.2 Assumptions
One of the main assumptions made in IA is that the scheduling
is turn-based. An alternative approach would be to add execution
times to actions, as in Yao et al.’s work [39], and let each agent act
whenever it is free. However, this would require an approach to
handling environment variable conflicts, i.e. when two agents are
attempting to modify the same environment variable simultane-
ously. Since temporal aspects are not the main focus of this work,
we deliberately avoid this complication.

Another requirement of our approach is that the scheduler can
somehow infer the progress of the other agents’ GPTs, so that it
knows the starting point for the simulations. In this work, we take
a simple approach: First, we assume that the scheduler can observe
all environment variable changes. Then, when an action is taken
by some external agent, it either:

(i) conforms to the scheduler’s model of that agent, i.e. the action
taken was possible under the scheduler’s model, and implies
that the external agent progressed a particular intention. The
scheduler then records the progress of that intention; or

(ii) does not conform to the scheduler’s model of the external
agent, in which case the scheduler does not record an update.

A more sophisticated approach would be to somehow maintain a
probability distribution over the other agents’ statuses and sample
from that distribution at the beginning of the simulations, though
we leave this as an idea for future work.

Finally, one additional consideration in multiagent scheduling
is that it may not always be beneficial for an agent to progress an
intention, since doing so may obstruct an allied agent, or assist
an adversary. To account for this, we allow schedulers to pass. In
preliminary experiments, this occasionally led to stalemates, where
all schedulers passed repeatedly. We resolved this by terminating
the task if all schedulers passed three times in a row.

4 EXPERIMENTS
In this section, we investigate the properties of our proposed sched-
uler by conducting a series of experiments.

4.1 Experimental Setup
While IA can in theory handle environments containing any num-
ber of agents, we limited our study to two-agent environments in
order to simplify analysis. To investigate the behaviour of IA under
different payoff schemes, we considered three configurations:
• Allied (Section 4.2). IA is incentivised to behave in a team-oriented
manner, receiving a +1 payoff whenever either agent completes
a goal. An example of where such scenarios might arise is a team
robotics task where the behaviour of all robots is known, but not
all of them can be reprogrammed to act under a single scheduler.
• Neutral (Section 4.3). IA is configured to behave “selfishly”, re-
ceiving a +1 payoff whenever it completes a goal, but 0 payoff
whenever the other agent completes a goal. This scenario is mo-
tivated by tasks involving a limited resource, where agents will
naturally interfere with each other by pursuing their intentions.
• Adversarial (Section 4.4). IA still receives a +1 payoff for com-
pleting its own goals, but is also encouraged to obstruct the other
agent via a -1 payoff whenever the other agent completes a goal.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

288

An example scenario is a capture-the-flag game, where each team
knows roughly the high-level strategies of the other team.

Note that the individual payoff values need not be in {-1, 0, +1}, nor
are the above the only possible alliance types; they were merely
chosen as a diverse set of scenarios.

To generate goal-plan trees for our experiments, we used the
same generator as Yao and Logan [37]. This generator was also used
for the 2019 Intention Progression Competition1, and is designed
to generate non-trivial tasks that include conflicting goals and
actions. In keeping with our assumption that the environment is
turned-based, the actions in the generated GPTs are not durative.
It is possible for an agent to block another agent’s future action
by violating its preconditions, but it is impossible to violate the
preconditions of an action during its execution. For the most part,
we used the same generator settings as in Section 6.1.1 of Yao and
Logan’s work [37]. The generated GPTs had a depth of 5 and one
subgoal per plan. Each forest contained 12 GPTs, with 6 assigned to
each scheduler in our two-agent experiments. Each GPT contained
either one or two plans, with a 50% chance of each.2

The first key question we sought to answer was whether IA’s
intention-awareness would actually give it an advantage in prac-
tice. To answer this, we benchmarked against a number of different
single-agent schedulers from previous work. These “naïve” sched-
ulers simply progress their own intentions, ignoring those of other
agents. They still witness environment variable changes caused
by other agents, but cannot anticipate these changes. The specific
schedulers we benchmarked against were as follows:
• Naïve MCTS. Our implementation of this scheduler was taken
from Yao and Logan [37]. It can be thought of as an “intention-
unaware” version of IA.
• First in, First out (FIFO). FIFO selects the first intention in its
GPT forest that is progressable, then continues progressing that
intention until it is completed or no longer progressable. It keeps
repeating this process until no intentions are progressable.
• C0 and C1. These schedulers are based on the coverage heuristic,
as explained in Section 2.1. C1 always progresses the intention
with the least coverage, while C0 is essentially a hybrid between
C1 and FIFO: It selects the intention with the least coverage,
then progresses that intention until it is completed or no longer
progressable. Our implementations are exactly the same as in
Yao and Logan [37].
• Round robin (RR). Iterates through the intentions in turn, skip-
ping intentions that are unprogressable.
• Random. Randomly selects a progressable intention. This is the
same scheduling approach used to generate the rollouts in the
simulation phase of IA.

