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ABSTRACT
We provide several positive and negative complexity results for solv-

ing games with imperfect recall. Using a one-to-one correspondence

between these games on one side and multivariate polynomials on

the other side, we show that solving games with imperfect recall

is as hard as solving certain problems of the first order theory of

reals. We establish square root sum hardness even for the specific

class of A-loss games. On the positive side, we find restrictions

on games and strategies motivated by Bridge bidding that give

polynomial-time complexity.
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INTRODUCTION
The complexity of games of finite duration and imperfect informa-

tion is a central problem in Artificial Intelligence. In the particular

case of zero-sum two-player extensive form games with perfect

recall, the problem was notably shown to be solvable in polynomial-

time [16, 19]. The perfect recall assumption, which states that play-

ers do not lose track of any information they previously received, is

mandatory for this tractability result to hold: without this assump-

tion, the problem was shown to be NP-hard [7, 16].

The primary motivation for our work is to investigate the com-

plexity of the game of Bridge, a game between two teams of two

players each: North and South against West and East. Bridge is

a specific class of multi-player games called team games, where

two teams of players have opposite interests, players of the same

team have the same payoffs, but players cannot freely communicate,

even inside the same team (see e.g. [6, 11] for more details). Inter-

estingly, dropping the perfect recall assumption in zero-sum two

player games is enough to encompass team games: the lack of com-

munication between the players about their private information

can be modelled with imperfect recall. Another motivation to study

This work is supported by UMI ReLaX. The third author is supported by grants from

Infosys Foundation (India), Tata Consultancy Services - Innovation Labs (Pune, India)

and SERB-MATRICS project (Science and Education Research Board, India).

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May

9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

games with imperfect recall is that they may be used to abstract

large perfect recall games and obtain significant computational

improvements empirically [8, 20].

Our results exhibit tight relations between the complexity of

solving games with imperfect recall and decision problems in the

first-order theory of reals FOT(R). A formula in FOT(R) is a logical
statement containing Boolean connectives ∨,∧,¬ and quantifiers

∃,∀ over the signature (0, 1,+, ∗, ≤, <,=). We can consider it to be

a first order logic formula in which each atomic term is a poly-

nomial equation or inequation, for instance ∃x1,x2∀y(0 ≤ y ≤

1) → (4x1y + 5x2

2
y + 3x3

1
x2 > 4) (where we have used integers

freely since they can be eliminated without a significant blow-up

in the size of the formula [18], and the implication operator →

with the usual meaning). The complexity class ∃R consists of those

problems which have a polynomial-time reduction to a sentence

of the form ∃XΦ(X ) where X is a tuple of real variables, Φ(X ) is a

quantifier free formula in the theory of reals. Similarly, the com-

plexity classes ∀R and ∃∀R stand for the problems that reduce to

formulae of the form ∀XΦ(X ) and ∃X∀YΦ(X ,Y ) where X ,Y are

tuples of variables. All these complexity classes ∃R, ∀R and ∃∀R
are known to be contained in PSPACE [2, 5]. Complexity of games

with respect to the ∃R class has been studied before in strategic

form games, particularly for Nash equilibria decision problems in 3

player games [3, 13, 18].

Our paper provides several results about the complexity of exten-

sive form games with imperfect recall. First, we show a one-to-one

correspondence between games of imperfect recall on one side and

multivariate polynomials on the other side and use it to establish

several results:

• In one-player games with imperfect recall, deciding whether

the player has a behavioural strategy with positive payoff is

∃R-complete (Theorem 2.3). The same holds for the question

of non-negative payoff.

• In two-player games with imperfect-recall, the problem is

in the fragment ∃∀R of FOT(R) and it is both ∃R-hard and

∀R-hard (Theorem 2.4). Even in the particular case where

the players do not have absent-mindedness, this problem is

Sqare-Root-Sum-hard (Theorem 2.6).

A corollary is that the case where one of the two players has A-loss

recall and the other has perfect recall is Sqare-Root-Sum hard, a

question which was left open in [7]. While the above results show

that imperfect recall games are hard to solve, we also provide a few

tractability results.

• We capture the subclass of one-player perfect recall games

with a class of perfect recall multivariate polynomials. As a

by-product we show that computing the optimum of such a
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polynomial can be done in polynomial-time, while it is NP-

hard in general (Section 3). This also provides a heuristic to

solve imperfect recall games in certain cases, by converting

them to perfect recall games of the same size.

• For one-player games where the player is bound to use deter-

ministic strategies, the problem becomes polynomial-time

when a parameter which we call the change degree of the

game is constant (Theorem 4.4).

• We provide a model for the bidding phase of the Bridge game,

and exhibit a decision problem which can be solved in time

polynomial in the size of the description (Lemma 4.5).

1 GAMES WITH IMPERFECT INFORMATION
This section introduces games with imperfect information. These

games are played on finite trees by two players playing against each

other in order to optimize their payoff. The players are in perfect

competition: the game is zero-sum. Nature can influence the game

with chance moves. Players observe the game through information

sets and they are only partially informed about the moves of their

adversary and Nature.

Playing games on trees. For a set S , we write ∆(S) for a probability
distribution over S . A finite directed tree T is a tuple (V ,L, r ,E)
where V is a finite set of non-terminal nodes; L is a non-empty

finite set of terminal nodes (also called leaves) which are disjoint

from V ; node r ∈ V ∪ L is called the root and E ⊆ V × (V ∪ L) is
the edge relation. We write u → v if (u,v) ∈ E. It is assumed that

there is no edge u → r incoming to r , and there is a unique path

r → v1 → · · · → v from the root to every v ∈ V ∪ L. We denote

this path as PathTo(v).
We consider games played between two playersMax andMin

along with a special player Chance to model random moves during

the game. We will denote Max as Player 1 and Min as Player 2.

