
Integrating Behavior Cloning and Reinforcement Learning for
Improved Performance in Dense and Sparse Reward

Environments
Vinicius G. Goecks

Texas A&M University

US Army Research Laboratory

College Station, Texas

vinicius.goecks@tamu.edu

Gregory M. Gremillion

US Army Research Laboratory

Adelphi, Maryland

gregory.m.gremillion.civ@mail.mil

Vernon J. Lawhern

US Army Research Laboratory

Aberdeen, Maryland

vernon.j.lawhern.civ@mail.mil

John Valasek

Texas A&M University

College Station, Texas

valasek@tamu.edu

Nicholas R. Waytowich

US Army Research Laboratory

Columbia University

Aberdeen, Maryland

nicholas.r.waytowich.civ@mail.mil

ABSTRACT
This paper investigates how to efficiently transition and update poli-

cies, trained initially with demonstrations, using off-policy actor-

critic reinforcement learning. It is well-known that techniques

based on Learning from Demonstrations, for example behavior

cloning, can lead to proficient policies given limited data. How-

ever, it is currently unclear how to efficiently update that policy

using reinforcement learning as these approaches are inherently

optimizing different objective functions. Previous works have used

loss functions, which combine behavior cloning losses with re-

inforcement learning losses to enable this update. However, the

components of these loss functions are often set anecdotally, and

their individual contributions are not well understood. In this work,

we propose the Cycle-of-Learning (CoL) framework that uses an

actor-critic architecture with a loss function that combines behav-

ior cloning and 1-step Q-learning losses with an off-policy pre-

training step from human demonstrations. This enables transition

from behavior cloning to reinforcement learning without perfor-

mance degradation and improves reinforcement learning in terms

of overall performance and training time. Additionally, we carefully

study the composition of these combined losses and their impact

on overall policy learning. We show that our approach outperforms

state-of-the-art techniques for combining behavior cloning and

reinforcement learning for both dense and sparse reward scenar-

ios. Our results also suggest that directly including the behavior

cloning loss on demonstration data helps to ensure stable learning

and ground future policy updates.

CCS CONCEPTS
• Computing methodologies → Learning from demonstra-
tions; Reinforcement learning; Artificial intelligence; •Human-
centered computing→ Human computer interaction (HCI); Inter-
action design process and methods;

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

KEYWORDS
Human-robot/agent interaction; Agent-based analysis of human

interaction; Machine learning for robotics; Reinforcement Learning

ACM Reference Format:
Vinicius G. Goecks, GregoryM. Gremillion, Vernon J. Lawhern, John Valasek,

and Nicholas R. Waytowich. 2020. Integrating Behavior Cloning and Rein-

forcement Learning for Improved Performance in Dense and Sparse Reward

Environments. In Proc. of the 19th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2020), Auckland, New Zealand, May
9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
Reinforcement Learning (RL) has yielded many recent successes

in solving complex tasks that meet and exceed the capabilities of

human counterparts, demonstrated in video game environments

[19], robotic manipulators [1], and various open-source simulated

scenarios [17]. However, these RL approaches are sample inefficient

and slow to converge to this impressive behavior, limited signifi-

cantly by the need to explore potential strategies through trial and

error, which produces initial performance significantly worse than

human counterparts. The resultant behavior that is initially ran-

dom and slow to reach proficiency is poorly suited for real-world

applications such as physically embodied ground and air vehicles,

or in scenarios where sufficient capability must be achieved in short

time spans. In such situations, the random exploration of the state

space of an untrained agent can result in unsafe behaviors and

catastrophic failure of a physical system, potentially resulting in

unacceptable damage or downtime. Similarly, slow convergence of

the agent’s performance requires exceedingly many interactions

with the environment, which is often prohibitively difficult or in-

feasible for physical systems that are subject to energy constraints,

component failures, and operation in dynamic or adverse environ-

ments. These sample efficiency pitfalls of RL are exacerbated even

further when trying to learn in the presence of sparse rewards,

often leading to cases where RL can fail to learn entirely.

One approach for overcoming these limitations is to utilize

demonstrations of desired behavior from a human data source

(or potentially some other agent) to initialize the learning agent

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

465

to a significantly higher level of performance than is yielded by

a randomly initialized agent. This is often termed Learning from

Demonstrations (LfD) [2], which is a subset of imitation learning

that seeks to train a policy to imitate the desired behavior of an-

other policy or agent. LfD leverages data (in the form of state-action

tuples) collected from a demonstrator for supervised learning, and

can be used to produce an agent with qualitatively similar behavior

in a relatively short training time and with limited data. This type of

LfD, called Behavior Cloning (BC), attempts to learn a mapping be-

tween the state-action pairs contained in the set of demonstrations

to mimic the behavior of the demonstrator. LfD also encompasses

other learning modalities such as inverse reinforcement learning

(IRL), where it is desired to learn the reward function that the agent,

or demonstrator, is optimizing to perform the task [25].

Though BC techniques do allow for the relatively rapid learning

of behaviors that are comparable to that of the demonstrator, they

are limited by the quality and quantity of the demonstrations pro-

vided and are only improved by providing additional, high-quality

demonstrations. In addition, BC is plagued by the distributional

drift problem inwhich amismatch between the learned policy distri-

bution of states and the distribution of states in the training set can

cause errors that propagate over time and lead to catastrophic fail-

ures. By combining BC with subsequent RL, it is possible to address

the drawbacks of either approach, initializing a significantly more

capable and safer agent than with random initialization, while also

allowing for further self-improvement without needing to collect

additional data from a human demonstrator. However, it is currently

unclear how to effectively update a policy initially trained with BC

using RL as these approaches are inherently optimizing different

objective functions. Previous works have used loss functions that

combine BC losses with RL losses to enable this update, however,

the components of these loss functions are often set anecdotally

and their individual contributions are not well understood.