Besides serving as baselines, the above schedulers also serve as
different partner types in our experiments.

On the presumption that intention-awareness would prove ben-
eficial in at least some cases, we sought to investigate whether the
edge would persist if IA was given only partial knowledge of the
other agent’s intentions. To do so, we configured two versions of
IA: Full vision, which sees all of the other agent’s GPTs, and partial

1https://www.intentionprogression.org/
2Yao and Logan vary the chance of there being one plan through 0–75%. We fix this
value to 50% as a happy medium, and to avoid an excessive number of configurations.

vision, which sees only half of the other agent’s GPTs. The partial
vision scheduler sees 9 GPTs in total: Its own 6 GPTs, plus 3 belong-
ing to the other agent. Moreover, it only receives payoffs for the
completion of goals that it is aware of.

Finally, we sought to investigate how much IA’s performance
would be affected by its assumption regarding the other agent’s
objective; namely, by whether IA expects the other agent to behave
selfishly or in a team-oriented manner. Accordingly, we ran the
allied and neutral experiments twice: Once with IA expecting the
other agent to maximise the neutral objective, and once with it
expecting the other agent to maximise the allied objective. In the
adversarial experiments, IA was configured to expect adversarial
behaviour from the other agent, since this is arguably the most
natural assumption in adversarial domains.

Following Yao and Logan [37], we set α = 100 and β = 10 for all
MCTS-based schedulers (full vision IA, partial vision IA and naïve
MCTS). To account for the fact that first agent to act will generally
complete more intentions on average, we ran two-sided “mirror
matches”, with the GPT assignments and first agent to act swapped
for the second leg. All results were obtained by averaging over 100
randomly generated GPT forests.

4.2 Allied
Results for the allied experiment are displayed in Table 1. The top
third of the table shows the average total team score when the
scheduler to the left was teamed with the various allies along the
top. The remaining sections of the table break down the score into
the average number goals that the scheduler itself completed, and
the average number of goals that its ally completed.

As indicated by the figures in bold, the highest total team score
for each ally type was achieved by either full vision IA or partial
vision IA. The edge held by the intention-aware schedulers was
particularly pronounced when partnered with weak allies. For ex-
ample, when partnered with the random scheduler, full vision IA’s
average team score was 10.0, which is almost a full point higher
than what any other scheduler achieved. As the score breakdown
highlights, this was not only because IA completed more of its own
goals; it was also because IA enabled its allies to complete more
goals, despite having no direct control over its allies’ decisions. In
the case above, the random scheduler completed roughly a full
goal more on average when allied with full vision IA compared to
when it was allied with naïve MCTS. This is a very strong result,
as it implies that including an intention-aware agent on a team can
potentially elevate the performance of other agents, even without
reconfiguring them.

The results shown in Table 1 were generated with IA configured
to expect allied behaviour from its partner. That is, it was assumed in
the MCTS simulations that the other agent would seek to maximise
the total team score. In reality though, the naïve schedulers are
inherently neutral, since they are unaware of other agents. For this
reason, we suspected that IA might perform better if configured to
expect neutral behaviour from its partner. However, when we reran
the experiment with this configuration, the results were much the
same. We omit the full results here to save space, but to briefly
summarise: Under the neutral behaviour assumption, full vision IA
achieved ≈ 0.2 more team goals when allied with round robin, but

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

289

https://www.intentionprogression.org/

Ally

IA full IA partial Naïve MCTS FIFO C0 C1 Round Rob. Random

IA full 11.125 11.239 11.188 10.148 10.631 10.420 9.233 10.034
IA partial 11.239 11.153 10.842 10.158 10.468 10.061 8.767 9.176
Naïve MCTS 11.188 11.000 10.775 9.967 10.396 9.983 8.733 9.172
FIFO 10.148 10.222 9.967 9.350 9.783 9.256 7.711 8.422
C0 10.631 10.585 10.396 9.783 10.272 9.683 7.539 8.850
C1 10.420 10.278 9.983 9.256 9.683 9.261 7.522 8.589To

ta
lS
co
re

Round Rob. 9.233 8.938 8.733 7.711 7.539 7.522 8.406 7.783
Random 10.034 9.688 9.172 8.422 8.850 8.589 7.783 7.544