An extensive form perfect information game is given by a tuple

(T ,A,Control,δ ,U)where: T is a finite directed tree,A = A1 ∪A2

is a set of actions for each player with A1 ∩ A2 = ∅, function

Control : V 7→ {1, 2} ∪ {Chance} associates each non-terminal

node to one of the players, δ is a transition function which we

explain below, and U : T 7→ Q associates a rational number called

the utility (or payoff) to each leaf. For i ∈ {1, 2}, letVi denote the set
of nodes controlled by Player i , that is {v ∈ V | Control(v) = i} and
let VChance denote the nodes controlled by Chance. We sometimes

use the term control nodes for nodes in V1 ∪V2 and chance nodes

for nodes in VChance. The transition function δ associates to each

edge u → v an action in Ai when u ∈ Vi , and a rational number

whenu ∈ VChance such that
∑
v s.t. u→v δ (u → v) = 1 (a probability

distribution over the edges ofu). We assume that from control nodes

u, no two outgoing edges are labeled with the same action by δ :
that is δ (u → v1) , δ (u → v2) when v1 , v2. For a control node u,
we write Moves(u) for {a ∈ Ai | a = δ (u → v) for some v}. Games

G1 and G2 in Figure 1 without the blue dashed lines are perfect

information games which do not have Chance nodes. Game G−
√
n

of Figure 4 without the dashed lines gives a perfect information

game with Max, Min and Chance where nodes of Max, Min and

Chance are circles, squares and triangles respectively.

An extensive form imperfect information game is given by a

perfect information game as defined above along with two partition
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Figure 1: One player game G1 on the left, and two player
game G2 on the right

functions h1 : V1 7→ O1 and h2 : V2 7→ O2 which respectively

map V1 and V2 to a finite set of signals O1 and O2. The partition

functions hi satisfy the following criterion: Moves(u) = Moves(v)
whenever hi (u) = hi (v). Each partition h−1

i (o) for o ∈ Oi is called

an information set of Player i . Intuitively, a player does not know her

exact positionu in the game, and instead receives the corresponding

signal hi (u) whenever she arrives to u. Due to the restriction on

moves, we can define Moves(o) for every o ∈ Oi to be equal to

Moves(u) for some u ∈ h−1

i (o). In Figure 1, the blue dashed lines

denote the partition ofMax: inG1, {r ,u} is one information set and

inG2, the information sets ofMax are {u1}, {u2} and {u3,u4}.Max
has to play the same moves at both r and u in G1, and similarly at

u3 and u4 inG2. Based on some structure of these information sets,

imperfect information games are further classified.

Histories and recalls. While playing, a player receives a sequence

of signals, called the history, defined as follows. For a vertex v con-

trolled by player i , let hist(v) be the sequence of signals received
and actions played by i along PathTo(v), the path from the root to

v . For example in game G2, hist(u3) = {u1} b {u3,u4} (for conve-

nience, we have denoted the signal corresponding to an information

set by the set itself). Note that the information set of a vertex is

the last signal of the sequence, thus if two vertices have the same

sequence, they are in the same information set. On the other hand,

the converse need not be true: two nodes in the same information

set could have different histories, for instance node u4 in G2 has

sequence {u2} a {u3,u4}. In such a case, what happens intuitively

is that player i does not recall that she received the signals {u1}

and {u2} and played the actions b and a. This gives rise to various

definitions of recalls for a player in the game.

Player i is said to have perfect recall if she never forgets any

signals or actions, that is, for every u,v ∈ Vi , if hi (u) = hi (v) then
hist(u) = hist(v): every vertex in an information set has the same

history with respect to i . Otherwise the player has imperfect recall.

Max has imperfect recall in G1,G2 and G−
√
n whereas Min has

perfect recall in all of them (trivially, since she receives only one

signal). Within imperfect recall we make some distinctions.

Player i is said to have absent-mindedness if there are two nodes

u,v ∈ Vi such that u lies in the unique path from root to v and

hi (u) = hi (v) (player i forgets not only her history, but also the

number of actions that she has played).Max has absent-mindedness

in G1. Player i has A-loss recall if she is not absent-minded, and

for every u,v ∈ Vi with hi (u) = hi (v) either hist(u) = hist(v) or
hist(u) is of the form σaσ1 and hist(v) of the form σbσ2 where σ
is a sequence ending with a signal and a,b ∈ Ai with a , b (player
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i remembers the history upto a signal, after which she forgets the

action that she played). Max has A-loss in G−
√
n since she forgets

whether she played a0 or a1. There are still cases where a player is

not absent-minded, but not A-loss recall either, for example when

there exists an information set containingu,v whose histories differ

at a signal. This happens when i receives different signals due to
the moves of the other players (including player Chance), and later

converges to the same information set. In this document, we call

such situations as signal loss for Player i . Max has signal loss in G2

since at {u3,u4} as she loses track between {u1} and {u2}.

Plays, strategies and maxmin value. A play is a sequence of nodes

and actions from the root to a leaf: for each leaf l , the PathTo(l) is a
play. When the play ends at l , Min pays U(l) to Max. The payoffs
U(l) are the numbers below the leaves in the running examples.

Max wants to maximize the expected payoff and Min wants to

minimize it. In order to define the expected payoff, we define the

notion of strategies for each player. A behavioural strategy β for

Player i is a function whichmaps each signal o ∈ Oi to ∆(Moves(o)),
a probability distribution over its moves. Fora ∈ Moves(o), wewrite
β(o,a) for the value associated by β to the action a at information

set o. For node u, we write β(u,a) for the probability β(hi (u),a). A
pure strategy ρ is a special behavioural strategy which maps each

signal o to a specific action in Moves(o). We will denote the action

associated at signal o by ρ(o), and for a node u we will write ρ(u)
for ρ(hi (u)). For a node u and an action a, we define ρ(u,a) = 1

if ρ(hi (u)) = a, and ρ(u,a) = 0 otherwise. A mixed strategy is a

distribution over pure strategies: λ1ρ1 + λ2ρ2 + · · · + λkρk where

each ρ j is a pure strategy, 0 ≤ λj ≤ 1 and Σjλj = 1.

