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ABSTRACT

We study a general multi-dueling bandit problem, where an agent

compares multiple options simultaneously and aims to minimize

the regret due to selecting suboptimal arms. This setting general-

izes the traditional two-dueling bandit problem and inds many

real-world applications involving subjective feedback on multiple

options. We start with the two-dueling bandit setting and propose

two eicient algorithms, DoublerBAI andMultiSBM-Feedback. Dou-

blerBAI provides a generic schema for translating known results on

best arm identiication algorithms to the dueling bandit problem,

and achieves a regret bound of O(lnT ). MultiSBM-Feedback not

only has an optimal O(lnT ) regret, but also reduces the constant

factor by almost a half compared to benchmark results. Then, we

consider the general multi-dueling case and develop an eicient

algorithm MultiRUCB. Using a novel inite-time regret analysis for

the general multi-dueling bandit problem, we show that MultiRUCB

also achieves an O(lnT ) regret bound and the bound tightens as

the capacity of the comparison set increases. Based on both syn-

thetic and real-world datasets, we empirically demonstrate that our

algorithms outperform existing algorithms.
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1 INTRODUCTION

The stochastic Multi-Armed Bandit (MAB) problem is a classic

online learning problem and has been extensively studied [2, 4,

23]. It has a wide range of applications such as clinical trials [25],

recommendation systems [14], and online advertisement [9]. In the

MAB problem, an agent chooses one option from K alternatives,

often called łarms,ž and observes a numerical reward at each time-

step. The goal is to minimize the cumulative regret, deined as the

expected diference between the actual reward collected and the

oline optimal reward.

The dueling bandits problem [27] is an important variant of the

MAB problem. In this problem, an agent chooses a pair of arms

every time, but only observes the outcome of a noisy comparison

between the two selected arms. This setting is particularly useful

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
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in applications involving implicit or subjective (human) feedback,

such as information retrieval [11] and recommendation systems

[14].

The original dueling bandit setting focuses on only comparing

two arms at any time. In this work, we consider a general K-armed

multi-dueling bandit problem which has been studied by [8, 22],

and propose a novel inite-time analysis for that. In this setting, an

agent selects a subset of arms with size at mostm (2 ≤ m ≤ K),

and observes pairwise dueling outcomes in the selected subset. The

objective is to minimize the regret, being the advantage that the

optimal arm has over the chosen arms, cumulated up to T plays.

This multi-dueling bandit model can be used in many real-world

applications. For example, in information retrieval, the emergence

of numerous ranking algorithms (often called łrankers,ž e.g., PageR-

ank [16] and BM25 [19]) necessitates eicient methods to evaluate

these rankers. Conventional online ranker evaluation methods of-

ten use interlearving comparison [18, 20, 26], which produces a

combined result list of two rankers and translates the user clicks

on this list to preference feedback. Recently, several multileaving

methods [7, 12, 15] have been proposed, which permits multiple

rankers to be compared at once and provides detailed feedback

about how these rankers compare to each other, using less data

than sequential interleaving comparisons. However, previous works

did not address the key issue of how to select a subset of rankers

for each comparison, in order to balance between inding the po-

tentially optimal ranker and presenting results of instantaneously

good rankers to users, namely the exploration-exploitation trade-

of. The multi-dueling bandit model, on the other hand, provides

a principled way of selecting multiple rankers (łarmsž) for each

comparison with the objective of guaranteeing few results of poor

rankers to be presented to users (regret minimization).

Another application of the multi-dueling bandit model is the

problem of online treatment decision in clinical trials. For instance,

in motor function recovery, patients’ motor responses to treatments

are hard to quantify. Thus, treatment performance is evaluated

by clinicians via pairwise comparisons [21]. Since clinical trial is

expensive and time-consuming, it is more eicient to compare

multiple treatments simultaneously in a single trial rather than

conducting sequential trials on treatment pairs. The clinicians often

provide a ranking of patients’ recovery status in a trial, which

can be transformed to all pairwise feedbacks. The multi-dueling

bandit model can eiciently handle this sequential decision making

problem to maximize treatment gains with lower economic costs.

Note that our algorithm and inite-time analysis for the multi-

dueling bandit setting is not a trivial extension. Indeed, if one

naively extends algorithms for two-dueling bandits to multi-dueling

bandits by repeatedly performing the original strategies of select-

ing two arms, it is hard to simultaneously guarantee an eicient

selection of comparing arms, a small overall regret, and that the
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regret improves asm increases, three desired features of efective

algorithms.

To design eicient algorithms for our problem, we irst revisit

the original dueling bandit problem, and propose two eicient algo-

rithms, called DoublerBAI andMultiSBM-Feedback. Our algorithms

build upon the Doubler and MultiSBM algorithms in [3], which

reduces the dueling bandits problem to the conventional stochas-

tic MAB problem. DoublerBAI incorporates Best Arm Identiica-

tion (BAI) algorithms to the dueling bandit problem, and improves

the regret bound of Doubler from O((lnT )2) to optimal O(lnT ).

