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ABSTRACT
In multiagent problems that require complex joint actions, reward
shaping methods yield good behavior by incentivizing the agents’
potentially valuable actions. However, reward shaping often re-
quires access to the functional form of the reward function and
the global state of the system. In this work, we introduce the Ex-
ploratory Gaussian Reward (EGR), a new reward model that creates
optimistic stepping stone rewards linking the agents potentially
good actions to the desired joint action. EGR models the system
reward as a Gaussian Process to leverage the inherent uncertainty
in reward estimates that push agents to explore unobserved state
space. In the tightly coupled rover coordination problem, we show
that EGR significantly outperforms a neural network approxima-
tion baseline and is comparable to the system with access to the
functional form of the global reward. Finally, we demonstrate how
EGR improves performance over other reward shaping methods by
forcing agents to explore and escape local optima.
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1 INTRODUCTION
Multiagent coordination has been successfully applied to a wide
variety of coordination tasks such as search and rescue [31], air
traffic control [19, 28], exploration [4, 11, 17], bandwidth manage-
ment [3, 15], and satellite configuration [12]. The credit assignment
problem of how to assess the contribution of an individual agent
based on system performance is a key problem in such settings. Re-
ward shaping partially addresses this problem by tuning an agent’s
reward to a (potentially local) signal that is sensitive to that agent’s
actions [32].

However, many reward shaping methods either require some
domain knowledge [14, 23] or need the agents to stumble upon
the right joint action by “accident" to then observe the reward that
incentivizes those actions in the future. Recent work to provide
"stepping stone" rewards to encourage agents to discover desirable
joint-actions focused on agents considering the impact of hypothet-
ical partners when needed [25]. Such shaped rewards guide agents
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to potentially valuable actions even if other agents do not yet take
the complementary actions. However, to generate stepping stone
rewards, agents need access to the functional form of the system
reward function to evaluate the effect of hypothetical partners. That
requirement breaks down in many real world domains where the
functional form of the system reward is either not known or not
available to the agents.

Using a function approximator to learn the state-action to sys-
tem performance mapping offers a potential solution [10]. But for
such an approach to work, the agents need to generate statistically
useful training data by sampling the state space to enable the func-
tion approximator (e.g. a neural network) to learn the mapping.
Unfortunately, in tightly-coupled domains, where the joint action
of multiple agents is required for achieving system objectives, such
data is not available because agents never stumble upon the correct
joint actions in the first place. For example, consider the problem
of ascertaining there are no intruders in a 2D world with sparsely
placed polygons. The task is only successful if all the faces of a
polygon are observed simultaneously by the agents. Two agents
should be in proximity and actively observing for a line, three for
a triangle, four for a square and so on. In such problems, agents
learning to coordinate requires all agents to stumble upon simul-
taneous face observations, which is highly unlikely in all but the
simplest cases.

In this work, we introduce the Exploratory Gaussian Reward
(EGR), which models the system reward as a Gaussian Process. EGR
enables the use of shaped rewards that need estimating system per-
formance in the presence of hypothetical agents, and leverages the
inherent uncertainty in reward estimates associated with unob-
served state space to build a robust state-to-reward mapping. In
addition, EGR incorporates the confidence of the prediction in its
estimate, leading difficult-to-stumble-into regions of the state space
to have a low confidence and thus a high potential for rewards. This
creates optimistic stepping stone rewards whose uncertainty over
future rewards acts as a natural driver for exploration that pushes
agents towards taking potentially beneficial joint-actions.

The contributions of this work are to:

• Introduce a mechanism to create reward models that induce
optimistic stepping stone rewards without access to the func-
tional form of the system reward.
• Improve the system performance with a probabilistic method
that leverages the uncertainly in reward estimates to drive
exploration in multiagent systems with high coordination
requirements.

We show that EGR successfully guides agents to learn coordina-
tion strategies without access to the functional form of the system
reward in the tightly coupled multi-rover exploration problem. As
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a baseline, we compare the performance of EGR to local approxi-
mations of the system reward using a neural network [10]. EGR
significantly outperforms local approximations for a tight rover
coordination constraint of 3. We also show that EGR achieves supe-
rior performance for up to a coordination requirement of 9 rovers
compared to the performance of the baseline. Finally, we show that
EGR performs better than methods with access to the functional
form of the system reward in tasks where rovers must sufficiently
explore the state space to avoid getting stuck in local optima.