Consider a game G. Fixing behavioural strategies σ for Max
and τ for Min results in a game Gσ ,τ without control nodes: ev-

ery node behaves like a random node as every edge is labeled

with a real number denoting the probability of playing the edge.

For a leaf t , let C(t) denote the product of probabilities along the
edges controlled by Chance in PathTo(t). Let σ (t) denote the prod-

uct of σ (u,a) such that u ∈ V1 and u
a
−→ v is in PathTo(t). Simi-

larly, let τ (t) denote the product of the other player’s probabilities
along PathTo(t). The payoff with these strategies σ and τ , denoted
as Payoff(Gσ ,τ ) is then given by:

∑
t ∈T U(t) · C(t) · σ (t) · τ (t).

This is the “expected” amount that Min pays to Max when the

strategies are σ and τ for Max and Min respectively. We are in-

terested in computing maxσ minτ Payoff(Gσ ,τ ). We denote this

value as MaxMin
beh

(G) and call it the maxmin value (over be-

havioural strategies). When G is a one player game, the corre-

sponding values are denoted as Max
beh

(G) or Min
beh

(G) depend-
ing on whether the single player is Max or Min. We correspond-

ingly write MaxMinpure(G), Maxpure(G) and Minpure(G) when we

restrict the strategies σ and τ to be pure. In the one player gameG1,

Maxpure(G1) is 0 since the leaf l2 is unreachable with pure strate-

gies. SupposeMax plays a with probability x and b with 1−x , then
Max

beh
(G1) is given by maxx ∈[0,1] x(1 − x). In G2, a pure strategy

forMax can potentially lead to two leaves with payoffs either 1, 1

or 1, 2 or 2, 0. Based on what Max chooses, Min can always lead to

the node with minimum among the two by appropriately choosing

the action at r . This gives MaxMinpure(G2) = 1. Observe that on

the other hand, MinMaxpure(G2) = 2. Due to the symmetry the

game, we also have MaxMin
beh

(G2) = 1.

No absentmindedness With absentmindedness

One player NP-complete [16] ∃R-complete (Theorem 2.3)

Two players

in ∃∀R (Theorem 2.4)

Sqare-Root-Sum-hard ∃R-hard and ∀R-hard
(Theorem 2.6) (Theorem 2.4)

Figure 2: Complexity of imperfect recall games

2 IMPERFECT RECALL GAMES
In this section we investigate the complexity of imperfect recall

games and exhibit tight links with complexity classes arising out of

the first order theory of reals. Finding the maxmin value involves

computing a maxmin over polynomials where the variables are

partitioned between two playersMax andMin. It turns out that im-

perfect recall games can capture polynomial manipulation entirely

if there is a single player. When there are two players, we show that

certain existential and universal problems involving polynomials

can be captured using imperfect recall games. Previously, the only

known lower bound was NP-hardness [16]. We show that even the

very specific case of two-player games without absentmindedness

is hard to solve: optimal values in such games can be irrational

and solving these games is Sqare-Root-Sum-hard. A summary

of complexity results is given in Table 2.

2.1 One player
We start with the hardness of games with a single player. The

important observation is the tight connection betweenmulti-variate

polynomials on one side and one-player games on the other side.

Lemma 2.1. For every polynomial F (x1, . . . ,xn ) over the reals,
there exists a one player game GF with information sets x1, . . . ,xn
such that the payoff of a behavioural strategy associating di ∈ [0, 1]

to xi is equal to F (d1, . . . ,dn ).

Proof. Suppose F (x1, . . . ,xn ) has k terms µ1, ..., µk . For each
term µi in F (x1, . . . ,xn ) we have a node si in GF whose depth is

equal to the total degree of µi . From si there is a path to a terminal

node ti containing d nodes for variable x , for each xd in µi . Each of

these nodes have two outgoing edges of which the edge not going

to ti leads to a terminal node with utility 0. In the terminal node ti
the utility is equal to kci where ci is the coefficient of µi . There is
a root node belonging to Chance which has transitions to each si
with probability

1

k . All the other nodes belong to the single player.

All the nodes assigned due to a variable x belong to one information

set. The number of nodes is equal to sum of total degrees of each

term. The payoffs are the same as the coefficients. Hence the size

of the game is polynomial in the size of F (x1, . . . ,xn ). Figure 3

shows an example (the probability of taking l from information set

{u1,u2,u3} is x and the probability of taking l from {v1,v2,v3} isy).
Clearly the reduction from a polynomial to game is not unique. □

Lemma 2.2. The following two decision problems are ∃R-hard
in one-player games with imperfect recall: (i) Max

beh
≥ 0 and (ii)

Max
beh
> 0.

Proof. (i) The problem of checking if there exists a common root

inRn for a system of quadratic equationsQi (X ) is∃R-complete [18].
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Figure 3: One player game for polynomial 3x2 + 5xy − 8y2 − 1

This can be reduced to checking for a common root in [0, 1]n using

Lemma 3.9 of [17]. We then reduce this problem to Max
beh

≥ 0.

Note that X is a solution to the system iff −
∑
i Qi (X )2 ≥ 0. Using

Lemma 2.1 we construct a game GF with F = −
∑
i Qi (X )2. It then

follows that the system has a common root iff Max
beh

≥ 0 in GF .

(ii) We reduce Max
beh

(G) ≥ 0 to Max
beh

(G ′) > 0 for some

constructed game G ′
. Suppose that when Max

beh
(G) < 0, we can

show Max
beh

(G) < −δ for a constant δ > 0 that can be determined

fromG . With this claim, we haveMax
beh

(G) ≥ 0 iffMax
beh

(G)+δ >
0. We will then in polytime construct a game G ′

whose optimal

payoff is Max
beh

(G) + δ , which then proves the lemma. We will

first prove the claim. The proof proceeds along the same lines as

Theorem 4.1 in [18].