In this work, we propose the Cycle-of-Learning (CoL) framework,

which uses an actor-critic architecture with a loss function that

combines behavior cloning and 1-step Q-learning losses with an

off-policy algorithm, and a pre-training step to learn from human

demonstrations. Unlike previous approaches to combine BC with

RL, such as Rajeswaran et al. [24], our approach uses an actor-critic

architecture to learn both a policy and value function from the

human demonstration data, which we show, speeds up learning.

Additionally, we perform a detailed component analysis of our

method to investigate the individual contributions of pre-training,

combined losses, and sampling methods of the demonstration data

and their effects on transferring from BC to RL. To summarize, the

main contribution of this work are:

• We introduce an actor-critic based method, that combines

pre-training as well as combined loss functions to learn both

a policy and value function from demonstrations, to enable

transition from behavior cloning to reinforcement learning.

• We show that our method can transfer from BC to RL with-

out performance degradation while improving upon existing

state-of-the-art BC to RL algorithms in terms of overall per-

formance and training time.

• We perform a detailed analysis to investigate the contribu-

tions of the individual components in our method.

Our results show that our approach outperforms BC, Deep Deter-

ministic Policy Gradients (DDPG), and Demonstration Augmented

Policy Gradient (DAPG) in two different application domains for

both dense- and sparse-reward settings. Our results also suggest

that directly including the behavior cloning loss on demonstration

data helps to ensure stable learning and ground future policy up-

dates, and that a pre-training step enables the policy to start at a

performance level greater than behavior cloning.

2 PRELIMINARIES
We adopt the standard Markov Decision Process (MDP) formulation

for sequential decision making [31], which is defined as a tuple

(S,A,R, P,γ), where S is the set of states, A is the set of actions,

R(s,a) is the reward function, P(s ′ |s,a) is the transition probability

function and γ is a discount factor. At each state s ∈ S , the agent
takes an action a ∈ A, receives a reward R(s,a) and arrives at

state s ′ as determined by P(s ′ |s,a). The goal is to learn a behavior

policy π which maximizes the expected discounted total reward.

This is formalized by the Q-function, sometimes referred to as the

state-action value function:

Qπ (s,a) = Eat∼π

[
+∞∑
t=0

γ tR(st ,at)

]
taking the expectation over trajectories obtained by executing the

policy π starting at s0 = s and a0 = a.
Here we focus on actor-critic methods which seek to maximize

J (θ) = Es∼µ [Q
π (. |θ)(s, π (s |θ))]

with respect to parameters θ and an initial state distribution µ.
The Deep Deterministic Policy Gradient (DDPG) [17] is an off-

policy actor-critic reinforcement learning algorithm for continuous

action spaces, which calculates the gradient of the Q-function with

respect to the action to train the policy. DDPGmakes use of a replay

buffer to store past state-action transitions and target networks to

stabilize Q-learning [19]. Since DDPG is an off-policy algorithm, it

allows for the use of arbitrary data, such as demonstrations from

another source, to update the policy. A demonstration trajectory is

a tuple (s,a, r , s ′) of state s , action a, the reward r = R(s,a) and the

transition state s ′ collected from a demonstrator’s policy. In most

cases these demonstrations are from a human observer, although in

principle these demonstrations can come from any existing agent

or policy.

3 RELATEDWORK
Several works have shown the efficacy of combining behavior

cloning with reinforcement learning across a variety of tasks. One

of the earliest works in this area was by Schaal [27], who studied

demonstration learning and model-based reinforcement learning

and their application to classical tasks such as cart-pole. Similarly,

Atkeson and Schaal [3], in a robotic arm swinging up a pendulum

task, trained a dynamics model and reward function from human

demonstrations to learn a policy and improve it with reinforcement

learning. Kim et al. [14] used expert samples to constrain the approx-

imate policy iteration step and learn a value function, parametrized

by linear radial basis functions (RBF), with convex optimization.

Recent work by Hester et al. [9], known as Deep Q-learning from

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

466

Demonstrations (DQfD), combined behavior cloning with deep Q-

learning [19] to learn policies for Atari games by leveraging a loss

function that combines a large-margin supervised learning loss

function, 1-step Q-learning loss, and an n-step Q-learning loss func-
tion that helps ensure the network satisfies the Bellman equation.

This work was extended to continuous action spaces by Večerík

et al. [33] with DDPG from Demonstrations (DDPGfD), who pro-

posed an extension of DDPG [17] that uses human demonstrations,

and applied their approach to object manipulation tasks for both

simulated and real robotic environments. The loss functions for

these methods include the n-step Q-learning loss, which is known

to require on-policy data to accurately estimate. Similar work by

Nair et al. [21] combined behavior cloning-based demonstration

learning, goal-based reinforcement learning, and DDPG for robotic

manipulation of objects in a simulated environment.