2 BACKGROUND
2.1 Multiagent Reinforcement Learning
Multiagent reinforcement learning is a natural extension of re-
inforcement learning where multiple cooperative, competitive or
mixed goal oriented agents must work together to achieve a system
objective [7, 8]. It is challenging due to the inherent non-stationarity
of the environment created by multiple agents learning simulta-
neously. Most methods tackle the problem by either treating mul-
tiagent systems as a group of independent learners or by using a
centralized architecture. Independent Q-learning agents for exam-
ple, will often excel at tasks that can be broken down to discreet
sub tasks but will fail if a task requires coordination and agent cou-
pling [27]. For example, a cloud based service may deploy multiple
servers to distribute the load of incoming requests. Delegating client
requests to servers randomly will relieve the load and will help to
scale. Although this is an improvement over a single server based
system, the throughput of the system could be greatly improved
by incorporating a load balancing mechanism. Often, this will be
implemented as a centralized solution. Centralized architectures in
multiagent reinforcement learning rely on using joint states and
actions of all the agents in the system to learn coordination poli-
cies [18, 22]. These methods don’t scale when agents are added or
removed from the system because their architecture is a function
of the properties of the current agent pool.

2.2 Reward Shaping
In multiagent systems that require coordination among agents,
agent-to-agent interactions are very crucial to the overall system
performance [20, 26, 30]. Agents need sufficient feedback to learn
their contribution towards the system performance. Reward shap-
ing is a method to create surrogate rewards to enable credit assign-
ment in multiagent systems [5, 32]. In systems with coordination
requirements, these local rewards act as "stepping stones" to guide
agents to potentially valuable system rewards. Although a crucial
tool, shaped rewards must be designed and engineered to make sure
they align with the true system rewards. Often times, if they are not
carefully shaped, agents will learn to exploit them and disregard
the actual system performance.

2.3 Difference Evaluations
A key difficulty in multiagent learning is credit assignment to in-
dividual agents in the system when other agents are learning si-
multaneously. However, learning local policies has been show to
improve performance in systems with low coordination require-
ments [6, 24, 26]. This is achieved by shaping local agent rewards
such that they are aligned with the system performance; A higher

local reward signal corresponds to an improvement in the overall
system performance. Difference evaluations (Eqn. 1) are reward
shaping methods that align the local agent rewards by providing
agents with shaped rewards that are commensurate to their impact
on the system performance [1]. In particular, difference evaluation
computes an agent’s impact on the system by leveraging a counter-
factual action that effectively removes the agent from the system
and evaluates the system performance. The change in reward when
the agent was removed provides the agent with a clear feedback of
its action. The counterfactual action could either be a “null" action
meaning the agent does nothing or it could be a default action
sampled from the agent’s action space.

Di (z) = G(z) −G(z−i ∪ ci ) (1)
In Eqn. 1, z represents the current joint-state of the agents in

the system, Di (z) is the shaped difference reward received by agent
i , G(z) is the system reward, and G(z−i ∪ ci ) is the system reward
with a counterfactual action, ci , taken in place of agent i’s action.

Difference evaluations have shown to vastly improve the sys-
tem performance in loosely-coupled systems [1, 2, 29]. However in
tightly-coupled systems, difference evaluations struggle to provide
enough feedback to agents to promote teaming and coordination.
For example, in a task that requires 3 agents to take complementary
actions simultaneously, a single agent taking the right action does
not generate a reward signal. Furthermore, removing this agent to
gauge the impact of the agent’s beneficiary action provides no feed-
back since the coupling requirement of the task is still unsatisfied. In
such domains, agents would need to stumble upon good coordinat-
ing states to get a reward signal from the system evaluation. Even
in loosely coupled domains, if the rewards are sparse, difference
evaluation are not capable of shaping the rewards sufficiently.