Let д(X ) be the polynomial expressing the expected payoff in

the gameG when the behavioural strategy is given by the variables

X . Define two sets S1 := {(z,X ) | z = д(X ),X ∈ [0, 1]n } and

S2 := {(0,X ) | X ∈ [0, 1]n }. If Max
beh

(G) < 0, then S1 and S2 do

not intersect. Since both S1, S2 are compact, this means there is

a positive distance between them. Moreover, S1 and S2 are semi-

algebraic sets (those that can expressed by a boolean quantifier

free formula of the first order theory of reals). Corollary 3.8 of [18]

gives that this distance > 2
−2

L+5

where L is the complexity of the

formulae expressing S1 and S2, which in our case is proportional to

the size of the game. However, since δ is doubly exponential, we

cannot simply use it as a payoff to get Max
beh

(G) + δ .
Define new variables y0,y1, . . . ,yt for t = L+5 and polynomials

Fi (y0, . . . ,yt ) := yi−1−y
2

i for i ∈ {1, . . . , t−1} and Ft (y0, . . . ,yt ) :=

yt −
1

2
. The only common root of this system of polynomials Fi

gives y0 = 2
−2

t
= δ . Let P := −

∑
i F

2

i (y0, . . . ,yt ) and letGP be the

corresponding game as in Lemma 2.1. Construct a new game G ′
as

follows. Its root node is a Chance node with edges to three children

each with probability
1

3
. To the first child, we attach the game G,

and to the second child, the game GP . The third child is the node

which is controlled by Max and belongs to the information set for

variable y0. It has two leaves as children, the left with payoff 0 and

the right with payoff 1. Observe that the optimal payoff for max in

G ′
is

1

3
(Max

beh
(G) + δ ). From the discussion in the first paragraph

of this proof, we have Max
beh

(G) ≥ 0 iff Max
beh

(G ′) > 0. □

The previous lemma shows that the game problem is ∃R-hard.
Inclusion in ∃R is straightforward since the payoff is given by a

polynomial over variables representing the value of a behavioural

strategy at each information set. For example, for the game G1

of Figure 1, deciding Max
beh

(G1) ≥ 0 is equivalent to checking

∃x(0 ≤ x ≤ 1 ∧ x(1 − x) ≥ 0). We thus get the following theorem.

Theorem 2.3. For one player games with imperfect recall, de-

ciding Max
beh

≥ 0 is ∃R-complete. Deciding Max
beh
> 0 is also

∃R-complete.

2.2 Two players
We now consider the case with two players. Analogous to the one

player situation, now MaxMin
beh

(G) ≥ 0 can be expressed as a

formula in ∃∀R. For instance, consider the gameG2 of Figure 1. Let

x ,y, z,w be theprobability of taking the left action inu1,u2, {u3,u4}

and r respectively. Deciding MaxMin
beh

(G2) ≥ 0 is equivalent to

the formula ∃x ,y, z∀w(0 ≤ w ≤ 1 → (wx + 2w(1 − x)z + 2(1 −

w)y(1 − z) + (1 −w)(1 − y) ≥ 0)). This gives the upper bound on

the complexity as ∃∀R. Hardness is established below.

Theorem 2.4. Deciding MaxMin
beh

(G) ≥ 0 is in ∃∀R. It is both
∃R-hard and ∀R-hard.

Proof. Inclusion in ∃∀R follows from the discussion above. For

the hardness, we make use of Lemma 2.2. Note that when there is

a single playerMax, Max
beh

(G) ≥ 0 is the same as MaxMin
beh

(G)
≥ 0. As the former is ∃R-hard, we get the latter to be ∃R-hard.
Now we consider the ∀R-hardness. Since Max

beh
(G) > 0 is also

∃R-hard, the complement problem Max
beh

(G) ≤ 0 is ∀R-hard.
Hence the symmetric problem Min

beh
(G) ≥ 0 is ∀R-hard. This

is MaxMin
beh

(G) ≥ 0 when there is a single player Min, whence
MaxMin

beh
(G) ≥ 0 is ∀R-hard. □

In these hardness results, we crucially use the squaring opera-

tion. Hence the resulting games need to have absentmindedness.

Games without absentmindedness result in multilinear polynomi-

als. The hardness here comes due to irrational numbers. Examples

were already known where maxmin behavioural strategies required

irrational numbers [16] but the maxmin payoffs were still ratio-

nal. We generate a class of games where the maxmin payoffs are

irrational as well. The next lemma lays the foundation for Theo-

rem 2.6 showing square root sum hardness for this problem. The

Sqare-Root-Sum problem is to decide if

∑m
i=1

√
ai ≤ p for given

positive integers a1, . . . ,am ,p. This problem was first proposed in

[12], whose complexity was left as an open problem. The notion of

Sqare-Root-Sum-hardness was put forward in [9] and has also

been studied with respect to complexity of minmax computation

[15] and game equilibrium computations [10]. In [9, 15] the version

discussed was to decide if

∑m
i=1

√
ai ≥ p. But our version is compu-

tationally same since the equality version is decidable in P [4]. The

Sqare-Root-Sum problem is not known to be in NP. It is known

to lie in the Counting Hierarchy [1] which is in PSPACE.

WhenMax has A-loss recall andMin has perfect recall, deciding

maxmin over behavioural strategies is NP-hard [7]. The question

of whether it is Sqare-Root-Sum-hard was posed in [7]. We set-

tle this problem by showing that even with this restriction it is

Sqare-Root-Sum-hard.

Lemma 2.5. For each n ≥ 0, there is a two-player game G−
√
n

without absentmindedness such that MaxMin
beh

(G−
√
n ) = −

√
n.

Proof. First we construct a game G1 whose maxmin value is

n(n+1−2

√
n)

(n−1)2
from which we get a game G2 with maxmin value n +

1− 2

√
n by multiplying the payoffs ofG1 with

(n−1)2

n . Then we take
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Figure 4: Game G−
√
n

a trivial gameG3 with maxmin value −(n + 1) and finally construct

G−
√
n by taking a root vertex r as chance node and transitions with

1/2 probability from r to G2 and G3.