MultiSBM-Feedback, on the other hand, not only has an optimal

regret bound of O(lnT ), but also reduces the constant factor of the

logarithmic term by almost a half, compared to benchmark results.

This regret bound is comparable with that of UCB [4] in a standard

MAB problem in terms of both order and factor. We then turn to

the general formulation with comparingm arms, and propose an

eicient algorithm, called MultiRUCB. We prove that MultiRUCB

achieves an O(lnT ) regret, and the regret bound tightens as the

size of the comparison setm increases, which cannot be achieved

by directly applying existing two-dueling bandit solutions. This

implies that given the ability of simultaneously comparing more

arms, MultiRUCB eiciently exploits more information, and its

performance boosts as such ability increases.

While there have been previouswork on themulti-dueling bandit

problem [8, 22], to the best of our knowledge, this is the irst work

to provide a inite-time regret analysis for the general multi-dueling

bandit problem. Moreover, we conduct experiments based on both

the synthetic and real-world datasets [17]. The results demonstrate

the superior performance of our algorithms over existing bench-

marks.

2 PROBLEM SETTING

We consider a general K-armed multi-dueling bandit problem,

where an agent is given a set of K arms, denoted by X := {x1,x2,

...,xK }. At each time-step t ∈ {1, 2, ...,T }, the agent selects a subset

At ⊂ X for comparison, where the size of At is constrained by

|At | ≤ m (2 ≤ m ≤ K ), and observes all pairwise dueling outcomes

in At . Speciically, dueling comparison works as follows [3]. Each

arm xi ∈ X has a latent utility distribution in [0, 1] with expecta-

tion µ(xi ). Then, there is a link function ϕ : [0, 1] × [0, 1] 7→ [0, 1],

based on which the probability that arm xi beats arm x j is given by

pi j = ϕ
(
µ(xi ), µ(x j )

)
. The dueling outcome for arm i and arm j at

every time is an independent Bernoulli random variable that takes

value 1, representing arm i beats arm j, with probability pi j .

As in [3], in this paper, we focus on the following linear link

function:1

ϕ
(
µ(xi ), µ(x j )

)
:=

µ(xi ) − µ(x j ) + 1

2
.

We also assume without loss of generality that µ(x1) > µ(x2) ≥

... ≥ µ(xK ). We use P := [pi j ], whose ij-th entry is the preference

probability pi j , to denote the K × K preference matrix .

1We also extend our results to more general non-utility-based models [27] in Section 5,
and show numerical results for the extended models in our experiments.

For the multi-dueling bandit problem, the expected cumulative

regret up to time T is deined to be:

E[RT ] :=

T∑

t=1

∑

a∈At

1

|At |
∆(x1,a),

where ∆(xi ,x j ) := pi j −
1
2 ∈ [−

1
2 ,

1
2 ] is a measure of the distin-

guishability between two arms. This regret measures the average

advantage that the best arm has over the |At | arms being chosen

at each time-step t . This implies that an expected zero regret can

be achieved if and only if At = {x1}. Note that whenm = 2, our

problem becomes the original two-dueling bandit problem. For ease

of notation, below we write ∆i j for ∆(xi ,x j ) and ∆i for ∆(x1,xi ).

Note that our multi-dueling bandit formulation is diferent from

[8]. In our setting, the algorithm can choose at mostm diferent

arms rather than an arbitrary subset of K arms at each time-step t .

This scenario its many practical applications better, as the number

of arms being compared simultaneously is often constrained. While

our multi-dueling bandit setting is the same to that in [22], we are

the irst to provide a inite-time regret analysis for this problem.

3 ALGORITHMS FOR TWO-DUELING
BANDITS

We irst start from the special case whenm = 2, i.e., the original two-

dueling bandit problem,2 and propose two eicient algorithms Dou-

blerBAI and MultiSBM-Feedback for achieving an optimal regret.

Our algorithms build upon the Doubler and MultiSBM algorithms

in [3].

3.1 DoublerBAI with Best Arm Identiication
Algorithms

To present our algorithm, we deine a generic Best Arm Identiica-

tion Machine (BAIM) as a procedure which performs a K-armed

BAI algorithm with an internal timer and memory, e.g., LUCB [13].

A BAIM has ive operations: Reset, Advance, Feedback, StopTest

and Return. The Reset operation clears its state. The Advance oper-

ation decides the next arm to play. The Feedback operation updates

its state with the observed information. The StopTest operation

checks whether the internal BAI algorithm has terminated and the

Return operation returns the identiied best arm.

With the BAIMprocedure above, Algorithm 1 presents the formal

deinition of DoublerBAI. Generally speaking, we irst divide the

time horizon into exponentially growing epochs, motivated by the

doubling trick [5, 6]. Then, in each epoch i , we ix one arm x̄i
(the left arm) of the played duel (x̄i ,yt ), and adaptively choose the

other arm yt (the right arm) using an exploration-then-exploitation

strategy.