The Normalized Actor Critic [6] uses principles from maximum

entropy reinforcement learning [8] and proposes a learning objec-

tive which better normalizes the Q-function learned from demon-

stration data. In addition they proposed a single unified loss func-

tion as opposed to a combined loss function of supervised and

reinforcement losses and showed superior performance versus ex-

isting works in a Minecraft task and two 3D driving tasks. Policy

Optimization with Demonstrations (POfD) [13] specifies a demon-

stration learning approach using an adversarial learning objective,

seeking to minimize the difference between the learned policy and

the demonstration policy when the reward signal is sparse, an

approach similar in nature to Generative Adversarial Imitation

Learning (GAIL) [11].

A method that is very similar to ours is the Demonstration Aug-

mented Policy Gradient (DAPG) [24], a policy-gradient method

that uses behavior cloning as a pre-training step together with

an augmented loss function with a heuristic weight function that

interpolates between the policy gradient loss, computed using the

Natural Policy Gradient [12], and behavior cloning loss. They apply

their approach across four different robotic manipulations tasks

using a 24 Degree-of-Freedom (DoF) robotic hand in a simulator

and show that DAPG outperforms DDPGfD [33] across all tasks.

Their work also showed that behavior cloning combined with Nat-

ural Policy Gradient performed very similarly to DAPG for three

of the four tasks considered, showcasing the importance of using a

behavior cloning loss both in pre-training and policy training.

In summary, when compared to the main related literature, the

Cycle-of-Learning (CoL) algorithm differs from existing algorithms

in several ways. First, CoL uses an actor-critic architecture, as op-

posed to the policy gradient algorithm proposed by DAPG [24]. The

actor-critic architecture allows the integration of additional human

interaction modalities during training as, for example, evaluative

feedback to update the critic and human interventions to update the

actor; Second, CoL introduces a pre-training phase the combined

loss function and the expert demonstrations are used to train the

actor and critic network before interacting with the environment,

which is not present on state-of-the-art works such as Nair et al.

[21] and Pohlen et al. [22]. Third, CoL learns in continuous action-

space environments as opposed to discrete action-spaces as was

done in Hester et al. [9], Večerík et al. [33], and Pohlen et al. [22].

4 PROPOSED APPROACH
The Cycle-of-Learning (CoL) framework is a method for leverag-

ing multiple modalities of human input to improve the training of

RL agents. These modalities can include human demonstrations,

i.e. human-provided exemplar behaviors, human interventions, i.e.

interdictions in agent behavior with subsequent partial demonstra-

tions, and human evaluations, i.e. sparse indications of the quality

of agent behavior. These individual mechanisms of human inter-

action have been previously shown to provide various benefits in

learning performance and efficiency [7, 16, 18, 26, 34]. The success-

ful integration of these disparate techniques, which would leverage

their complementary characteristics, requires a learning architec-

ture that allows for optimization of common objective functions

and consistent representations. An actor-critic framework with

a combined loss function, as presented in this work, is such an

architecture.

In this paper, we focus on extending the Cycle-of-Learning frame-

work to tackle the known issue of transitioning BC policies to RL by

utilizing an actor-critic architecture with a combined BC+RL loss

function and pre-training phase for continuous state-action spaces,

that can learn in both dense- and sparse-reward environments. The

main advantage of our method is the use of an off-policy, actor-

critic architecture to pre-train both a policy and value function,

as well as continued re-use of demonstration data during agent

training, which reduces the amount of interactions needed between

the agent and environment. This is an important aspect especially

for robotic applications or real-world systems where interactions

can be costly.

The combined loss function consists of the following compo-

nents: an expert behavior cloning loss that drives the actor’s actions

toward previous human trajectories, 1-step return Q-learning loss

to propagate values of human trajectories to previous states, the

actor loss, and a L2 regularization loss on the actor and critic to

stabilize performance and prevent over-fitting during training. The

implementation of each loss component and their combination are

defined as follows:

• Expert behavior cloning loss (LBC): Given expert demon-

stration subset DE of continuous states and actions sE and

aE visited by the expert during a task demonstration over T
time steps

DE =
{
sE
0
,aE

0
, sE
1
,aE

1
, ..., sET ,a

E
T

}
, (1)

a behavior cloning loss (mean squared error) from demon-

stration data LBC can be written as

LBC (θπ) =
1

2

(
π (st |θπ) − a

E
t)
)
2

(2)

in order to minimize the difference between the actions pre-

dicted by the actor network π (st), parametrized by θπ , and
the expert actions aEt for a given state vector st .
• 1-step return Q-learning loss (L1): The 1-step return R1
can be written in terms of the critic networkQ , parametrized

by θQ , as

R1 = rt + γQ(st+1, π (st+1 |θπ)|θQ). (3)

In order to satisfy the Bellman equation, we minimize the

difference between the predicted Q-value and the observed

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

467

return from the 1-step roll-out for a batch of sampled states

s:

LQ1
(θQ) =

1

2

(
R1 −Q(s, π (s|θπ)|θQ)

)
2

. (4)

• Actor Q-loss (LA): It is assumed that the critic function Q
is differentiable with respect to the action. Since we want to

maximize the Q-values for the current state, the actor loss

became the negative of the Q-values predicted by the critic

for a batch of sampled states s:

LA(θπ) = −Q(s, π (s|θπ)|θQ). (5)

• L2 regularization (LL2): We also add a L2 regularization

term for the actor and critic weights to prevent overfitting

and control model complexity:

LL2(θπ) = θ
T
π θπ , (6)

LL2(θQ) = θ
T
QθQ . (7)

Combining the above loss functions for the Cycle-of-Learning

becomes

LCoL(θQ , θπ) = λBCLBC (θπ) + λALA(θπ)

+ λQ1
LQ1
(θQ) + λL2QLL2(θQ) + λL2πLL2(θπ). (8)

Our approach starts by collecting contiguous trajectories from

expert policies and stores the current and subsequent state-actions

pairs, reward received, and task completion signal in a permanent

expert memory bufferDE . During the pre-training phase, the agent

samples a batch of trajectories from the expert memory buffer DE
containing expert trajectories to perform updates on the actor and

critic networks using the same combined loss function (Equations

8). This procedure shapes the actor and critic initial distributions

to be closer to the expert trajectories and eases the transition from

policies learned through expert demonstration to reinforcement

learning.