We now describe the game G1. The game tree has 7 internal

nodes and 16 leaf nodes with payoffs. At the root node sϵ , there are
2 actions a0 and a1, playing which the game moves to s0 or s1. Then

again at si the actionb0 andb1 are available playing which the game

can go to s0,0, s0,1, s1,0 or s1,1. And finally again playing action c0

or c1 the game can go to the leaf states {ti, j,k | i, j,k ∈ {0, 1}}.

The node sϵ is in one information set I1 and belongs toMax. The
nodes s0 and s1 are in one information set I2 and also belong to

Max. Nodes s0,0, s0,1, s1,0 and s1,1 are in the same information set J
and belong toMin. The payoff at t0,0,0 is n and the payoff at t1,1,1
is 1. Everywhere else the payoff is 0.

Figure 4 depicts the gameG−
√
n and the left subtree from chance

node is G1 after scaling the payoffs by
(n−1)2

n . We wish to compute

the maxmin value obtained when both the players play behavioural

strategies. Assigning variables x ,y, z for information sets I1, I2, J
respectively, the maxmin value is given by the expression

max

x,y∈[0,1]
min

z∈[0,1]
nxyz + (1 − x)(1 − y)(1 − z)

which in this case is equivalent to

max

x,y∈[0,1]
min(nxy, (1 − x)(1 − y))

since the best response of Min is given by a pure strategy when

Min has no absentmindedness. It turns out this value is achieved

when nxy = (1−x)(1−y). We use this to get rid of y and reduce to:

max

x ∈[0,1]

nx(1 − x)

1 + (n − 1)x

Calculating this we see that the maximum in [0, 1] is achieved at

x =
√
n−1

n−1
. After evaluation we get MaxMin

beh
(G1) =

n(n+1−2

√
n)

(n−1)2

as intended, at x = y =
√
n−1

n−1
. □

Theorem 2.6. Deciding MaxMin
beh

≥ 0 is Square-Root-Sum-

hard in imperfect recall games without absentmindedness.

Proof. From the positive integers a1, ...,am and p which are

the inputs to the Sqare-Root-Sum problem, we construct the

following game Ĝ . At the root there is a chance node r̂ . From r̂ there

is a transition with probability
1

m+1
to each of the gamesG−

√
ai (as

constructed in Lemma 2.5) and also a trivial game with payoff p.
Now Max can guarantee a payoff 0 in Ĝ iff

∑m
i=1

√
ai ≤ p. □

In the proof above since in each of G−
√
n , Max has A-loss re-

call and Min has perfect recall, the same holds in Ĝ. Hence it is
Sqare-Root-Sum-hard to decide the problem even whenMax has
A-loss recall and Min has perfect recall.

3 POLYNOMIAL OPTIMIZATION
In Section 2 we have seen that manipulating polynomials can be

seen as solving one-player imperfect recall games (Lemma 2.1 and

Figure 3). In particular, optimizing a polynomial with n variables

over the domain [0, 1]n (the unit hypercube) can be viewed as find-

ing the optimal payoff in the equivalent game. On the games side,

we know that games with perfect recall can be solved in polynomial

time [16, 19]. We ask the natural question on the polynomials side:

what is the notion of perfect recall in polynomials? Do perfect recall

polynomials correspond to perfect recall games? We answer this

question in this section. We omit some of the proofs in this section

due to lack of space. Missing proofs can be found in [14].

Consider a set X of real variables. For a variable x ∈ X , we write

x̄ = 1 − x and call it the complement of x . Let X̄ = {x̄ | x ∈ X }

be the set of complements. We consider polynomials with integer

coefficients having terms over X ∪ X̄ . Among such polynomials,

we restrict our attention to multilinear polynomials: each variable

appearing in a term has degree 1 and no term contains a variable

and its complement. Let M(X ) be the set of such polynomials. For

example 3xyz − 5x̄ȳz + 9z̄ ∈ M({x ,y, z}) whereas 4xx̄ < M({x})
and 4x2 < M({x}). Moreover, we assume that polynomials are

not written in a factorized form, and instead written as sum of

monomials: we write 1 + y + x + xy and not (1 + x)(1 + y).
We are interested in the problem of optimizing a polynomial f ∈

M(X ) over the unit hypercube [0, 1] |X |
. The important property is

that the optimum occurs at a vertex. This corresponds to saying that

in a one-player imperfect recall game without absentmindedness,

the optimum is attained at a pure strategy (which is shown by first

proving that every behavioural strategy has an equivalent mixed

strategy and hence there is at least one pure strategy with a greater

value). Due to this property, the decision problem is in NP. Hardness

in NP follows from Corollary 2.8 of [16].

Theorem 3.1 ([16]). The optimum of a polynomial inM(X ) over

the unit hypercube [0, 1] |X |
occurs at a vertex. Deciding if the maxi-

mum is greater than or equal to a rational is NP-complete.

Our goal is to characterize a subclass of polynomials which

coincide with the notion of perfect recall in games. For this we

assume that games have exactly two actions from each information

set (any game can be converted to this form in polynomial-time).

The polynomials arising out of such games will come from M(X )

where going left on information set x gives terms with variable x
and going right gives terms with x̄ . When the game has perfect

recall, every node in the information set of x has the same history:

hence if some node in an information set y is reached by playing

left from an ancestor x , every node in y will have this ancestor

and action in the history. This implies that every term involving

y will have x . If the action at x was to go right to come to y, then
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every term with y will have x̄ . This translates to a decomposition

of polynomials in a specific form.

A polynomial д given by x f0(X0) + x̄ f1(X1) + f2(X2) is an x-
decomposition of a polynomial f if x < X0 ∪X1 ∪X2 and expanding

all complements inд and f result in the same complement-free poly-

nomial. The decomposition д is said to be disconnected if X0,X1,X2

are pairwise disjoint. For example д := xyz + 4x̄y + 5w̄ is an x-
decomposition of xyz+4y−4xy+5−5w which is not disconnected

due to variable y. Using these notions, we now define perfect recall

polynomials in an inductive manner.