In the stage of exploration (Lines 16-22), we choose the right

arm yt according to the sample strategy provided by S , the BAIM

procedure, and feed back the dueling outcome bt to S . Thus, S is

actually estimating the probabilities of arms in X beating the ixed

x̄i , and identifying the best arm. Once the internal BAI algorithm in

S terminates and returns the identiied best arm x̂i (Lines 20-22), we

2Whenm = 2, having |At | = 1 is equivalent to selecting (a0, a0) (in this case At

only contains a single arm a0) in the original two-dueling bandit problem. Therefore,
our setting reduces to the original two-dueling bandit problem whenm = 2.
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Algorithm 1: DoublerBAI

Input: Exponentially growing sequence {Ti }i ∈N, where

Ti = ⌊a
b i ⌋ (a,b > 1)

1 S ← new BAIM over X;

2 Set the identiied best arm x̂i = NULL for all epoch

i ∈ {0, 1, ...};

3 Set the length of epoch i τi =

{
T0, i = 0

Ti −Ti−1, i > 0
;

4 while true do

5 if x̂i−1 , NULL then

6 x̄i ← x̂i−1;

7 else

8 Choose x̄i randomly from X;

9 Reset(S , δi =
1

τi+1
);

10 for j = 1, ...,τi do

11 if x̂i , NULL then

12 //exploit

13 yt ← x̂i ;

14 Play (x̄i ,yt );

15 else

16 //explore

17 yt ← Advance(S);

18 Play (x̄i ,yt ) and observe the binary dueling

outcome bt ;

19 Feedback(S , bt );

20 if StopTest(S)=true then

21 x̂i ← Return(S);

22 τ
explore
i ← j;

23 t ← t + 1;

24 i ← i + 1;

enter the exploitation stage (Lines 12-14) and yt is chosen to be x̂i .

For the choice strategy of the left arm x̄i (Lines 5-8), if S terminates

and returns a best arm in the previous epoch, i.e., x̂i−1 , NULL, then

we set x̄i to be the identiied best arm x̂i−1 found in the previous

epoch. Otherwise, we simply choose x̄i randomly from X.

The key of DoublerBAI is to identify the best arm with high

probability in each epoch and ix the left arm in the next epoch as

the identiied arm. The error probability of the BAIM in each epoch

is set according to the length of the next epoch. This guarantees

that the expected regret of the left arm is a constant and the regret

of the right arms is bounded by the internal regret of the BAIM.

The following theorem provides the regret bound for Doubler-

BAI.

Theorem 3.1. Consider a K-armed utility-based two-dueling ban-

dits game. Assume that the BAIM S in DoublerBAI has a sample

complexity of O(H ln(H
δ
)), where S outputs the best arm with proba-

bility at least 1−δ . Given an exponentially growing sequence {Ti }i ∈N
with parameters a,b > 1, i.e., Ti = ⌊a

b i ⌋, the expected regret of Dou-

blerBAI is bounded by

E[RT ] =O((H lnH )b ) +O(H lnT )

+O(H lnH ln lnT ) +O(ln lnT ),

where H :=
K∑
i=2

1
∆
2
i

is the problem complexity for a bandit instance.

Proof sketch. (Please refer to Section A of the supplementary

material [1] for the full proof).

We irst consider the regret incurred by the right arm yt . Let

B(δ ) denote the supremum of the expected regret of S (the BAIM)

to identify the best arm with probability at least 1 − δ . In epoch i ,

after ixing the left arm x̄i , we see that S is playing a standard BAI

game in the stage of exploration by estimating the probabilities

of arms in X to beat x̄i . Thus, in epoch i , the expected regret in

S is E[
τ
explore
i∑
t=1

µ(x1)−µ(yt )+1
2 ] ≤ B( 1

τi+1
). Speciically, according to

the deinition of regret for dueling bandits, we observe that the

expected regret of the right arm yt in the stage of exploration,

which exactly equals to the left-hand side of the inequality, can

be bounded by B( 1
τi+1
). Using the explore-then-exploit strategy,

the expected regret of the right arm in epoch i can be bounded by

(1 − 1
τi+1
)B( 1

τi+1
) + 1

τi+1
O(τi ). Taking a summation over all epochs

(there are O(ln lnT ) epochs), we obtain the main term O(H lnT ) of

the bound presented in Theorem 3.1.

Next, we consider the left arm. If the previous epoch returns an

identiied best arm x̂i−1 (with error probability at most 1
τi
), then

the left arm in epoch i is ixed as x̄i=x̂i−1, which incurs expected

regret of 1
τi
·O(τi )+ (1−

1
τi
) · 0. Otherwise, the left arm x̄i is chosen

randomly, which incurs linear expected regret of O(τi ). However,

one can prove that the latter case only occurs in early short epochs,

and the regret can be bounded by O((H lnH )b ). □

Remark 1. Theorem 3.1 suggests that our DoublerBAI improves

the upper bound over its baseline, i.e., Doubler in [3], fromO((lnT )2)

(Theorem 3.1 in [3]) to O(lnT ) by eiciently incorporating BAI al-

gorithms. The upper bound of our DoublerBAI has an additional

problem-dependent termO((H lnH )b ), caused by not being able to

identify best arms due to insuicient epochs length. Yet, by setting

b close to 1, O((H lnH )b ) becomes negligible for T large enough,

which is also eicient in practice.