IA full 5.563 5.591 5.489 5.409 5.369 5.426 5.193 5.398
IA partial 5.648 5.577 5.455 5.460 5.358 5.398 5.284 5.420
Naïve MCTS 5.699 5.545 5.387 5.269 5.286 5.320 5.250 5.417
FIFO 4.739 4.761 4.698 4.675 4.683 4.639 4.017 4.639
C0 5.261 5.227 5.110 5.100 5.136 5.089 4.022 5.061
C1 4.994 4.881 4.663 4.617 4.594 4.631 4.094 4.722O

w
n
Sc
or
e

Round Rob. 4.040 3.653 3.483 3.694 3.517 3.428 4.203 3.506
Random 4.636 4.267 3.756 3.783 3.789 3.867 4.278 3.772

IA full 5.563 5.648 5.699 4.739 5.261 4.994 4.040 4.636
IA partial 5.591 5.577 5.387 4.698 5.110 4.663 3.483 3.756
Naïve MCTS 5.489 5.455 5.387 4.698 5.110 4.663 3.483 3.756
FIFO 5.409 5.460 5.269 4.675 5.100 4.617 3.694 3.783
C0 5.369 5.358 5.286 4.683 5.136 4.594 3.517 3.789
C1 5.426 5.398 5.320 4.639 5.089 4.631 3.428 3.867A

lly
Sc
or
e

Round Rob. 5.193 5.284 5.250 4.017 4.022 4.094 4.203 4.278
Random 5.398 5.420 5.417 4.639 5.061 4.722 3.506 3.772

Table 1: Allied setting. The best total team score with each ally type is bolded. Since each scheduler was assigned 6 GPTs, the
maximum possible team score was 12.

≈ 0.2 less team goals when allied with naïve MCTS and random.
All other differences were negligible. The results for partial vision
IA differed by similarly small magnitudes. Despite not matching
our expectations, these results are positive because they imply that
IA is not overly reliant on the accuracy of the payoff matrix.

One final point worth noting about the allied setting is that even
in scenarios where the entire team can theoretically be scheduled
collaboratively, it may not be tractable to do so, especially if there is
a large number of GPTs. This is especially pertinent to MCTS-based
scheduling, since the more GPTs, the larger the branching factor
of the search tree and the greater the length of the simulations. To
illustrate this point, we ran a side experiment using the same ran-
domly generated GPTs as above, but with a single MCTS scheduler
responsible for scheduling the entire forest. The single scheduler
completed a fractionally larger percentage of goals than any of
the pairings in Table 1, achieving 11.28 goals on average. However,
its total computation time was almost double that of the dual IA
partial + IA partial alliance (precisely, it took 92% longer), and even
compared to the dual full vision alliance, it took 36% longer.3 An
idea for future work is to consider ways of splitting a team’s goals
between partial vision schedulers so as to achieve the best possible
trade-off between average goal completions and computation time.

3This second result might seem counter-intuitive, given that none of the GPTs are
excluded from the simulations in the full vision case. However, forcing the schedulers
to select from one half of the forest makes them behave more FIFO-like, which in turn
leads to less drawn out simulations.

4.3 Neutral
The results of the neutral experiment are summarised in Table 2.
For this experiment, we report only the scheduler’s own number of
goals completed, since it is the only measure that matters in this sce-
nario. The results clearly show the benefit of intention-awareness:
No matter the type of other agent acting in the environment, full
vision IA completed the most goals on average, while partial vision
IA completed the second most goals. As in the allied experiments, it
mattered little whether IA was configured to expect allied behaviour
or neutral behaviour from the other agent. (The IA results in Table
2 are based on assuming neutral behaviour from the other agent;
results under the other setting differed by no more than ±0.1)

4.4 Adversarial
In the adversarial experiment, full vision IA achieved a net positive
score against all other schedulers (see Table 3). Partial vision IA
achieved a positive score against all schedulers other than full
vision IA, again illustrating that IA was able to exploit even limited
knowledge of the other agent’s intentions.