Definition 3.2 (Perfect recall polynomials). Every polynomial over

a single variable has perfect recall. A polynomial f with variable set

X has perfect recall if there exists an x ∈ X and an x-decomposition

x f0(X0)+ x̄ f1(X1)+ f2(X2) of f such that (1) it is disconnected and

(2) each fi (Xi ) has perfect recall.

This definition helps us to inductively generate a perfect recall

game out of a perfect recall polynomial and vice-versa.

Theorem 3.3. A polynomial f inM(X ) has perfect recall iff there

is a one-player perfect recall game whose payoff is given by f . This
transformation from perfect recall polynomial to one-player perfect

recall game can be computed in polynomial time.

Below, we prove one direction of the above theorem, the polyno-

mial to game conversion (the other direction is proved in [14]). The

proof below showcases a stronger result that from a perfect recall

polynomial, we can in fact construct a perfect information game.

Lemma 3.4. For every perfect recall polynomial f , there is a perfect
information game with payoff given by f .

Proof. We construct the game inductively. For single variable

polynomials c0x + c1x̄ , the game has a single non-terminal node

with two leaves as children. The left leaf has payoff c0 and the

right has payoff c1. The behavioural strategy at this single node

is given by x to the left node and x̄ to the right node and hence

the payoff is given by c0x + c1x̄ . Now consider a perfect recall

polynomial with multiple variables. Consider the x-decomposition

x f0(X0)+ x̄ f1(X1)+ f2(X2)which witnesses the perfect recall. Each

Xi has fewer variables since x is not present. By induction, there are

perfect recall gamesG0,G1,G2 whose payoffs are given by f0, f1, f2
respectively. Construct game G with the root being a Chance node
with two transitions each with probability

1

2
. To the right child

attach the game G2. The left child is a control node with left child

being gameG0 and the right child beingG1. This node corresponds

to variable x . Finally multiply all payoffs at the leaves with 2. The

payoff of this game is given by x f0(X0) + x̄ f1(X1) + f2(X2). Since

the decomposition is disconnected, the constructed is also perfect

recall. This construction gives us a perfect information game. □

Theorem 3.3 allows to optimize perfect recall polynomials in

polynomial-time by converting them to a game. However, for this

to be algorithmically useful, we also need an efficient procedure to

check if a given polynomial has perfect recall. For games, checking

perfect recall is an immediate syntactic check. For polynomials, it is

not direct. We establish in this section that checking if a polynomial

has perfect recall can also be done in polynomial-time. The crucial

observation that helps to get this is the next proposition.

Proposition 3.5. If a polynomial f has perfect recall, then in

every disconnected x-decomposition x f0(X0) + x̄ f1(X1) + f2(X2) of

f , the polynomials f0(X0), f1(X1) and f2(X2) have perfect recall.

Note that the proposition claims that “every” disconnected de-

composition is a witness to perfect recall. This way the question of

detecting perfect recall boils down to finding disconnected decom-

positions recursively.

Finding disconnected decompositions. The final step is to find

disconnected decompositions. Given a polynomial f and b ∈ {0, 1},

we say x cancels y with b if substituting x = b in f results in

a polynomial without y-terms (neither y nor ȳ appears after the

substitution). For a set of variables S , we say x cancels S with b if

it cancels each variable in S with b. We say that x cancels y if it

cancels it with either 0 or 1.

Lemma 3.6. Let x f0(X0)+x̄ f1(X1)+ f2(X2) be an x-decomposition

of f . Then, the decomposition is disconnected iff for b ∈ {0, 1}, Xb
equals {y | x cancels y with b in f }.

This lemma provides a mechanism to form disconnected x-
decompositions starting from a polynomial f , just by finding vari-

ables that get cancelled and then grouping the corresponding terms.

Theorem 3.7. There is a polynomial-time algorithm to detect if a

polynomial has perfect recall.

Proof. Here is the (recursive) procedure.

(1) Iterate over all variables to find a variable x such that the

x-decomposition x f0(X0) + x̄ f1(X1) + f2(X2) of f is discon-

nected. If no such variable exists, stop and return No.

(2) Run the procedure on f0, f1 and f2.
(3) Return Yes.

When the algorithm returns Yes, the decomposition witnessing the

perfect recall can be computed. When the algorithm returns No, it

means that the decomposition performed in some order could not be

continued. However Proposition 3.5 then says that the polynomial

cannot have perfect recall. □

The combination of Theorems 3.3 and 3.7 gives a heuristic for

polynomial optimization: check if it is perfect recall, if yes convert

it into a game and solve it, if not perform the general algorithm

that is available. This heuristic can also be useful for imperfect

recall games. The payoff polynomial of an imperfect recall game

could as well be perfect recall (based on the values of the payoffs).

Such a structure is not visible syntactically in the game whereas

the polynomial reveals it. When this happens, one could solve an

equivalent perfect recall game.

4 PURE STRATEGIES AND BRIDGE
We have seen that maxmin computation over behavioural strate-

gies is as hard as solving very generic optimization problems of

multivariate polynomials over reals. Here we investigate the case

of pure strategies. We first recall the status of the problem.

Theorem 4.1. [16] The question of deciding if maxmin value over

pure strategies is at least a given rational is Σ2-complete in two player

imperfect recall games. It is NP-complete when there is a single player.
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In this section we refine this complexity result in two ways: we

introduce the chance degree of a game and show polynomial-time

complexity when the chance degree is fixed; next we provide a

focus on a tractable class of games called bidding games, suitable

for the study of Bridge.

4.1 Games with bounded chance
We investigate a class of games where the Chance player has re-
strictions. In many natural games, the number of Chance moves

and the number of options for Chance are limited - for example,

in Bridge there is only one Chance move at the very beginning

leading to a distribution of hands. With this intuition, we define a

quantity called the chance degree of a game.