3.2 MultiSBM-Feedback with Multi-armed
Bandit Algorithms

We now consider the second algorithm, MultiSBM-Feedback, which

not only has an optimal regret bound of O(lnT ), but also improves

the constant factor of its baseline, i.e., MultiSBM in [3].

In MultiSBM-Feedback, we deine a Singleton Bandit Machine

(SBM) as a generic procedure representing a MAB algorithm with

an internal timer and memory. In this work, we implement SBM

with a variant of UCB [4] which satisies the α-robustness property

deined in [3]. Below we restate this deinition.

Deinition 3.2 (α -robustness). LetTi be the number of times a (sub-

optimal) arm xi ∈ X is played when running the policyT rounds. A

MABpolicy is said to beα -robust when it has the following property:

for all s ≥ 4(α + 4)∆−2i ln(T ), it holds that Pr[Ti > s] < 2
α (s/2)

−α .

An SBM has four operations: Reset, Advance, Feedback and

AdditionalFeedback. The irst three operations are inherited from
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Algorithm 2: MultiSBM-Feedback

1 For all x ∈ X: Sx ← new SBM over X, Reset (Sx );

2 y0 ← arbitrary element of X;

3 t ← 1;

4 while true do

5 xt ← yt−1;

6 yt ← Advance(Sxt );

7 Play (xt ,yt ), observe choice b
y
t ;

8 Feedback(Sxt ,b
y
t );

9 if xt , yt then

10 bxt ← 1 − b
y
t , AdditionalFeedback(Syt ,b

x
t );

11 t ← t + 1;

MultiSBM. The last AdditionalFeedback is newly added, and plays

an important role in improving the regret. AdditionalFeedback

receives an additional feedback sent from some arm and updates

the SBM’s internal state with the additional feedback.

Algorithm 2 presents the procedure ofMultiSBM-Feedback. Specif-

ically, we operate K diferent SBMs in parallel, indexed by the K

elements in X. SBM Sx (x ∈ X) performs an MAB algorithm via

estimating the probabilities of arms in X to beat arm x . At each

time-step t , we choose the right arm yt of the duel (xt ,yt ) accord-

ing to the strategy provided by SBM Sxt and feed back the outcome

b
y
t (b

y
t = 1 if yt wins against xt , otherwise b

y
t = 0) to Sxt . If the

two arms are diferent, we invoke AdditionalFeedback to collect

outcome bxt = 1 − b
y
t to Syt (Lines 9-10). In the next time-step, the

right arm xt+1 is chosen to be yt . In other words, the right arm in

each time-step equals to the left arm in the next time-step.

The key of AdditionalFeedback is to exploit additional feedback

from the perspective of xt , to augment the information in Syt . This

is because after one pull, the outcome of xt beating yt and that

of yt beating xt can be respectively fed back to Syt and Sxt . Thus,

Syt receives an additional feedback from xt without pulling xt ,

which helps Syt augment its empirical observations on xt . Note

that in any SBM Sx , the empirical observations received from op-

erations Feedback and AdditionalFeedback are independent. Thus,

the Chernof-Hoefding bound used in our theoretical analysis still

holds.

Algorithm 3 presents the procedure of a SBM. ρk denotes the

number of times armxk ∈ X has been pulled. sk denotes the number

of times this SBM receives additional feedback sent from arm xk .

The operation GetAdditionalFeedback is to obtain an additional

feedback sent from some left arm xt in Algorithm 2, which we label

as x j in Algorithm 3. If no additional feedback is sent to this SBM,

GetAdditionalFeedback simply returns NULL. Every time before

SBM pulls (advances) an arm, it invokes GetAdditionalFeedback

and updates its empirical observations with the additional feedback

received from some arm x j (Lines 6-9).

The following theorem bounds the expected regret of MultiSBM-

Feedback.

Algorithm 3: Implementation of SBM

Input: Conidence interval parameter α

1 ∀xk ∈ X, set µ̂k = ∞;

2 ∀xk ∈ X, set ρk = 0;

3 ∀xk ∈ X, set sk = 0;

4 t ← 1;

5 while true do

6 bx j =GetAdditionalFeedback();

7 if bx j , NULL then

8 µ̂ j =
µ̂ j ·(ρ j+sj )+b

xj

ρ j+sj+1
;

9 sj = sj + 1;

10 Let i be the index maximizing µ̂i +
√
(α+2) ln t
2(ρi+si )

; // x
0 := 1

for any x

11 Play xi , update µ̂i , increment ρi by 1;

12 t ← t + 1;

Theorem 3.3. Consider a K-armed utility-based two-dueling ban-

dits game. The expected regret of MultiSBM-Feedback, which imple-

ments an SBM deined in Algorithm 3, is bounded by

E[RT ] ≤ min

{∑

i>1

(α + 2)∆max

∆
2
i

lnT ,
∑

i>1

2(α + 2)

∆i
lnT

}

+

(α + 8)∆max

2α
K +

∑

j>1

∑

i>1

O
(α∆max

∆
2
j

(
ln lnT + lnK + ln(

1

∆i
)
) )
,

where ∆max := max
i>1

∆i and the conidence interval parameter α =

max{3, lnK
ln lnT

}.