2.4 D++ Evaluation
Difference evaluations struggle in tasks that require high coupling
due to reward sparsity. To guide agents to potentially promising
coordination strategies, D++ structural credit assignment intro-
duces “stepping stone" rewards. These are local agent rewards that
reinforce actions that might lead to coordination if other agents
took complementary actions. In practise, an agent that performs a
promising action receives a fraction of the reward it would have
gotten if other agents would have cooperated. Unlike Difference
evaluations where an agent is removed from the system, D++ intro-
duces counterfactual agents which are copies of the current agent
and occupy the same position as the agent.

D++(i,n, z) =
G(z+(∪j=1, . . .,n ) −G(z)

n
(2)

In Enq. 2, n represents the number of counterfactual partners
added, D++(i,n) represents the reward received by agent i with
n counterfactual partners, and G(z+(∪j=1, . . .,n ) represents what the
system reward would be if there were n other agents in the system
coordinating with the current agent i . A key drawback that restricts
the application of D++ evaluation to most multiagent systems is
its dependence on the functional form of the system reward. The
system reward function is often inaccessible to individual agents
or intractable. Even in systems where the functional form of the
reward is available, computing D++ rewards for all agents can be
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prohibitively expensive as it is computed for all agents locally and
needs several evaluations of the reward function at every learning
step.

2.5 Potential Based Reward Shaping
Potential Based Reward Shaping (PBRS)[14, 23] addresses the prob-
lem of sparse rewards in multiagent coordination by injecting step-
ping stones rewards at key states that guide agents towards desir-
able behavior. Unlike Difference evaluation, PBRS can be applied
to multiagent systems when the functional form of the system re-
ward is inaccessible and can create local stepping stone rewards
for agents. PBRS modifies the original reward by adding in the
difference of potential ϕ between the current state and the next
state of the system.

PBRS_reward = reward + γϕ(s ′) − ϕ(s)

A major drawback of Potential-Based reward shaping is the re-
quirement of domain knowledge to design the potential function ϕ
over system states. Incorrectly and overly engineered rewards often
lead to undesired behavior when the overall system performance
becomes misaligned with the stepping stone rewards [13].

2.6 Reward Approximation
To address the problem of creating stepping stone rewards when
the system reward function is inaccessible, recent methods focus on
ways to approximate it or to create surrogate rewards that reinforce
exploration. Recently it was shown that a fully connected neural
network could be used to locally approximate the system reward
function and compute difference evaluation to achieve agent co-
ordination in multiagent rover exploration and the El Farol Bar
problem [10]. Agents in the system use a broadcast value of the sys-
tem rewardG(z) to create a local approximation. At every learning
step, agents update their approximated Ĝ(z) using the update rule
in Eqn. 3.

Ĝ(z) ←− (1 − α)Ĝ(z) + αG(z) (3)
where, α is the learning rate of the approximator. The approximate
difference evaluation is then computed using Eqn. 4.

D̂(z) = Ĝ(z) − Ĝi (ci ) (4)

for agent i taking a default counterfactual action ci . Agents do not
need to monitor actions of other agents in the system since they
use their locally approximated Ĝi (ci ) for difference evaluations. For
loose coordination requirements where agents will stumble into
coordinating states, a function approximator can model the system
reward signal after sufficient observations.

However, to satisfy tighter coordination constraints which re-
quire more than 2 agents to simultaneously take complimentary
actions, stumbling upon these state space regions becomes highly
improbable. Without sufficient observations, the system reward
cannot be approximated to compute D++ rewards.

3 ROVER COORDINATION PROBLEM
In this work, we use a tightly-coupled multiagent variant of the
rover exploration problem known as rover domain. A team of rovers
are tasked with exploring a continuous two-dimensional space
and observing points of interest (POI) that are either spread out

uniformly or deployed strategically. Every POI has an associated
value that is rewarded to the agents if they make a successful
observation. An observation is successful if the rover observes the
POI from within a certain radius of the POI, obsr . The observation
counts towards the system performance for the closest rover that
first observed it. Therefore, multiple rovers exploring the same POI
does not accumulate system reward. Rovers typically will also have
a limited time to explore the region. In this setting, the optimal
strategy is for rovers to spread out and observe as many unique
POIs as possible.