Definition 4.2 (Chance degree). For each node u in the game,

the chance degree c-deg(u) is defined as follows: c-deg(u) = 1 if

u is a leaf, c-deg(u) =
∑
u→v c-deg(v) if u is a chance node, and

c-deg(u) = maxu→v c-deg(v) if u is a control node. The chance

degree of a game is c-deg(r ) where r is the root.

The chance degree in essence expresses the number of leaves

reached with positive probability when players play only pure

strategies. For example, the chance degrees of games G2 (Figure 1)

and G−
√
n (Figure 4) are 1 and 2 respectively.

Lemma 4.3. Let G be a one player game with imperfect recall,

chance degree K and n nodes. When both players play pure strategies,

the number of leaves reached is atmost K . The optimum value over

pure strategies can be computed in time O(nK ).

Proof. The first statement follows from an induction on the

number of non-terminal nodes.

Partition the set of leaves into bags so that leaves arising out of

different actions from a common Chance node are placed in differ-

ent bags. Here is an algorithm which iterates over each leaf starting

from the leftmost till the rightmost, and puts it in a corresponding

bag. Suppose the algorithm has visited i leaves and has distributed

them into j bags. For the next leaf u, the algorithm finds the first

bag where there is no v such that the longest common prefix in

PathTo(u) and PathTo(v) ends with a Chance node. If there is no
such bag, a new bag is created with u in it. It can be shown that the

number of bags created equals the chance degree K of the game.

In the partitioning above, for every Chance node u and for every

pair of transitionsu
a
−→ u1 andu

b
−→ u2, the leaves in the subtrees of

u1 and u2 fall in different bags. Moreover two leaves differ only due

to control nodes and hence while playing pure strategies, both these

nodes cannot both be reached with positive probability. Therefore,

once this partition is created, a pure strategy of the player can be

seen as a tuple of leaves ⟨u1, . . . ,um⟩ with at most one leaf from

each bag such that for every stochastic node u which is an ancestor

of some ui , there is a leaf uj in the subtree (bag) of every child of u.
The payoff of the strategy is given by the sum of C(t)U(t) for each
leaf t in the tuple where U(t) is the payoff and C(t) is the chance
probability to reach t . This enumeration can be done in O(nK ). □

Theorem 4.4. Consider games with chance degree bounded by

a constant K . Optimum in the one player case can be computed in

polynomial-time. In the two player case, deciding if maxmin is at

least a rational λ is NP-complete.

Proof. Lemma 4.3 says that the optimum for a single player can

be computed in O(nK ) where n is the number of nodes. Since K is

fixed, this gives us polynomial-time. For the two player case, note

that wheneverMax fixes a strategy σ , the resulting game is a one

player game in whichMin can find its optimum in polynomial-time.

This gives the NP upper bound. The NP-hardness follows from

Proposition 2.6 of [16] where the hardness gadget has no Chance
nodes. Hence hardness remains even if chance degree is 1. □

Since the two player decision problem is hard even when fixing

the chance degree, we need to look for strong structural restrictions

that can give us tractable algorithms. We do this in the next section

for a model of the bidding phase of Bridge.

4.2 A model for Bridge bidding
We propose a model for the Bridge bidding phase. We first describe

the rules of a game which abstracts the bidding phase. Then we

represent it as a zero-sum extensive form imperfect recall game.

The bidding game. There are four players N , S,W ,E in this game

model, representing the players North, South, West and East in

Bridge. Players N , S are in team Tmax and E,W are in team Tmin .

For a player i ∈ {N , S,W ,E}, we write Ti to denote the team of

player i andT¬i for the other team. This is a zero-sum game played

between teams Tmax and Tmin . Every player has the same set of

actions {0, . . . ,n} where 0 imitates a pass in Bridge and action j
signifies that a player has bid j . Each player i has a setHi of possible

private signals (also called secrets). Let H = HN × HE × HS × HW .

Initially each player i receives a private signal from Hi following a

probabilistic distribution ∆(H ) (in Bridge, this would be the initial

hand of cards for each player). The game is turn-based starting

with N and followed by E, S,W and proceeds in the same order at

each round. Each player can play a bid which is either 0 or strictly

greater than the last played non-zero bid. The game ends when i) N
starts with bid 0 and each of E, S,W also follow with bid 0 or ii) at

any point, three players consecutively bid 0 or iii) some player bids

n. At the end of the game the last player to have played a non-zero

bid k is called the declarer, with contract k equal to this bid. It is

0 if everyone bids 0 initially. The payoff depends on a set of given

functions Θi : H 7→ {0, . . . ,m} withm ≤ n for each player i . The
function Θi (⟨hN ,hE ,hS ,hW ⟩) gives the optimal bid for player i as
a declarer based on the initial private signal h received. The payoff

for the teams Tmax and Tmin are now computed as follows: when

i is the declarer with contract k and h ∈ H is the initial private

signal for i , if Θi (h) ≥ k , Ti gets payoff k whereas T¬i gets −k . If
Θi (h) < k , Ti gets −k and T¬i gets k .

As an example of this model consider a game whereHE = HW =
{⊥} and HN = HS = {♠, ♦}. There are four possible combinations

of signals in H , and the players receive each of them with probabil-

ity
1

4
. Players E,W have trivial private signals known to all and so

Θ does not depend on their signal. A Θ function for n = 5,m = 4

is given in Figure 5. For example, when the initial private signal

combination is (♠,⊥, ♠,⊥) and N is the declarer, then the contract

has to be compared with 4. For the same secret, if S is the declarer

then the contract has to be compared with 2. The longest possible

bid sequence in this game is (0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0, 5).
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Let us demonstrate team payoffs with a few examples of bid se-

quences. For the initial private signals (♠,⊥, ♠,⊥) and the bid se-

quence (0, 1, 0, 2, 4, 0, 0, 0), N is the declarer with contract 4, and

Tmax andTmin get payoff 4 and −4 respectively. On private signals

(♠,⊥, ♦,⊥) and the bid sequence (2, 3, 0, 0, 0), E is the declarer with

contract 3 andTmax andTmin receive payoffs 3 and −3 respectively.