Proof sketch. (Please refer to Section B of the supplementary

material [1] for the full proof).

According to MultiSBM-Feedback (Algorithm 2), the right arm

in each time-step equals to the left arm in the next time-step. Thus,

in order to bound the total regret, it suices to bound the number

of times the right arm is suboptimal. Because the right arm is

advanced by the SBM indexed by the left arm, we consider the

regret from two parts, i.e., suboptimal right arms advanced by Sx1
and by Sx (x , x1).

We irst analyze the latter part. Because the number of times

a suboptimal arm x , x1 being advanced in any SBM is O(lnT ),

according to the results of UCB [4], the number of times x becomes

the left arm is O(K lnT ), i.e., the internal timer of Sx (x , x1) is

order of O(K lnT ). Thus, the number of times a suboptimal right

arm advanced by Sx is O(ln(K lnT )).

Next, we analyze the former part. By exploiting the additional

feedbacks, we can prove that in Sx1 ,
∑
i>1

ρi (t) =
∑
i>1

si (t) for any

internal time t . This is because every time Sx1 pulls a suboptimal

arm (
∑
i>1

ρi (t) increments by 1), it must has received an additional

feedback before (
∑
i>1

si (t) increments by 1). Thus, we can prove an

expected upper bound ofO(lnT ) for ρi (t)+ si (t) (i > 1). Therefore,

taking a summation over i > 1, we obtain a tighter upper bound

of
∑
i>1

ρi (t) compared to the original MultiSBM, where the order is

still O(lnT ), while the constant shrinks by a half. □
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Remark 2. Theorem 3.3 suggests that our MultiSBM-Feedback

not only has an optimal regret bound of O(lnT ), but also improves

the constant factor of its benchmark result in MultiSBM. This im-

provement is achieved by additionally exploiting the feedback from

the duel. Moreover, the regret bound of MultiSBM is comparable to

that of UCB [4] in a standard MAB setting in terms of both order

and factor.

4 MULTIRUCB FOR MULTI-DUELING
BANDITS

In this section, we consider the general case 2 ≤ m ≤ K , where we

can simultaneously compare multiple arms. We propose an eicient

algorithm, called MultiRUCB, for the general multi-dueling bandit

problem. We conduct a inite-time regret analysis and show that

the regret of MultiRUCB is O(lnT ) and tightens as the comparison

set sizem increases. To the best of our knowledge, this is the irst

inite-time regret analysis for multi-dueling bandits.

Algorithm 4 presents the procedure of MultiRUCB.We deinema-

trixWK×K to record the empirical observations, whose ij-th entry

denotes the number of times we observe xi beating x j (xi ,x j ∈ X).

Motivated by [30], we also deine the relative upper conidence

bound matrixUK×K , whose ij-th entry optimistically estimates the

preference probability pi j . We maintain a candidate set C which

contains potential optimal arms and an empty or singleton set B

which contains the hypothesized optimal arm. Note that the hy-

pothesized optimal arm is removed from B once it loses to another

arm (Line 10). At each time-step t , we choose the comparison set

At diferently according to the size of C. If C = ∅ (Lines 8− 9), we

randomly choosem diferent arms into At from X, which is the

trivial case and shown to occur infrequently in our analysis.

Next we discuss three non-trivial cases:

(a) If |C| = 1, we are left with a single potential optimal arm xc ,

which is hypothesized to be the optimal arm. We put the single

arm into B and At (Lines 11 − 13).

(b) If 1 < |C| ≤ m, all potential optimal arms in C can be compared

simultaneously. We simply put all of them into At (Lines 14 −

15).

(c) If |C| > m, we cannot put all potential optimal arms intoAt at

once. To choosem diferent arms from C, if B is not empty, we

give priority to the hypothesized optimal arm in B and choose

the other arms uniformly at random. Otherwise, we uniformly

and randomly choosem diferent arms into At from C (Lines

16 − 22).

The key of MultiRUCB is to exploit as much information as

possible from one pull to targetAt = {x1}. C maintains a candidate

pool for the potential optimal arms.When C contains multiple arms,

which implies that the conidence region of some suboptimal arms

are loose, we explore all of them simultaneously as possible. In the

case this cannot be done, we wish to put optimal arm x1 into At .

Thus, we give priority to the hypothesized optimal arm using the

choice strategy deine in Lines 18 − 22. This is because x1 is the

most eicient arm to determine the sub-optimality of other arms.

The following theorem provides the regret bound for MultiRUCB.

Theorem 4.1. Consider a K-armed multi-dueling bandits game,

where the number of comparing arms is at most m at every time.