Every rover is equipped with two sensors. The first sensor is
capable of detecting POIs and the second sensor can detect other
rovers in the system. To keep the input state space of the rovers
independent of the number of POIs and rovers in the system, the
sensors collect data as densities in the region of operation. The
sensors have a fixed resolution that defines the granularity of their
density observations. Keeping the state space constant is important
to support a robust learning architecture and facilitates addition and
removal of rovers from the system during the course of exploration.
The input to the density sensors are represented by Eqns. 5 and 6.

Srover ,s =
∑
j ∈Js

1
d(i, j)

(5)

Spoi ,s =
∑
k ∈Ks

vk
d(i,k)

(6)

In equation (5), s is the quadrant, d measures the euclidean dis-
tance between the sensing rover i and other rover j; Js is the set of
all rovers in quadrant s . In equation (6), d measure the euclidean
distance between the sensing rover i and the POI k ; Ks is the set of
POIs in the quadrant s .

The tightly-coupled version of the rover domain adds a coordi-
nation constraint to every POI. To make a successful observation,
multiple agents must simultaneously observe the POI. The closest
rovers that contribute to the coordination constraint are successful.
Like before, only the first unique successful observation contributes
to the system performance. In this setting, the optimal strategy for a
uniformly distributed POI environment is for rovers to form teams
and spread out. The system reward is computed using Eqn 7.

G(z) =
∑
k

∏
i N(i ,k)Vk

1
n
∑
j d(i,k)

(7)

Where, G(z) is the system reward for z, the joint state-action of
the rovers,Vk is the value of the POI k , Ni ,k is an indicator function
that is true if the rover i is within the observation radius of the POI
k and d(i,k) is the euclidean distance between rover i and POI k .

4 REWARD APPROXIMATION AS A
GAUSSIAN PROCESS

To create stepping stone rewards by evaluating the impact of adding
counterfactual agents, D++ needs access to the functional form of
the system reward. This hinders its application to most multiagent
systems where the system reward is either unavailable or computa-
tionally expensive. A potential solution is to generate stepping stone
rewards using an approximated system reward. Function approxi-
mators like neural networks can be used to approximate the system
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Figure 1: Rovers in the coordination problem must simulta-
neouslymake observations of the POI fromwithin its obser-
vation radius. Every rover has sensors to detect the POI and
rover density around it.

reward if they have sufficient training data. For tightly-coupled
multiagent systems where agents are not likely to stumble upon
good joint actions, the data at potentially valuable joint actions
is sparse and therefore hard to learn. To account for the sparsity
in the data, we need a probabilistic mechanism that can provide
uncertainty estimates in the absence of observed data [9]. A Gauss-
ian Process is a probabilistic function approximation method that
provides confidence in its estimates. When used to approximate the
system reward, a Gaussian Process can generate a distribution over
the future rewards by assigning a probability to the potentially in-
finitely many functions that can fit the current observations [16, 21].
The mean of this probability distribution then represents the most
probable characterization of the observations. Furthermore, using
a probabilistic approach allows us to account for uncertainty in the
estimated mean. For a set of a random variables f (x) and input X ,
the joint distribution of these is also Gaussian.

p(f |X ) = N(f |µ,K) (8)

where, f = (f (x1, ..., xn )) is the set of random variables, µ =
(µ(x1), ..., µ(xn )) are the means (usually set to µ = 0) and K =
k(xa, xb ) is a positive definite covariance function. The kernel K
measures similarity between points and allows injecting prior in-
formation about the properties of the model.