Bidding games in extensive form. Given a bidding game with

the specifications as mentioned above, we can build an extensive

form game corresponding to it. The root node is a Chance node
with children H and transitions giving ∆(H ). All the other nodes

are control nodes. We consider them to belong to one of the four

players N ,E, S,W . However finally we will view it as a zero-sum

game played between Tmax and Tmin . These intermediate nodes

are characterized by sequences of bids leading to the current state

of the play. Let Seq be the set of all possible sequences of bids from

{0, . . . ,n} due to game play. The set Seq also contains the empty

sequence ϵ . The nodes in the extensive form game are the elements

of Seq. For each sequence s there is a set of valid next moves which

contain 0 and the bids strictly bigger than the last non-zero bid in

s . These are the actions out of s . Leaves are bid sequences which

signal the end of the play. The utility at each leaf is given by the

payoff received by Tmax at the end of the associated bid sequence.

Finally, we need to give the information sets for each player. Let

Seqi be the sequences that end at a node of player i . Each player

observes the bid of other players and is able to distinguish between

two distinct sequences of bids at his turn. But, player i does not
know the initial private signals received by the other players. Hence

the same sequence of bids from a secret of i and each combination

of secrets of the other players falls under one information set. More

precisely, letHi = Hi × Seqi be the set of histories of player i . Two
nodes of player i are in the same information set if they have the

same history inHi . Note that each individual player N ,E,W , S has

perfect recall. When considered as a team, Tmax and Tmin have

imperfect recall. The initial signal for a team is a pair of secrets

(hN ,hS ) or (hE ,hW ) and within an information set of say N , there

are nodesu andv coming from different initial signals (hN ,hS ) and
(hN ,h

′
S ). This makes the game a signal-loss recall for each team.

Therefore the only general upper bound for maxmin computation

is ∃∀R with behavioural strategies and Σ2 with pure strategies.

Observe that the chance degree of the game is |H | since there is a

single Chance node. When we bound this initial number of secrets

H by someK , and vary the bids and payoff functions, we get a family

of games with bounded chance degree. Theorem 4.4 gives slightly

better bounds for computing the maxmin over pure strategies for

this family of games, which is still NP-hard for the two-player case.

This motivates us to restrict the kind of strategies considered in the

maxmin computation. We make one such attempt below.

Non-overbidding strategies. A pure strategy for player i is a func-
tion σi : Hi 7→ {0, . . . ,n}. In the example of Figure 5, N has to

pass on the information whether she has ♦ or ♠ to S , and in the case

that N has ♠, player S has to pass back information whether she

has ♦ or ♠ so that in the latter case N can bid for 4 in the next turn.

When E knows the strategy of N , she can try to reduce their payoff

by playing 3 when N plays 2 (if she bids 4, her team loses andTmax
gets a payoff 4 anyway) and not let S over-bid to pass information

to N . But in the process E ends up overbidding when S has ♦ and it

Θ

Player (♦, ♦) (♦, ♠) (♠, ♦) (♠, ♠)

N 0 0 2 4

E 0 0 0 0

S 0 2 0 2

W 0 0 0 0

Figure 5: Example of a bidding game

Θ

Player h1 h2 h3 h4 h5 h6

N 3 4 5 0 0 0

E 1 3 2 2 2 4

S 0 0 0 3 4 5

W 0 0 0 0 0 0

Figure 6: A second example of a bidding game

makes no difference to the total expected payoff. This gives strate-

gies σN (♦) = 0, σN (♠) = 2, σS (♦, 0bE ) = 0, σS (♠, 0bE ) = 2 (when

possible), σS (♠, 20) = 3 and σS (♠, 23) = 0, where bE is a placeholder

for some bid of E. When it comes back to N for the second turn

and S had played 3, then N plays 4 if she can, otherwise she passes.

This pair of strategies achieves the maxmin payoff.

A pure strategy σi of player i is said to be non-overbidding if

starting from her second turn, player i always bids 0: more precisely,

for h ∈ Hi and s ∈ Seqi , σi (h, s) = 0 whenever there exists s0 ∈

Seqi with s0 a proper prefix of s . Otherwise, the strategy is over-

bidding. The strategy of N above is over-bidding since N could

potentially bid 4 after 2. The number of non-overbidding strategies

is |HN | · (n + 1) for N and |HS | · (n + 1) for S and hence for team

Tmax there are |HN | · |HS | · (n + 1)2 non-overbidding strategies.

Similarly there are |HE | · |HW | · (n + 1)2 non-overbidding strategies

for Tmin . These are drastically smaller compared to the number of

pure strategies, which is exponential in the size of the extensive

form (and doubly exponential in the size of the input description).

Lemma 4.5. Maxmin value over non-overbidding strategies can be

computed in time |H | · (n + 1)4.

Of course, non-overbidding strategies will not be in general the

same as maxmin over pure. For the example of Table 5 the strategy

σN mentioned before is over-bidding. In some cases, considering

non-overbidding strategies is sufficient. Consider the game given in

Figure 6. The only player to receive a private signal is N . All others

have a publicly known trivial signal ⊥. Player N can receive one of

6 secretsh1, . . . ,h6. In this case N bids 3, 4, 5 fromh1,h2,h3 making

the optimal contract in her first turn. From h4,h5,h6 she bids 0, 1, 2

in her first turn and S gaining complete information about secret

of N due to her distinct actions, bids 3, 4, 5 respectively if E has

not already made those bids. Here non-overbidding strategies are

sufficient to obtain maxmin expected payoff.

We have exhibited a class of strategies that can be efficiently

computed and which are sufficient for some games. We leave the

more general question of checking how close the value computed

by non-overbidding strategies is to the actual maxmin as part of

future work.
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