Algorithm 4: MultiRUCB

Input: α > 1
2

1 W = [wi j ] ← 0K×K ;

2 B ← ∅;

3 for t = 1, ...,T do

4 U := [ui j ] =
W

W+WT +

√
α ln t
W+WT ;

5 // Element − wise operation; x0 := 1 for any x

6 uii ←
1
2 for all i ∈ {1, ...,K};

7 C ← {xc | uc j ≥
1
2 , ∀j ∈ {1, ...,K}};

8 if C = ∅ then

9 Randomly choosem diferent arms for At from X;

10 B ← B
⋂
C;

11 if |C| = 1 then

12 B ← C;

13 At ← C;

14 if 1 < |C| ≤ m then

15 At ← C;

16 if |C| > m then

17 Choosem diferent arms for At from C using the

following strategy:

18 if B = ∅ then

19 Uniformly choosem diferent arms for At from

C;

20 else

21 With probability of 1
2 , add xc ∈ B into At and

uniformly add xc ∈ C \ B into At ;

22 With probability of 1
2 , uniformly choosem

diferent arms for At from C \ B;

23 Play At and observe all pairwise feedback in At ;

24 For any pairwise feedback between x j ,xk ∈ At ,

incrementw jk orwk j depending on which arm wins;

Given α > 1, the expected regret of MultiRUCB is bounded by

E[RT ] ≤

[(
2(4α − 1)K2

2α − 1

) 1
2α−1 2α − 1

α − 1

]
∆max

+min

{
D∆max lnT ,

(
8 + 2D ln 2D

)
∆max +

m + 1

m − 1

∑

i>1

4α∆max

∆
2
i

lnT

}
,

where D :=
∑
i>1

4α
∆
2
i

+

∑
1<i<j

4α
C2
m∆

2
i j

and C2
m :=

m(m−1)
2 .

Proof sketch. (Please refer to Section C of the supplementary

material [1] for the full proof).

We see that afterC(δ ) :=
(
(4α−1)K 2

(2α−1)δ

) 1
2α−1

time-steps, any prefer-

ence probability pi j (xi ,x j ∈ X) will lie in its estimated conidence

interval with probability at least 1 − δ (Lemma 1 in [30]). Thus,

with probability at least 1 − δ , after C(δ ) time-steps, x1 exists in
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C (u1i ≥ p1i ≥
1
2 , ∀i). In order to bound the regret after C(δ )

time-steps, it suices to bound the number of times cases (b) or (c)

occurs. For ease of notation, we deine two subcases (c-1) and (c-2)

of case (c). They respectively refer to the two situations where x1
is added to At and not.

We irst bound the sum of the number of times case (b) and case (c-

1) occur. Let Ñ1i (t) (i > 1) denote the number of dueling outcomes

between x1 and xi we have observed, between time C(δ ) + 1 and t .

AfterC(δ ) time-steps, every time case (b) occurs, we can observe at

least one outcome of duel betweenx1 and some xi (i > 1) (
∑
i>1

Ñ1i (t)

increments by 1). Every time case (c-1) occurs, we can observe

outcomes of m − 1 duels between x1 and xi (i > 1) (
∑
i>1

Ñ1i (t)

increments by m − 1). According to the deinition of C, we can

prove Ñ1i (t) ≤
4α
∆
2
i

ln t . Thus, taking a summation over i > 1, the

total number of times case (b) and case (c-1) occur, between time

C(δ ) + 1 and t , is bounded by
∑
i>1

Ñ1i (t) ≤
∑
i>1

4α
∆
2
i

ln t .

Next we bound the number of times case (c-2) occurs. We use

Ñi j (t) (1 < i < j) to denote the number of dueling outcomes be-

tween xi and x j we have observed between timeC(δ )+1 and t . After

C(δ ) time-steps, every time case (c-2) occurs, we can observe out-

comes ofC2
m duels between xi and x j (xi ,x j ∈ X\{x1}, xi , x j ), i.e.,∑

1<i<j
Ñi j (t) increments byC2

m . According to the deinition of C, we

can prove Ñi j (t) ≤
4α
∆
2
i j

ln t , implying
∑

1<i<j
Ñi j (t) ≤

∑
1<i<j

4α
∆
2
i j

ln t .

Since each occurrence of case (c-2) increments
∑

1<i<j
Ñi j (t) by C

2
m ,

the number of times case (c-2) occurs between time C(δ ) + 1 and

t is bounded by
∑

1<i<j

4α
C2
m∆

2
i j

ln t . Therefore, we obtain the term

D∆max lnT in Theorem 4.1.

Another term
(
8+2D ln 2D

)
∆max +

m+1
m−1

∑
i>1

4α∆max

∆
2
i

lnT in The-

orem 4.1 can be obtained by exploiting a geometric distribution

with success probability 1
2 , following the procedures in [30]. Specif-

ically, we irst need to investigate when B is set. Deine T̂δ as the

smallest time satisfying T̂δ > C( δ2 ) + D ln T̂δ , where T̂δ is guaran-

teed to exist because the left side of the inequality grows linearly

with T̂δ and the right side grows logarithmically. It is easy to prove

T̂δ ≤ 2C( δ2 ) + 2D ln 2D. According to the deinition of T̂δ , with

probability at least 1 − δ
2 , there exists a time Tδ ∈ (C(

δ
2 ), T̂δ ] when

case (a) occurs. This implies that with probability at least 1 − δ
2 , B

has been set as B = {x1} from time Tδ on.