After the pre-training phase, the policy is allowed to roll-out and

collect its first on-policy samples, which are stored in a separate

first-in-first-out memory buffer with only the agent’s samples. After

collecting a given number of on-policy samples, the agent samples

a batch of trajectories comprising 25% of samples from the expert

memory buffer and 75% from the agent’s memory buffer. This fixed

ratio guarantees that each gradient update is grounded by expert

trajectories. We opted to use a fixed buffer ratio as in the Ape-X

DQfD [22], one of the extensions of DQfD [9], which is claimed

to be the first RL algorithm to solve the first level of Montezuma

Revenge, a challenging ATARI task with sparse rewards. In our

experiments, showed in Section 5, we also compared this fixed

buffer ratio with the traditional Prioritized Experience Replay (PER)

method and showed that the fixed buffer ratio outperforms PER

in the sparse reward scenario. If a human demonstrator is used,

they can intervene at any time the agent is executing their policy,

and add this new trajectories to the expert memory buffer. Samples

collected by the agent are added to the agent memory buffer, as

usual.

After sampling a batch of trajectories from the expert and agent

buffers, we perform model updates using the CoL combined loss.

This process is repeated after each interactionwith the environment.

Algorithm 1 Cycle-of-Learning (CoL): Transitioning from Demon-

strations to Reinforcement Learning

1: Input:

Environment env , training steps T , data collection stepsM ,

batch size N , pre-training steps L, CoL hyperparameters

λQ1
, λBC , λA, λL2Q , λL2π , τ , and expert trajectories DE (if

available).

2: Output:

Trained actor π (s |θπ) and critic Q(s, π |θQ) networks.
3: Randomly initialize:

Actor network π (s |θπ) and its target π ′(s |θπ ′) weights.
Critic network Q(s, π |θQ) and its target Q ′(s, π ′ |θQ ′)
weights.

4: Initialize empty agent and expert replay buffers R and RE .

5: Load R and RE with expert trajectories DE , if available.

6: for pre-training steps = 1, . . . , L do
7: Call TrainUpdate() procedure.
8: for training steps = 1, . . . , T do
9: Reset env and receive initial state s0.
10: for data collection steps = 1, . . . ,M do
11: Select action at = π (st |θπ) according to policy.

12: Perform action at and observe reward rt and next state
st+1.

13: Store transition (st ,at , rt , st+1) in R.
14: if End of episode then
15: Reset env and receive initial state s0.

16: Call TrainUpdate() procedure.
17: procedure TrainUpdate()
18: if Pre-training then
19: Randomly sampleN transitions (si ,ai , ri , si+1) from the

expert replay buffer RE .

20: else
21: Randomly sample N ∗ 0.25 transitions (si ,ai , ri , si+1)

from the expert replay buffer RE and N ∗ 0.75 transitions from
the agent replay buffer R.

22: Compute LQ1
(θQ), LBC (θπ), LA(θπ), LL2(θQ), LL2(θπ)

23: Update actor and critic networks according to Equation 8.

24: Update target networks:

θπ ′ ← τθπ + (1 − τ)θπ ′,

θQ ′ ← τθQ + (1 − τ)θQ ′ .

The proposed method is summarized in the pseudocode shown in

Algorithm 1.

5 EXPERIMENTAL SETUP AND RESULTS
5.1 Experimental Setup
As described in the previous sections, in our approach, the Cycle-

of-Learning (CoL), we collect contiguous trajectories from expert

policies and store them in a permanent memory buffer. The policy is

allowed to roll-out and is trained with a combined loss from amix of

demonstration and agent data, stored in a separate first-in-first-out

buffer. We validate our approach in three environments with con-

tinuous observation- and action-space: LunarLanderContinuous-v2

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

468

[4] (dense and sparse reward cases) and a custom quadrotor landing

task [7] implemented using Microsoft AirSim [29].

The dense reward case of LunarLanderContinuous-v2 is the

standard environment provided by OpenAI Gym library [4]: the

state space consists of a eight-dimensional continuous vector with

inertial states of the lander, the action space consists of a two-

dimensional continuous vector controlling main and side thrusters,

and the reward is given at every step based on the relative motion

of the lander with respect to the landing pad (bonus reward is given

when the landing is completed successfully). The sparse reward

case is a custom modification with the same reward scheme and

state-action space, however the reward is stored during the policy

roll-out and is only given to the agent when the episode ends and

is zero otherwise. The custom quadrotor landing task is a modified

version of the environment proposed by Goecks et al. [7], imple-

mented using Microsoft AirSim [29], which consists of landing a

quadrotor on a static landing pad in a simulated gusty environment,

as seen in Figure 1. The state space consists of a fifteen-dimensional

continuous vector with inertial states of the quadrotor and visual

features that represent the landing pad image-frame position and

radius as seen by a downward-facing camera. The action space

is a four-dimensional continuous vector that sends velocity com-

mands for throttle, roll, pitch, and yaw. Wind is modeled as noise

applied directly to the actions commanded by the agent and follows

a temporal-based, instead of distance-based, discrete wind gust

model [20] with 65% probability of encountering a wind gust at

each time step. This was done to induce additional stochasticity

in the environment. The gust duration is uniformly sampled to

last between one to three real time seconds and can be imparted

in any direction, with maximum velocity of half of what can be

commanded by the agent along each axis. This task has a sparse-

reward scheme (reward R is given at the end of the episode, and

is zero otherwise) based on the relative distance rr el between the

quadrotor and the center of the landing pad at the final time step

of the episode:

R =
1

1 + r2r el
.