For context, it is important to note that the GPT generator we
used does not purposely create “wrecker plans”, i.e. plans whose
goal is the negation of another agent’s goal. As such, the adversarial
scenario should not be interpreted as typical head-to-head combat;
rather, it resembles a situation where there is a “mole” trying to ob-
struct the plans of another agent while seemingly only following its

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

290

Other Scheduler

IA full IA partial Naïve MCTS FIFO C0 C1 Round Rob. Random

IA full 5.561 5.578 5.606 5.528 5.517 5.528 5.388 5.506
IA partial 5.506 5.511 5.539 5.489 5.444 5.478 5.315 5.461
Naïve MCTS 5.344 5.404 5.424 5.330 5.330 5.284 5.307 5.358
FIFO 4.706 4.697 4.727 4.690 4.693 4.642 4.028 4.614
C0 5.094 5.118 5.108 5.102 5.139 5.108 4.028 5.051
C1 4.672 4.685 4.665 4.614 4.631 4.625 4.085 4.688

Sc
or
e

Round Rob. 3.713 3.629 3.489 3.710 3.528 3.403 4.170 3.557
Random 3.944 3.860 3.983 3.864 3.790 3.670 4.290 3.784

Table 2: Neutral setting. The best results achieved with respect to the other scheduler type are bolded.

Opponent

IA full IA partial Naïve MCTS FIFO C0 C1 Round Rob. Random

IA full 0.000 0.363 0.706 1.029 0.512 1.424 2.118 2.329
IA partial -0.363 0.000 0.465 0.876 0.417 1.083 1.804 2.006
Naïve MCTS -0.706 -0.465 0.000 0.577 0.179 0.631 1.738 1.554
FIFO -1.029 -0.876 -0.577 0.000 -0.423 0.024 0.298 0.845
C0 -0.512 -0.417 -0.179 0.423 0.000 0.488 0.512 1.190
C1 -1.424 -1.083 -0.631 -0.024 -0.488 0.000 0.732 0.923N

et
Sc
or
e

Round Rob. -2.118 -1.804 -1.738 -0.298 -0.512 -0.732 0.000 -0.738
Random -2.329 -2.006 -1.554 -0.845 -1.190 -0.923 0.738 0.000

IA full 5.049 5.152 5.418 5.476 5.359 5.388 5.253 5.329
IA partial 4.789 5.124 5.424 5.400 5.310 5.393 5.286 5.411
Naïve MCTS 4.712 4.959 5.360 5.298 5.280 5.321 5.262 5.399
FIFO 4.447 4.524 4.720 4.699 4.696 4.631 4.048 4.637
C0 4.847 4.893 5.101 5.119 5.158 5.113 4.060 5.065
C1 3.965 4.310 4.690 4.607 4.625 4.658 4.173 4.661Sc

or
e
Fo
r

Round Rob. 3.135 3.482 3.524 3.750 3.548 3.440 4.268 3.554
Random 3.000 3.405 3.845 3.792 3.875 3.738 4.292 3.845

IA full 5.049 4.789 4.712 4.447 4.847 3.965 3.135 3.000
IA partial 5.152 5.124 4.959 4.524 4.893 4.310 3.482 3.405
Naïve MCTS 5.418 5.424 5.360 4.720 5.101 4.690 3.524 3.845
FIFO 5.476 5.400 5.298 4.699 5.119 4.607 3.750 3.792
C0 5.359 5.310 5.280 4.696 5.158 4.625 3.548 3.875
C1 5.388 5.393 5.321 4.631 5.113 4.658 3.440 3.738

Sc
or
e
A
ga
in
st

Round Rob. 5.253 5.286 5.262 4.048 4.060 4.173 4.268 4.292
Random 5.329 5.411 5.399 4.637 5.065 4.661 3.554 3.845

Table 3: Adversarial setting. The best net score achieved against each opponent type is bolded.

own plans. Nonetheless, our framework is certainly capable of ac-
commodating wrecker plans, and IA’s edge would almost certainly
be stronger if they were included.

Even without wrecker plans, IA was effective at interfering with
the plans of other agents. For example, naïve MCTS completed
roughly 0.5 goals less against full vision IA than it did against any
of the non-intention-aware agents. Interestingly though, IA had
relatively less success obstructing C0 and FIFO. (Recall from earlier
that C0 also behaves in a FIFO-like manner.) One explanation for
this is that the policy of completing one intention before starting
another is an effective defense mechanism against plan interruption.
An idea for future work is to bias IA’s rollouts via the FIFO heuristic
to see if it yields better performance than uniform random rollouts.

A final point to note regarding IA’s performance is that the α and
β values we used for the MCTS simulations (α = 100 and β = 10),
are relatively small compared to those usually employed in game-
playing agents. We chose these values partly so that we could run
a large number of experiments, and partly to match Yao and Logan
[37]. In a side experiment, we tried increasing α to 500, and ran the
agent against the default configuration with α = 100. The α = 500
scheduler achieved a net score of +0.11, completing an average of
5.08 goals versus 4.97 by the α = 100 scheduler. On our hardware,
the α = 500 scheduler still only took at most a few seconds to
calculate each action, which is reasonable for many applications. In
domains that allow more deliberation time, it ought to be possible
to improve IA’s performance by further increasing α .