Then, we know that from time Tδ on, if MultiRUCB carries

out case (c), case(c-1) will occur with probability of 1
2 . Let N̂

b (t),

N̂ c
1 (t) and N̂

c
2 (t) denote the number of times case (b), (c-1) and (c-2)

occur between time Tδ + 1 and t , respectively. We also introduce

two sets of random variables, {τ0,τ1,τ2, ...} and {n1,n2, ...}. Deine

τ0 := Tδ and τl as the l
th time case (c-1) occurs after timeTδ . Deine

nl as the number of times case (c-2) occurs between τl−1 and τl .

Similar to the above analysis, we can prove that with probability

at least 1 − δ
2 , between time Tδ + 1 and t , case (c-1) occurs at most

Lc1(t) :=
∑
i>1

4α
(m−1)∆2

i

ln t times. Moreover, with probability at least

1 − δ
2 , for any time t > Tδ , if case (c-1) has occurred Lc1(t) times,

all suboptimal arms xi (i > 1) satisfy ui1 <
1
2 and case (c-2) cannot

occur. Thus, we can bound N̂ c
2 (t) by

Lc1 (t )∑
l=1

nl . Since nl counts the

number of times it takes for case (c) to produce one case (c-1), we

can use the conclusion about geometric random variables to bound
Lc1 (t )∑
l=1

nl . Therefore, we have that with probability at least 1 − δ ,

∀t > Tδ , N̂
c
2 (t) ≤

Lc1 (t )∑
l=1

nl ≤ 2
∑
i>1

4α
(m−1)∆2

i

ln t + 4 ln 2
δ
. Taking

summation over Tδ , N̂
b (t), N̂ c

1 (t) and N̂ c
2 (t), we obtain the term(

8 + 2D ln 2D
)
∆max +

m+1
m−1

∑
i>1

4α∆max

∆
2
i

lnT in Theorem 4.1.

At last, integrating the conidence term with respect to δ , we

obtain the expected regret bound in Theorem 4.1. □

Remark 3. Theorem 4.1 suggests that compared to the two-dueling

bandit solutions, MultiRUCB has the sameO(lnT ) regret. However,

by exploiting more information from one pull, the regret bound of

MultiRUCB tightens as the comparison set sizem increases, which

is unachievable through only repeating existing two-dueling ban-

dit solutions. This implies that our extension of the algorithm and

inite-time analysis from two-dueling to multi-dueling is non-trivial

and useful. Moreover, to the best of our knowledge, MultiRUCB

is the irst algorithm providing a inite-time regret analysis for

multi-dueling bandits.

5 EXTENSION OF THE LINK FUNCTION

Our analysis of DoublerBAI and MultiSBM-Feedback assumes the

linear link function ϕ
(
µ(xi ), µ(x j )

)
:=

µ(xi )−µ(x j )+1
2 . In this section,

we generalize the linear link function to more general non-utility-

based models in [27].

It can be veriied that our analysis still holds when ∆(·, ·) satisies

the following property:

Property 1. For some γ > 0 and any two arms xi ,x j ∈ X,

∆(x1,xi ) ≤ γ (∆(x1,x j ) − ∆(xi ,x j )).

This property holds for a wide family of ∆(·, ·). The main idea is

that our analysis holds if the regret in the dueling bandits problem

can be bounded by the regret seen by the BAIM (in Doubler) and

SBM (in MultiSBM-Feedback) with some positive γ . The efect of

γ on the regret bound of DoublerBAI and MultiSBM-Feedback is

shown in the following corollaries:

Corollary 5.1. Consider a K-armed two-dueling bandits game,

in which ∆(·, ·) satisies Property 1 with parameter γ . Assume that

the BAIM S in Line 1 of DoublerBAI has a sample complexity of

O(H ln(H
δ
)), where S outputs the best arm with probability at least

1−δ . Given an exponentially growing sequence {Ti }i ∈N of parameters

a,b > 1 (i.e., Ti = ⌊a
b i ⌋), the expected regret of DoublerBAI is

bounded by

E[RT ] =O((H lnH )b ) +O(H lnT )

+O(H lnH ln lnT ) +O(ln lnT ),

where H :=
K∑
i=2

1
∆
2
i

is the problem complexity for a bandit instance.
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(b) Synthetic, K = 48, natural link function
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(c) Synthetic, K = 48, logit link function
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(d) Synthetic, K = 72, linear link function
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Figure 1: Regret results of two-dueling bandits on the synthetic (a-e) and MSLR (f) dataset.