After observing some rewards r , the posterior can be used for
estimating f∗, given new input X∗ using Eqn. 9, 10.

p(f∗ |X∗,X , r ) =

∫
p(f∗ |X∗, f )p(f |X , r )d f (9)

p(f∗ |X∗,X , r ) = N(f∗ |µ∗, Σ∗) (10)

4.1 Exploratory Gaussian Reward
Exploratory Gaussian Reward (EGR) models the system reward
over every state dimension as a random variable. Initially, the un-
certainty in reward estimates is uniformly high for the entire state
space. As agents start exploring the state, the corresponding regions
in the Gaussian Process start to fit to the true system reward. When
agents are closer to POIs, to generate stepping stone rewards, agents
use the expected variance in the reward estimate after adding hy-
pothetical counterfactual partners. Because the expected variance
is high for unobserved states, it is an optimistic estimate of the
potential reward in those states. After sufficient exploration, the
variance in estimates decreases and the optimistic stepping stones
are reduced to their true potential. Even for highly undesired states,
the optimistic rewards will initially still be positive. The agents will
avoid these regions after only a few observations. By capturing
the joint distribution over future rewards rather than their expec-
tation, agents can focus on exploring states with higher variance
that might be potentially valuable.

4.2 D++ with Exploratory Gaussian Reward
EGR works within the existing D++ framework. Unlike classical
D++ that requires the system reward G(z) to evaluate the effect of
adding counterfactual partners, EGR uses an approximated Ĝ(z)
that is sampled from the Gaussian Process. Initially, when the agents
have not explored the state space enough, the sampled Ĝ(z) provides
no feedback of the system performance (with the initial mean µ = 0,
Ĝ(z) gives a reward of zero). At every time step when agents receive
the true system reward G(z), the Gaussian posterior is updated.
To compute stepping stone rewards, agents add counterfactual
partners near POIs and sample the mean µ∗ and variance Σ∗ at
this joint action. If the joint action was previously explored by the
agent, the mean µ∗ is close to the true value of the system reward
with a variance representing the confidence of the estimate. On the
other hand, an unobserved joint action will have a mean µ∗ which
is an estimate of the system reward based on the mean around the
sampled joint action and a high variance. In such cases, the high
variance provides an optimistic stepping stone reward that pushes
the agent to coordinate in this joint action region.

The D and D++ rewards are computed using Eqn. 11 through 13.

D̂(z) = G(z) − Ĝ(z−1) (11)

D++(i,n, z) =
Ĝ(z+(∪i=1, . . .,n )) + αĜv (z+(∪i=1, . . .,n )) −G(z)

n
(12)

Ĝv (z+(∪i=1, . . .,n )) =
√
(Σ∗) (13)

Where, Ĝ(z) is the reward estimate of the Gaussian Process,
Ĝv is the standard deviation, and α is a constant factor to control
the level of optimism. In practise, the uncertainty is clipped to
a range between 0.4 and 1.2 when used to create stepping stone
rewards to provide stability in estimates. This can also be achieved
by normalizing the uncertainty. Algorithm 1 outlines the modified
D++ algorithm that uses EGR for creating stepping stone rewards.
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Algorithm 1: Optimistic Stepping Stones with GP approx-
imation

1: Update the posterior Ĝ(z) based on observation G(z)
2: Calculate D̂i (z) using Eqn. 11
3: Calculate D̂++(NA − 1) using Eqn. 12
4: if D̂++(NA − 1) ≤ D̂i (z) then
5: return D̂i (z)
6: else
7: n = 0
8: while n < NA − 1 do
9: n = n + 1
10: break if Ĝv (n) < threshold
11: Calculate D̂++(n) using Eqn. 12
12: if D̂++(n) > D̂++(n − 1) then
13: Return D̂++(n)
14: end if
15: end while
16: end if
17: Return D̂i (z)

5 EXPERIMENTAL SETUP
We carry out several experiments in the tightly coupled rover coor-
dination problem to investigate the performance and behavior of
EGR. For all the experiments, the input state representation of the
environment is a vector of size (2 ∗ 360γ ), where γ is the resolution
of the rover sensors. We use a resolution of 90◦ that gives rovers 4
density values for POIs and 4 for other rovers in the environment.
Every agent uses a fully connected feed-forward neural network
that maps the input state vector to a corresponding (dx,dy) action
pair that lies in [−1, 1]2. At every step of the simulation, agents
take an action (dx,dy) based on their current policy that decides
their movement in the x and y directions. The weights of the neural
network are updated using policy gradient methods. Every agent
also maintains a local Gaussian Process to approximate the sys-
tem reward. The posterior approximation can be computed and
updated locally by all agents and does not require access to the
global state or the functional form of the reward. To account for
the continuous state space and smooth reward values around POIs,
we use a squared exponential kernel as the covariance function for
the Gaussian Process. The covariance will control the shape of our
estimated distribution and ultimately determine the characteristics
of the system reward function. we assume the mean of the function
to be zero and use an appropriate variance that allows the Gaussian
Process to sample functions within the reward constraints of the
environment.