Although the goals of the two tasks are similar, the environments

are different in terms of state- and action-spaces and physics (2d

vs 3d, with and without wind effects). Additionally, in these envi-

ronments it was possible to collect human demonstrations of the

task. We studied using standard benchmark environments as, for

example, MuJoCo and PyBullet locomotion tasks, however, due to

the nature of the tasks and number of controls, collecting human

demonstrations were not feasible.

The hyperparameters used in CoL for each environment, and

how to tune them properly, are described in the project page avail-

able online
1
.

The baselines that we compare our approach to are Deep De-

terministic Policy Gradient (DDPG) [17, 30], Demonstration Aug-

mented Policy Gradient (DAPG) [24], and traditional behavior

cloning (BC). For the DDPG baseline we used an open-source im-

plementation by Stable Baselines [10]. The hyperparameters used

concur with the original DDPG publication [17]: actor and critic

networks with 2 hidden layers with 400 and 300 units respectively,

1
Cycle-of-Learning project page: https://vggoecks.com/cycle-of-learning/.

Figure 1: Screenshot of AirSim environment and landing
task. Inset image in lower right corner: downward-facing
camera view used for extracting the position and radius of
the landing pad, which is part of the state space.

optimized using Adam [15] with learning rate of 10
−4

for the actor

and 10
−3

for the critic, discount factor of γ = 0.99, trained with

minibatch size of 64, and replay buffer size of 10
6
. Exploration noise

was added to the action following an Ornstein-Uhlenbeck process

[32] with mean of 0.15 and standard deviation of 0.2. For the DAPG

baseline we used an official release of the DAPG codebase from

the authors
2
. The policy is represented by a deep neural network

with three hidden layers of 128 units each, pre-trained with behav-

ior cloning for 100 epochs, with a batch size of 32 samples, and

learning rate of 10
−3
, λ0 = 0.01, and λ1 = 0.99. The BC policies are

trained by minimizing the mean squared error between the expert

demonstrations and the output of the model. The policies consist

of a fully-connected neural network with 3 hidden layers with 128

units each and exponential linear unit (ELU) activation function

[5]. The BC policy was evaluated for 100 episodes which was used

to calculate the mean and standard error of the performance of the

policy.

All baselines that rely on demonstrations, namely BC, DAPG,

and CoL, use the same human trajectories collected in the Lunar-

LanderContinuous-v2 and custom Microsoft AirSim environment.

5.2 Experimental Results
The comparative performances of the CoL against the baseline

methods (BC, DDPG and DAPG) for the LunarLanderContinuous-

v2 environment are presented via their training curves in Figure

2a, using the standard dense reward. The mean reward of the BC

pre-trained from the human demonstrations is also shown for ref-

erence, and its standard error is shown by the shaded band. The

CoL reward initializes to values at or above the BC and steadily

improves throughout the reinforcement learning phase. Conversely,

the DDPG RL baseline initially returns rewards lower than the BC

and slowly improves until its performance reaches similar levels

to the CoL after approximately one million steps. However, this

baseline never performs as consistently as the CoL and eventually

begins to diverge, losing much of its performance gains after about

2
DAPG implementation: https://github.com/aravindr93/hand_dapg [23].

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

469

https://vggoecks.com/cycle-of-learning/
https://github.com/aravindr93/hand_dapg

(a) (b) (c)

Figure 2: Comparison of CoL, BC, DDPG, and DAPG for 3 random seeds (bold line representing the mean and shaded area the
standard error) in the (a) dense- and (b) sparse-reward LunarLanderContinuous-v2 environment, and the (c) sparse-reward
Microsoft AirSim quadrotor landing environment.

four million steps. The DAPG baseline initial performance, simi-

lar to the CoL, surpasses behavior cloning due to the pre-training

phase and slowly converges to a high score, although slower than

the CoL.

When using sparse rewards, meaning the rewards generated by

the LunarLanderContinuous-v2 environment are provided only at

the last time step of each episode, the performance improvement of

the CoL relative to the DDPG and DAPG baselines is even greater

(Figure 2b). The performance of the CoL is qualitatively similar dur-

ing training to that of the dense case, with an initial reward roughly

equal to or greater than that of the BC and a consistently increas-

ing reward. Conversely, the performance of the DDPG baseline is

greatly diminished for the sparse reward case, yielding effectively

no improvement throughout the whole training period. The train-

ing of the DAPG does not deteriorate when compared to the dense

reward case, however, the performance does not match CoL for the

specified training time.