Corollary 5.2. Consider a K-armed two-dueling bandits game,

in which ∆(·, ·) satisies Property 1 with parameter γ . The expected

regret of MultiSBM-Feedback, which implements an SBM deined in

Algorithm 3, is bounded by

E[RT ] ≤ min

{∑

i>1

(α + 2)∆max

∆
2
i

lnT ,
∑

i>1

2(α + 2)

∆i
lnT

}
+

(α + 8)∆max

2α
K +

∑

j>1

∑

i>1

O
(γα∆max

∆
2
j

(
ln lnT + lnK + ln(

1

∆i
)
) )
,

where ∆max := max
i>1

∆i and the conidence interval parameter α =

max{3, lnK
ln lnT

}.

Note that γ does not afect the regret bound of DoublerBAI and

the main term in the regret bound of MultiSBM-Feedback. This is

because when ixing x j = x1 in Property 1, γ just vanishes and does

not afect our analysis.

6 EXPERIMENTS

We conduct experiments for two-dueling bandits and multi-dueling

bandits on both the synthetic and real-world datasets. In our syn-

thetic datasets, the expected utilities ofK arms are set as µ(x1) = 0.8

and µ(x2), ..., µ(xK ) forming a geometric sequence with µ(x2) =

0.7, µ(xK ) = 0.2. Moreover, besides the linear link function, we also

conduct experiments for two additional link functions, natural and

logit, which are respectively deined as follows:

ϕnatural
(
µ(xi ), µ(x j )

)
:=

µ(xi )

µ(xi ) + µ(x j )
,

ϕlogit
(
µ(xi ), µ(x j )

)
:=

1

1 + exp
(
µ(x j ) − µ(xi )

) .

For the real-world dataset, we use the Microsoft Learning to Rank

(MSLR) dataset [17] in information retrieval, which contains query-

document pairs labeled with relevance scores. Our setup follows

that of [29], which estimates a preference matrix for 136 rankers.

Each ranker can be regarded as an arm in dueling bandits since it

is a function mapping a query of the user to a document ranking.

We use a submatrix of 24 rankers selected from the full preference

matrix. We remark here that the choice of K = 24 here is made to

ensure a total order of the chosen arms (since their relations are

obtained from a preference matrix), such that the existence of an

optimal arm is guaranteed. The presented results are averaged over

50 independent runs for each algorithm.

6.1 Two-dueling Bandits Experiments

For the special case of our general setting, i.e., two-dueling ban-

dits, we compare DoublerBAI and MultiSBM-Feedback with their

baselines Doubler and MultiSBM [3], and other state-of-the-art

algorithms including IF [27], BTM [28], SAVAGE [24] and SCB in

[29]. For DoublerBAI, we choose the LUCB algorithm in [13] as the

BAIM, and set parameters a = 10, b = 1.1. For the inite-horizon
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Figure 2: Regret results of multi-dueling bandits on the synthetic (a-b) and MSLR (c-d) dataset. The results are obtained using

the linear link function.

algorithms, IF, BTM and SAVAGE, we obtain each point of their

regret curves by resetting the horizon to the corresponding time

value. As shown in Fig. 1, DoublerBAI and MultiSBM-Feedback not

only achieve signiicant improvements over their baselines, Doubler

and MultiSBM, but also outperform the other state-of-the-art algo-

rithms. In particular, compared to MultiSBM, MultiSBM-Feedback

reduces the regret by approximately a half, which matches our

theoretical analysis.

6.2 Multi-dueling Bandits Experiments

For the general multi-dueling bandit setting, we compare Multi-

RUCB with three state-of-the-art algorithms including MDB [8],

IndSelfSparring [22] and MultiSparring (the multi-dueling exten-

sion of Sparring [3]). Fig. 2 plots the average cumulative regrets for

50 independent runs in the casesm = 8 andm = 163. In addition, the

variances of cumulative regrets at the 106 timestep corresponding

to Fig. 2 (a-d) are also presented in Section D of the supplemen-

tary material [1] due to the space limit. The experimental results

show that our MultiRUCB not only achieves the best regret per-

formance, but also ensures the smallest variances among all the

compared algorithms on both the synthetic and MSLR dataset. This

demonstrates the superiority of MultiRUCB in practice, compared

to existing algorithms for multi-dueling bandits. Moreover, among

3The results are similar for otherm values.

all the compared algorithms, MultiRUCB is the only algorithm

possessing a inite-time analysis.

7 CONCLUSION

In this work, we study a general multi-dueling bandit problem,

which has extensive real-world applications involving simultane-

ous duels of multiple options. For the special case of our setting,

two-dueling bandits, we propose two eicient algorithms Doubler-

BAI and MultiSBM-Feedback, both achieving O(lnT ) regret and

outperforming existing algorithms. For the general multi-dueling

bandits, we propose MultiRUCB and provide the irst inite-time

analysis for the problem. We prove that MultiRUCB achieves an

O(lnT ) regret. We also show that its regret improves as the ca-

pacity of the comparison set increases. Our experimental results

based on both synthetic and real-world datasets demonstrate the

performance superiority of our algorithms, compared to other state-

of-the-art algorithms.
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