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

291

5 RELATEDWORK
In addition to the work of Thangarajah et al. [25, 26, 28], Waters
et al. [32, 33] and Yao et al. [38] discussed previously, a number of
other approaches to scheduling intentions to avoid conflicts have
been proposed in the literature.

Shaw and Bordini have proposed approaches to intention selec-
tion based on Petri nets [21] and constraint logic programming [22].
In their work (as in [25, 26]), the plans and sub-goals in a goal-plan
tree are regarded as basic steps, and interleaving is at the level of
sub-plans and subgoals. They do not consider interactions between
actions in plans.

The TÆMS (Task Analysis, Environment Modelling, and Sim-
ulation) framework [10] together with Design-To-Criteria (DTC)
scheduling [30] have been used in agent architectures such the
Soft Real-Time Agent Architecture [29] and AgentSpeak(XL) [2]
to schedule intentions. TÆMS provides a high-level framework
for specifying the expected quality, cost and duration of of meth-
ods (actions) and relationships between tasks (plans). DTC decides
which tasks to perform, how to perform them, and the order in
which they should be performed, so as to satisfy hard constraints
(e.g. deadlines) and maximise the agent’s objective function. DTC
can produce schedules that allow interleaved or parallel execution
of tasks and can be used in an anytime fashion. In the work closest
to that presented here [2], DTC was used to schedule execution of
AgentSpeak intentions at the level of individual plans. The TÆMS
relations between plans required to generate a schedule (enables,
facilitates and hinders) were specified as part of the agent program.
In contrast, IA interleaves intentions at the level of actions, and
information about possible conflicts between intentions is extracted
automatically from GPTs generated from the agent program.

In [19] Sardina et al. show how anHTN planner can be integrated
into a BDI agent architecture. However their focus is on finding
a hierarchical decomposition of a plan that is less likely to fail by
avoiding incorrect decisions at choice points, and they do not take
into account interactions with other concurrent intentions.

In [34], Wilkins et al. presented the Cypress architecture, which
combines the Procedural Reasoning System reactive executor PRS-
CL, and the SIPE-2 look-ahead planner. A Cypress agent uses PRS-
CL to pursue its intentions using a library of procedures (plans). If
a failure occurs during the execution of the plan due to an unantici-
pated change in the agent’s environment, the executor calls SIPE-2
to produce a new plan to achieve the goal, and continues execut-
ing those portions of plans which are not affected. However, their
approach focuses on generating new plans to recover from plan
failures, rather than interleaving intentions so as to avoid conflicts.

There has also been work on avoiding conflicts in a multiagent
setting. For example, Clement and Durfee [7–9] propose an ap-
proach to coordinating concurrent hierarchical planning agents
using summary information and HTN planning. However in this
work, summary information is used to identify when conflicts may
arise between two or more agents rather than to avoid conflicts
between the intentions of a single agent. Moreover, it is assumed
that the agents plan offline in a static environment. In [11], Ephrahi
et al. present an approach to planning and interleaving the execu-
tion of tasks by multiple agents. The task of each agent is assigned
dynamically, and the execution of all tasks achieves a global goal.

They show how conflicts between intentions can be avoided by
appropriate scheduling of the actions of the agents.

There has also been work on using MCTS to coordinate the
activities of multiple agents. Baker et al. [1] present Co-MCTS, a
factored coordinated Monte Carlo tree search algorithm to perform
decentralised path planning for multiple coordinated UAVs, and
show that it out-performs both conventional path planning and
MCTS on real-world examples. However, unlike IA, Co-MCTS takes
a centralised approach.

At a high level, multiagent scheduling methods are also related
to multiagent reinforcement learning (MARL) [5]. Within MARL,
there is extensive work on learning to communicate [12, 24], coor-
dinating exploration [16, 31], and handling non-stationarity (which
arises if other agents in the environment also change their be-
haviour over the course of training) [13]. However, these issues
are less relevant to multiagent scheduling, where it is generally
assumed that the agents are already capable of performing various
behaviours, and the focus is more on achieving synergy. While
synergy is also important in multiagent RL, it is often implicit, i.e.
by striving for greater expected returns, the agents naturally learn
to perform synergistic actions. Moreover, in multiagent scheduling,
it is commonly assumed that there is explicit structure in place that
allows agents to reason about conflicts, e.g. GPTs.