The results for the more realistic and challenging AirSim quadro-

tor landing environment (Figure 2c) illustrate a similar trend. The

CoL initially returns rewards above the BC, DDPG, and DAPG base-

lines and steadily increases its performance, with DAPG converging

at end to a similar level of performance. The DDPG baseline practi-

cally never succeeds and subsequently fails to learn a viable policy,

while displaying greater variance in performance when compared

to CoL and DAPG. Noting that successfully landing on the target

would generate a sparse episode reward of approximately 0.64, it

is clear that these baseline algorithms, with exception of DAPG,

rarely generate a satisfactory trajectory for the duration of training.

5.3 Component Analysis
Several component analyses were performed to evaluate the impact

of each of the critical elements of the CoL on learning. These respec-

tively include the effects of pre-training, the combined loss function,

and the sample composition of the experience replay buffer. The re-

sults of each analysis are shown in Figures 3-5 and are summarized

in Table 1.

5.3.1 Effects of Pre-Training. To determine the effects of pre-

training on performance we compare the standard CoL against an

implementation without this pre-training phase, where the number

of pre-training steps L = 0, denoted as CoL-PT. The complete com-

bined loss, as seen in Equations 8 is used during the reinforcement

learning phase. This condition assesses the impact on learning

performance of not pre-training the agent, while still using the

combined loss in the RL phase. As seen in Figure 3, this condition

differs from the baseline CoL in its initial performance being worse,

i.e. significantly below the BC, but does reach similar rewards after

several hundred thousand steps, exhibiting the same consistent

response during training thereafter. Effectively, this highlights that

the benefit of pre-training is improved initial response and signifi-

cant speed gain in reaching steady-state performance level, without

qualitatively impacting the long-term training behavior.

5.3.2 Effects of Combined Loss. To determine the effects of the

combined loss function on performance we compare the standard

CoL against two alternate learning implementations: 1) the CoL

without the behavioral cloning expert loss on the actor (λBC := 0)

during both pre-training and RL phases, denoted as CoL-BC, and
2) standard BC followed by DDPG using standard loss functions,

denoted as BC+DDPG. For the implementation of the CoL without

the behavior cloning loss (CoL-BC), the critic loss remains the same

as in Equation 8 for both training phases. This condition assesses

the impact on learning performance of the behavior cloning loss

component LBC , given otherwise consistent loss functions in both

pre-training and RL phases. As seen in Figure 4, this condition

(purple, dashed) improves upon the CoL-PT condition (Figure 3) in

its initial reward return and similarly achieves comparable perfor-

mance to the baseline CoL in the first few hundred thousand steps,

but then steadily deteriorates as training continues, with several

catastrophic losses in performance. This result makes clear that the

behavioral cloning loss is an essential component of the combined

loss function toward maintaining performance throughout training,

anchoring the learning to some previously demonstrated behaviors

that are sufficiently proficient.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

470

Table 1: Method Comparison on LunarLanderContinuous-v2 environment, dense-reward case

Method Pre-Training Loss Training Loss Buffer Type Average Reward

CoL LQ1
+ LA + LBC LQ1

+ LA + LBC Fixed Ratio 261.80 ± 22.53

CoL-PT None LQ1
+ LA + LBC Fixed Ratio 253.24 ± 46.50

CoL+PER LQ1
+ LA + LBC LQ1

+ LA + LBC PER 245.24 ± 37.66

DAPG LBC Augmented Policy Gradient None 127.99 ± 37.28

DDPG None LQ1
+ LA Uniform 152.98 ± 69.45

BC LBC None None -48.83 ± 27.68*

BC+DDPG LBC LQ1
+ LA Uniform -57.38 ± 50.11

CoL-BC LQ 1 + LA LQ1
+ LA Fixed Ratio -105.65 ± 196.85

Summary of learning methods. Enumerated for each method are all non-zero loss components

(excluding regularization), buffer type, and average and standard error of the reward throughout

training (after pre-training) across the three seeds, evaluated with dense reward in LunarLander-

Continuous-v2 environment.
∗
For BC, these values are computed from 100 evaluation trajectories of

the final pre-trained agent.

Figure 3: Effects of the pre-training phase in the Cycle-
of-Learning. Results for 3 random seeds (bold line rep-
resenting the mean and shaded area the standard error)
showing component analysis in LunarLanderContinuous-
v2 environment comparing pre-trained Cycle-of-Learning
(CoL curve) against the Cycle-of-Learning without the pre-
training phase (CoL-PT curve) and the behavior cloning (BC)
baseline.

The second of these comparative implementations that illustrate

the effects of the combined loss is the behavior cloning with subse-

quent DDPG (BC+DDPG) condition, which utilized standard loss

functions (Equations 2, 4, and 5) rather than the CoL combined

loss in both phases (Equation 8). Pre-training of the actor with BC

uses only the regression loss, as seen in Equation 2. DDPG utilizes

standard loss functions for the actor and critic, as seen in Lillicrap

et al. [17]. The BC+DDPG condition assesses the impact on learning

performance of standardized loss functions rather than our com-

bined loss functions across both training phases. The BC+DDPG

condition (Figure 4; red, dashed) produces initial rewards below the

BC response and subsequently improves in performance only to an

average level similar to that of the BC and is much less stable in its

Figure 4: Effects of the combined loss in the Cycle-of-
Learning. Results for 3 random seeds (bold line represent-
ing the mean and shaded area the standard error) showing
component analysis in LunarLanderContinuous-v2 environ-
ment comparing complete Cycle-of-Learning (CoL), CoL
without the expert behavior cloning loss (CoL-BC), and pre-
training with BC followed by DDPG without combined loss
(BC+DDPG).

response throughout training, as indicated by the wide standard

error band. This result indicates that simply sequencing standard

BC and RL algorithms results in significantly worse performance

and stability even after millions of training steps, emphasizing the

value of a consistent combined loss function across all training

phases.