6 RESULTS AND DISCUSSION
For all experiments, we compare the performance of EGR with the
neural network approximation baseline and an unrealistic upper
bound scenario which has access to the functional form of the
system reward. Fig. 2 shows the two distinct coordination tasks
performed in the rover coordination problem.

6.1 Uniform POI distribution
In the first experiment, we gauge the performance of EGR against
the unrealistic upper bound by setting up an environment that
captures the full complexity of the tightly coupled coordination
problem. The environment is 30 x 30 units, with 18 POIs and 10
rovers. Rovers have to coordinate and observer multiple POIs to
maximise the system performance. The POIs and the agents are
randomly placed within the environment. The observation radius is
bound between [2, 5]. The varied observation radius adds complex-
ity to the task by inducing pressure to explore and observe POIs
that are more accessible. All POIs have a coupling requirement of
three.

Fig. 2a shows the configuration of the environment and Fig. 3
shows the typical trajectories of rovers after learning to coordinate
using EGR andD++. Fig. 4 shows the performance of EGR compared
to the approximation baseline. Performance of agents with complete
access to the functional form of the system reward is also plotted.
This is an unrealistic upper bound as most systems will not have a
computable and noiseless functional form of the reward.

The baseline that approximates system reward with a neural
network does not perform well as the stepping stone reward es-
timates are roughly uniform throughout the state space. Because
agents are very unlikely to bump into coordination states, the neu-
ral network does not make enough observations to learn to predict
valuable stepping stone rewards. EGR outperforms the baseline
by a wide margin. The overall performance of EGR is also suffi-
ciently comparable to the unrealistic upper bound given that EGR
depends completely on local agent information and is free from the
functional form the of the system reward.

6.2 Concentric POI configuration
The second experiment is designed to highlight the capability of
EGR for optimistic exploration. Two sets of POIs are placed in the
environment in concentric circles. Fig. 2b shows this configuration.
The inner ring of POIs have a coupling of 3 and provide a reward
of 5 if the coupling is satisfied. The POIs in the outer ring are more
valuable and provide a reward of 15 for a coupling of 3. Agents are
placed at the center of the environment inside the inner ring. The
maximum number of timesteps per episode is adjusted to make sure
agents would only have sufficient time to coordinate and observe
about 40% of the total POIs. Agents would need to explicitly seek
out the POIs in the outer ring to maximize the system performance.

This experiment tests the ability of EGR to push agents to ex-
plore potentially valuable unknown regions of the state space. Fig. 7
compares the performance of EGR with classic D++. This result
highlights the benefits of exploration in a tightly coupled problem.
Without the explicit need of exploring, agents that use D++ learn
to coordinate and observe the POIs in the inner ring. Removing an
agent from this stable learned configuration decreases the system
performance, thus reinforcing the agents to continue to exploit the
rewards in the inner ring. Initially, agents using EGR also learn
to coordinate and observe POIs in the inner ring. The state space
region beyond the inner ring is unexplored and agents are pushed
into exploring it as the positive optimistic stepping stone rewards
are sufficient to balance the negative effect on system performance
incurred due to an agent leaving the inner ring. Fig. 5 shows the
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(a) Experimental setup 1. POIs are uniformly distributed in the
world. Every POI has the same coupling requirement and re-
ward for observation.

(b) Experimental setup 2. POIs are distributed in 2 concentric
rings with the higer values POIs in the outer ring. Every POI
has the same coupling requirement and observation radius.

Figure 2: Experiments are performed on 2 setting of the rover domain to highlight distinct coordination tasks.