6 CONCLUSION
In this paper we introduced IA, an MCTS-based framework for per-
forming intention-aware scheduling in multiagent environments.
We tested our approach in three dual-agent scenarios: (i) allied,
where the agents collaborate to maximise the total number of goals
achieved; (ii) neutral, where the agents pursue the selfish objective
of maximising only their own goal achievement; and (iii) adver-
sarial, where the agents strive to complete their own goals whilst
interfering with the other agent.

Compared to several previously proposed schedulers that act
without regard to other agents, IA’s awareness of other agents’
plan structures gave it a clear edge. In the allied and adversarial
experiments, it was not just that IA completed more of its own
goals; it also enabled its allies – particularly the weaker ones – to
complete more goals, and was effective at blocking the plans of its
adversaries, despite not possessing “wrecker” plans.

When configured so that it could only see some of the other
agent’s goal-plan trees, the scheduler’s performance expectedly
dropped off compared to full vision IA, but remained above that
of naïve MCTS (the state-of-the-art approach for the single agent
setting), thus confirming that our approach was able to exploit
partial information. Moreover, in the allied and neutral experiments,
IA’s performance proved robust to different assumptions about the
selfishness of the other agent.

Besides the several extension ideas already outlined throughout
the paper, a natural direction for future work is to try to reduce
IA’s reliance on upfront knowledge about the other agents’ goal-
plan trees. For example, one idea is to start with a candidate set of
goal-plan trees for the other agents, and try to infer by their actions
which trees they are actually following.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

292

REFERENCES
[1] Chris A. B. Baker, Sarvapali Ramchurn,W. T. Luke Teacy, andNicholas R. Jennings.

2016. Planning Search and Rescue Missions for UAV Teams. In Proceedings of the
22nd European Conference on Artificial Intelligence (ECAI-2016), G. A. Kaminka,
M. Fox, P. Bouquet, Hullermeijer E., Dignum F., Dignum V., and van Harmalen F.
(Eds.). ECCAI, IOS Press, The Hague, The Netherlands, 1777–1782.

[2] Rafael H. Bordini, Ana L. C. Bazzan, Rafael de O. Jannone, Daniel M. Basso,
Rosa M. Vicari, and Victor R. Lesser. 2002. AgentSpeak(XL): Efficient Intention
Selection in BDI Agents via Decision-Theoretic Task Scheduling. In Proceedings of
the First International Conference on Autonomous Agents and Multiagent Systems
(AAMAS’02). 1294–1302.

[3] Rafael H Bordini, Jomi Fred Hübner, and Michael Wooldridge. 2007. Programming
Multi-Agent Systems in AgentSpeak Using Jason. Vol. 8. John Wiley & Sons.

[4] Cameron Browne, Edward J. Powley, Daniel Whitehouse, Simon M. Lucas, Peter I.
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. 2012. A Survey of Monte Carlo Tree Search Methods.
IEEE Trans. Comput. Intellig. and AI in Games 4, 1 (March 2012), 1–43.

[5] L. Busoniu, R. Babuska, and B. De Schutter. 2008. A Comprehensive Survey of
Multiagent Reinforcement Learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 38, 2 (2008), 156–172.

[6] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. 2008. Monte-
Carlo Tree Search: A New Framework for Game AI. In Proceedings of the Fourth
Artificial Intelligence and Interactive Digital Entertainment Conference. Stanford,
California, USA.

[7] Bradley J. Clement and Edmund H. Durfee. 1999. Theory for Coordinating
Concurrent Hierarchical Planning Agents Using Summary Information. In Pro-
ceedings of the Sixteenth National Conference on Artificial Intelligence and Eleventh
Conference on Innovative Applications of Artificial Intelligence, Jim Hendler and
Devika Subramanian (Eds.). AAAI Press / The MIT Press, Orlando, Florida, USA,
495–502.

[8] Bradley J. Clement and Edmund H. Durfee. 2000. Performance of Coordinating
Concurrent Hierarchical Planning Agents Using Summary Information. In 4th
International Conference on Multi-Agent Systems. IEEE Computer Society, Boston,
MA, USA, 373–374.

[9] Bradley J. Clement, Edmund H. Durfee, and Anthony C. Barrett. 2007. Abstract
Reasoning for Planning and Coordination. J. Artif. Intell. Res. (JAIR) 28 (2007),
453–515.

[10] K. S. Decker and V. R. Lesser. 1993. Quantitative Modeling of Complex Environ-
ments. International Journal of Intelligent Systems in Accounting, Finance and
Management 2 (1993), 215–234.