5.3.3 Effects of Human Experience Replay Sampling. To deter-

mine the effects of the different sampling techniques of the ex-

perience replay buffer on performance we compare the standard

CoL, which utilizes a fixed ratio buffer of samples comprising 25%

expert data and 75% agent data, against an implementation with

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

471

Figure 5: Effects of human experience replay sampling in
the Cycle-of-Learning. Results for 3 random seeds (bold line
representing the mean and shaded area the standard error)
showing ablation study in LunarLanderContinuous-v2 envi-
ronment, dense (D) and sparse (S) reward cases, comparing
completeCycle-of-Learning (CoL) trainedwithfixed ratio of
expert and agent samples and complete Cycle-of-Learning
using Prioritized Experience Replay (CoL+PER) with a vari-
able ratio of expert and agent samples ranked based on their
temporal difference error.

Prioritized Experience Replay (PER) [28], with a data buffer prior-

itized by the magnitude of each transition’s temporal difference

(TD) error, denoted as CoL+PER. The comparative performance of

these implementations, for both the dense- (D) and sparse-reward

(S) cases of the LunarLanderContinuous-v2 scenario, are shown in

Figure 5. For the dense-reward condition, there is no significant

difference in the learning performance between the fixed ratio and

PER buffers. However, for the sparse-reward case of the CoL+PER
implementation, the learning breaks down after approximately 1.3

million training steps, resulting in a significantly decreased per-

formance thereafter. This result illustrates that the fixed sampling

ratio for the replay buffer in the standard CoL is a more robust

mechanism of incorporating experience data, particularly in sparse-

reward environments, likely because it grounds performance to

demonstrated human behavior throughout training.

6 DISCUSSION AND CONCLUSION
In this work, we present a novel method for combining behavior

cloning with reinforcement learning using an actor-critic architec-

ture that implements a combined loss function and a demonstration-

based pre-training phase. We compare our approach against state-

of-the-art baselines, including BC, DDPG, and DAPG, and demon-

strate the superiority of our method in terms of learning speed,

stability, and performance with respect to these baselines. This is

shown in the OpenAI Gym LunarLanderContinuous-v2 and the

high-fidelity Microsoft AirSim quadrotor simulation environments

in both dense and sparse reward settings. This result is especially

noticeable in the AirSim landing task (Figure 2c), an environment

designed to exhibit a high degree of stochasticity. The BC andDDPG

baselines fail to converge to an effective and stable policy after five

million training steps on the LunarLanderContinuous-v2 environ-

ment with dense reward and the modified version with a sparse

reward signal. DAPG, although successful in both LunarLander-

Continuous-v2 environments and the custom AirSim landing task,

converges at a slower rate when compared to the proposed method

and starts the training at a lower performance value after pre-

training with demonstration data. Conversely, our method, CoL,

is able to quickly achieve high performance without degradation,

surpassing both behavior cloning and reinforcement learning algo-

rithms alone, in both dense and sparse reward cases. Additionally,

we demonstrate through separate analyses of several components

of our architecture that pre-training, the use of a combined loss

function, and a fixed ratio of human-generated experience are criti-

cal to the performance improvements. This component analysis also

indicated that simply sequencing standard behavior cloning and re-

inforcement learning algorithms does not produce these gains and

highlighted the importance of grounding the training to the demon-

strated data by using a fixed ratio of expert and agent trajectories

in the experience replay buffer.

6.1 Future Work
Future work will investigate how to effectively integrate multiple

forms of human feedback into an efficient human-in-the-loop RL

system capable of rapidly adapting autonomous systems in dynam-

ically changing environments. Actor-critic methods, such as the

CoL method proposed in this paper, provide an interesting opportu-

nity to integrate different human feedback modalities as additional

learning signals at different stages of policy learning [35]. For ex-

ample, existing works have shown the utility of leveraging human

interventions [7, 26], and specifically learning a predictive model of

what actions to ignore at every time step [36], which could be used

to improve the quality of the actor’s policy. Deep reinforcement

learning with human evaluative feedback has also been shown to

quickly train policies across a variety of domains [18, 34] and can be

a particularly useful approach when the human is unable to provide

a demonstration of desired behavior but can articulate when desired

behavior is achieved. Further, the capability our approach provides,

transitioning from a limited number of human demonstrations to

a baseline behavior cloning agent and subsequent improvement

through reinforcement learning without significant losses in per-

formance, is largely motivated by the goal of human-in-the-loop

learning on physical robotic systems. Thus, our aim is to integrate

this method onto such systems and demonstrate rapid, safe, and

stable learning from limited human interaction.

ACKNOWLEDGMENTS
Research was sponsored by the U.S. Army Research Laboratory and

was accomplished under Cooperative Agreement Number W911NF-

18-2-0134. The views and conclusions contained in this document

are those of the authors and should not be interpreted as represent-

ing the official policies, either expressed or implied, of the Army

Research Laboratory or the U.S. Government. The U.S. Government

is authorized to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation herein.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

472

REFERENCES
[1] Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob

McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex

Ray, et al. 2018. Learning dexterous in-hand manipulation. arXiv preprint
arXiv:1808.00177 (2018).