Figure 3: Uniform POI distribution: In this setting, the opti-
mal strategy for the rovers is to form teams and explore.

behavior of rovers using D++ and EGR in this setting. After suf-
ficient episodes, agents using EGR eventually learn to disregard
the inner ring and instead team up to coordinate and observe the
higher value POIs in the outer ring. Although EGR takes longer to
converge, it outperforms classic D++ without access to the global
system state and access to a noiseless functional form of the system
performance. Similarly, Fig. 6 shows the behavior of rovers using
EGR when the inner ring has higher value POIs. Although the outer

Figure 4: Uniform POI distribution: Comparing perfor-
mance of reward models in tightly coupled rover domain.
There are 18 rovers and 10 POIs in a 30x30 world. EGR sig-
nificantly outperforms the neural network reward approxi-
mation baseline.

ring is a lower value region, rovers are still pushed to explore it due
to the uncertainty in their reward estimates. After observing the
true rewards in the outer ring, rovers return to the inner ring.
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(a) The figure shows trajectories for rovers using D++. Breaking
a team and exploring other regions reduces the system perfor-
mance and is negatively reinforced; Agents get stuck in a local
optimum.

(b) The figure shows trajectories for rovers using EGR. Although
breaking a team and exploring other regions would reduce the
system performance, the optimistic stepping stone rewards gen-
erated by EGR negate this effect and push rovers out of the local
optimum.

Figure 5: Concentric POI configuration: POIs are distributed in 2 concentric rings with the higher value POIs in the outer ring.
Agents start from the middle of the inner ring. POIs in the inner ring are easier to get to and agents learn to observe them by
forming teams.

Figure 6: Concentric POI distribution: The figure shows tra-
jectories for rovers using EGR. Although the optimistic step-
ping stone rewards generated by EGR push rovers to the
outer low value region, after adequate observations, rovers
return to the inner ring.

Figure 7: Concentric POI configuration: Comparing perfor-
mance of reward models in tightly coupled rover domain.
POIs are distributed in 2 concentric rings. Agents start from
the middle of the inner ring.
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Figure 8: Comparing performance of reward models for
tight coupling constraints.

6.3 EGR with tighter coordination constraints
In the third experiment, we investigate the robustness of EGR by
scaling the coordination constraints. Tighter coupling constraints
further increase the complexity of the problem by reducing the
likelihood of agents bumping into POIs together. The number of
POIs in the environment is scaled down as the constraints are
tightened to make sure agents have sufficient time to explore and
coordinate.

The experiment is designed to test the robustness of EGR for
high coordination requirements. Fig. 8 compares the performance
of EGR with the baseline. For a coupling of 2, the performance
of EGR is comparable to the baseline and D++ with access to the
system reward. This is a loose coordination requirement that can
be fulfilled with rewards generated using D. Beyond a coupling of
2, the baseline fails to learn as the likelihood of agents stumbling
upon coordination states decreases with higher coupling. EGR per-
forms comparable to agents with full access to global reward and
performance only slightly degrades for higher coupling constraints.

7 CONCLUSIONS
In this work, we introduced a new method of creating optimistic
stepping stone rewards, EGR, which allows agents in high coordina-
tion requirement problems to find suitable partners for coordination.
By leveraging the uncertainty estimates of a Gaussian Process to
model system reward in EGR, we see that agents learn to coordi-
nate using D++ without access to the functional form of the system
reward. EGR also allows for intuitive injection of prior knowledge
to further shape rewards and speed-up the learning process. We
show that EGR outperforms the baseline by a wide margin and has
a comparable performance to agents which have full access to the
global state and functional form of the system reward. Finally, the

results demonstrate the impressive scalability of EGR which main-
tained superior performance as the agent-to-agent coordination
coupling in the system was increased (coupling of up to 9) while
the performance of the baseline degraded rapidly.

EGR assumes uniform reward uncertainty over potential coordi-
nation states for all agents in the system. In future work, we will
explore how EGR could be extended when the system has regions
of highly varying reward. In systems where certain state space
regions are more valuable than others, it would be necessary to be
able to bias exploration towards those regions to speed up learning.
Additionally, we will explore how EGR performs in problems where
diverse agents with different action spaces must coordinate with
other agents or human partners.
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