[11] Eithan Ephrati and Jeffrey S. Rosenschein. 1993. A Framework for the Inter-
leaving of Execution and Planning for Dynamic Tasks by Multiple Agents. In
From Reaction to Cognition, 5th European Workshop on Modelling Autonomous
Agents, MAAMAW ’93, Neuchatel, Switzerland, August 25-27, 1993, Selected Pa-
pers, Cristiano Castelfranchi and Jean-Pierre Müller (Eds.). Springer, Neuchatel,
Switzerland, 139–153.

[12] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon White-
son. 2016. Learning to Communicate with Deep Multi-Agent Reinforcement
Learning. In Advances in Neural Information Processing Systems 29, D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates,
Inc., 2137–2145.

[13] Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip
H. S. Torr, Pushmeet Kohli, and Shimon Whiteson. 2017. Stabilising Experience
Replay for Deep Multi-Agent Reinforcement Learning. In Proceedings of the 34th
International Conference on Machine Learning. 1146–1155.

[14] Levente Kocsis and Csaba Szepesvári. 2006. Bandit Based Monte-Carlo Planning.
In 17th European Conference on Machine Learning, Johannes Fürnkranz, Tobias
Scheffer, and Myra Spiliopoulou (Eds.). Springer, Berlin, Germany, 282–293.

[15] Brian Logan, John Thangarajah, and Neil Yorke-Smith. 2017. Progressing Inten-
tion Progression: A Call for a Goal-Plan Tree Contest. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017, São
Paulo, Brazil, May 8-12, 2017. ACM, 768–772.

[16] Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. 2019.
MAVEN: Multi-Agent Variational Exploration. In Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 7613–7624.

[17] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. 2005. Jadex: A BDI
Reasoning Engine. Springer US, Boston, MA, 149–174.

[18] Anand S. Rao and Michael P. Georgeff. 1991. Modeling Rational Agents within a
BDI-Architecture. In Proc. of KR’91. Cambridge,MA, 473–484.

[19] Sebastian Sardiña, Lavindra de Silva, and Lin Padgham. 2006. Hierarchical Plan-
ning in BDI Agent Programming Languages: A Formal Approach. In Proceedings
of the 5th International Joint Conference on Autonomous Agents andMultiagent Sys-
tems (AAMAS 2006), Hideyuki Nakashima, Michael P. Wellman, Gerhard Weiss,
and Peter Stone (Eds.). ACM, Hakodate, Japan, 1001–1008.

[20] Maarten P. D. Schadd, Mark H. M. Winands, Mandy J. W. Tak, and Jos W. H. M.
Uiterwijk. 2012. Single-Player Monte-Carlo Tree Search for SameGame. Knowl.-
Based Syst. 34 (2012), 3–11.

[21] Patricia H. Shaw and Rafael H. Bordini. 2007. Towards Alternative Approaches to
Reasoning About Goals. In Declarative Agent Languages and Technologies V, 5th
International Workshop, Matteo Baldoni, Tran Cao Son, M. Birna van Riemsdijk,
and Michael Winikoff (Eds.), Vol. 4897. Springer, Honolulu, HI, USA, 104–121.

[22] Patricia H. Shaw and Rafael H. Bordini. 2010. An Alternative Approach for
Reasoning about the Goal-Plan Tree Problem. In Proceedings of the 19th European
Conference on Artificial Intelligence (ECAI 2010), Helder Coelho, Rudi Studer, and
Michael Wooldridge (Eds.), Vol. 215. IOS Press, Lisbon, Portugal, 1035–1036.

[23] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. 2017. Mastering Chess and Shogi by Self-Play with a General Reinforcement
Learning Algorithm. arXiv preprint arXiv:1712.01815 (2017).

[24] Sainbayar Sukhbaatar, arthur szlam, and Rob Fergus. 2016. Learning Multia-
gent Communication with Backpropagation. In Advances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett (Eds.). Curran Associates, Inc., 2244–2252.

[25] John Thangarajah and Lin Padgham. 2011. Computationally Effective Reasoning
About Goal Interactions. Journal of Automated Reasoning 47, 1 (2011), 17–56.

[26] John Thangarajah, Lin Padgham, and Michael Winikoff. 2003. Detecting &
Avoiding Interference Between Goals in Intelligent Agents. In Proceedings of
the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03),
Georg Gottlob and Toby Walsh (Eds.). Morgan Kaufmann, Acapulco, Mexico,
721–726.

[27] John Thangarajah, Lin Padgham, and Michael Winikoff. 2003. Detecting &
Exploiting Positive Goal Interaction in Intelligent Agents. In The Second Inter-
national Joint Conference on Autonomous Agents & Multiagent Systems, AAMAS
2003. ACM, Melbourne, Victoria, Australia, 401–408.

[28] John Thangarajah, Sebastian Sardina, and Lin Padgham. 2012. Measuring Plan
Coverage and Overlap for Agent Reasoning. In Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent Systems - Volume
2. International Foundation for Autonomous Agents and Multiagent Systems,
1049–1056.

[29] Régis Vincent, Bryan Horling, Victor Lesser, and Thomas Wagner. 2001. Imple-
menting Soft Real-Time Agent Control. In Proceedings of the Fifth International
Conference on Autonomous Agents (AGENTS’01). ACM Press, New York, NY, USA,
355–362. https://doi.org/10.1145/375735.376329

[30] T. Wagner, A. Garvey, and V. Lesser. 1998. Criteria-Directed Heuristic Task
Scheduling. International Journal of Approximate Reasoning 19 (1998), 91–118.

[31] Tonghan Wang, Jianhao Wang, Yi Wu, and Chongjie Zhang. 2020. Influence-
Based Multi-Agent Exploration. In Proceedings of the 8th International Conference
on Learning Representations (ICLR). https://arxiv.org/pdf/1910.05512.pdf

[32] Max Waters, Lin Padgham, and Sebastian Sardina. 2014. Evaluating Coverage
Based Intention Selection. In Proceedings of the 13th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2014), Alessio Lomuscio,
Paul Scerri, Ana Bazzan, and Michael Huhns (Eds.). 957–964.

[33] Max Waters, Lin Padgham, and Sebastian Sardiña. 2015. Improving domain-
independent intention selection in BDI systems. Autonomous Agents and Multi-
Agent Systems 29, 4 (2015), 683–717. https://doi.org/10.1007/s10458-015-9293-5

[34] David E Wilkins, Karen L Myers, John D Lowrance, and Leonard P Wesley.
1995. Planning and reacting in uncertain and dynamic environments. Journal of
Experimental & Theoretical Artificial Intelligence 7, 1 (1995), 121–152.

[35] MichaelWinikoff. 2005. JACK Intelligent Agents: An Industrial Strength Platform.
In Multi-Agent Programming. Springer, New York, NY, 175–193.

[36] Yuan Yao, Lavindra de Silva, and Brian Logan. 2016. Reasoning About the
Executability of Goal-Plan Trees. In Proceedings of the 4th International Workshop
on Engineering Multi-Agent Systems (EMAS 2016). Singapore, 181–196.

[37] Yuan Yao and Brian Logan. 2016. Action-Level Intention Selection for BDI
Agents. In Proceedings of the 15th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2016), J. Thangarajah, K. Tuyls, C. Jonker, and
S. Marsella (Eds.). IFAAMAS, Singapore, 1227–1235.

[38] Yuan Yao, Brian Logan, and John Thangarajah. 2014. SP-MCTS-based Intention
Scheduling for BDI Agents. In Proceedings of the 21st European Conference on
Artificial Intelligence (ECAI-2014), Torsten Schaub, Gerhard Friedrich, and Barry
O’Sullivan (Eds.). ECCAI, IOS Press, Prague, Czech Republic, 1133–1134.

[39] Yuan Yao, Brian Logan, and John Thangarajah. 2016. Intention Selection with
Deadlines. In Proceedings of the 22nd European Conference on Artificial Intelligence
(ECAI-2016), G. A. Kaminka, M. Fox, P. Bouquet, Hullermeijer E., Dignum F.,
Dignum V., and van Harmalen F. (Eds.). ECCAI, IOS Press, The Hague, The
Netherlands, 1700–1701. https://doi.org/10.3233/978-1-61499-672-9-1700

[40] Yuan Yao, Brian Logan, and John Thangarajah. 2016. Robust Execution of BDI
Agent Programs by Exploiting Synergies Between Intentions. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), Dale Schuurmans
and Michael P. Wellman (Eds.). AAAI Press, Phoenix, USA, 2558–2564. http:
//www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12148

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

293

https://doi.org/10.1145/375735.376329
https://arxiv.org/pdf/1910.05512.pdf
https://doi.org/10.1007/s10458-015-9293-5
https://doi.org/10.3233/978-1-61499-672-9-1700
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12148
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12148

	Abstract
	1 Introduction
	2 Background
	2.1 Single-Agent Intention Scheduling
	2.2 MCTS-based Intention Scheduling

	3 Our Approach
	3.1 IA: Intention-Aware MCTS Scheduling
	3.2 Assumptions

	4 Experiments
	4.1 Experimental Setup
	4.2 Allied
	4.3 Neutral
	4.4 Adversarial

	5 Related Work
	6 Conclusion
	References