[2] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. 2009. A

survey of robot learning from demonstration. Robotics and autonomous systems
57, 5 (2009), 469–483.

[3] Christopher G Atkeson and Stefan Schaal. 1997. Robot learning from demonstra-

tion. In ICML, Vol. 97. Citeseer, 12–20.
[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[5] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and

accurate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289 (2015).

[6] Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. 2018.

Reinforcement Learning from Imperfect Demonstrations. CoRR abs/1802.05313

(2018). arXiv:1802.05313 http://arxiv.org/abs/1802.05313

[7] Vinicius G. Goecks, Gregory M. Gremillion, Vernon J. Lawhern, John Valasek,

and Nicholas R. Waytowich. 2018. Efficiently Combining Human Demonstrations

and Interventions for Safe Training of Autonomous Systems in Real-Time. CoRR
abs/1810.11545 (2018). arXiv:1810.11545 http://arxiv.org/abs/1810.11545

[8] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft

Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a

Stochastic Actor. In Proceedings of the 35th International Conference on Machine
Learning (Proceedings of Machine Learning Research), Jennifer Dy and Andreas

Krause (Eds.), Vol. 80. PMLR, Stockholmsmässan, Stockholm Sweden, 1861–1870.

http://proceedings.mlr.press/v80/haarnoja18b.html

[9] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal

Piot, Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, et al. 2018. Deep

q-learning from demonstrations. In Thirty-Second AAAI Conference on Artificial
Intelligence.

[10] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Rene Traore,

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-

pert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. 2018. Stable

Baselines. https://github.com/hill-a/stable-baselines. (2018).

[11] Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning.

In Advances in neural information processing systems. 4565–4573.
[12] Sham Kakade. 2001. A Natural Policy Gradient. In Proceedings of the 14th Interna-

tional Conference on Neural Information Processing Systems: Natural and Synthetic
(NIPS’01). MIT Press, Cambridge, MA, USA, 1531–1538. http://dl.acm.org/citation.

cfm?id=2980539.2980738

[13] Bingyi Kang, Zequn Jie, and Jiashi Feng. 2018. Policy optimization with demon-

strations. In International Conference on Machine Learning. 2474–2483.
[14] Beomjoon Kim, Amir-massoud Farahmand, Joelle Pineau, and Doina Precup.

2013. Learning from Limited Demonstrations. In Advances in Neural Information
Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and

K. Q. Weinberger (Eds.). Curran Associates, Inc., 2859–2867. http://papers.nips.

cc/paper/4918-learning-from-limited-demonstrations.pdf

[15] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[16] W Bradley Knox and Peter Stone. 2009. Interactively shaping agents via human

reinforcement: The TAMER framework. In Proceedings of the fifth international
conference on Knowledge capture. ACM, 9–16.

[17] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).
[18] James MacGlashan, Mark K Ho, Robert Loftin, Bei Peng, Guan Wang, David L

Roberts, Matthew E Taylor, and Michael L Littman. 2017. Interactive learning

from policy-dependent human feedback. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2285–2294.

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei a Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.

Human-level control through deep reinforcement learning. Nature 518, 7540
(2015), 529–533.

[20] D Moorhouse and R Woodcock. 1980. US Military Specification MIL–F–8785C.

US Department of Defense (1980).
[21] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. 2018. Over-

coming Exploration in Reinforcement Learning with Demonstrations. In 2018
IEEE International Conference on Robotics and Automation (ICRA). 6292–6299.
https://doi.org/10.1109/ICRA.2018.8463162

[22] Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan,

David Budden, Gabriel Barth-Maron, Hado van Hasselt, John Quan, Mel Vecerík,

Matteo Hessel, Rémi Munos, and Olivier Pietquin. 2018. Observe and Look

Further: Achieving Consistent Performance on Atari. CoRR abs/1805.11593

(2018). arXiv:1805.11593 http://arxiv.org/abs/1805.11593

[23] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schul-

man, Emanuel Todorov, and Sergey Levine. 2018. DAPG for Dexterous Hand

Manipulation. https://github.com/aravindr93/hand_dapg. (2018).

[24] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John

Schulman, Emanuel Todorov, and Sergey Levine. 2018. Learning Complex

Dexterous Manipulation with Deep Reinforcement Learning and Demonstra-

tions. In Proceedings of Robotics: Science and Systems. Pittsburgh, Pennsylvania.
https://doi.org/10.15607/RSS.2018.XIV.049

[25] S Russell. 1998. Learning agents for uncertain environments (extended abstract).

Conference on Computational Learning Theory (COLT) (1998), 1–3.
[26] William Saunders, Girish Sastry, Andreas Stuhlmueller, and Owain Evans. 2018.

Trial without error: Towards safe reinforcement learning via human interven-

tion. In Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems. International Foundation for Autonomous Agents and

Multiagent Systems, 2067–2069.

[27] Stefan Schaal. 1996. Learning from Demonstration. In Proceedings of the 9th Inter-
national Conference on Neural Information Processing Systems (NIPS’96). MIT Press,

Cambridge, MA, USA, 1040–1046. http://dl.acm.org/citation.cfm?id=2998981.

2999127

[28] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2015. Prioritized

Experience Replay. (2015). arXiv:cs.LG/1511.05952

[29] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. 2017. AirSim:

High-Fidelity Visual and Physical Simulation for Autonomous Vehicles. In Field
and Service Robotics. arXiv:arXiv:1705.05065 https://arxiv.org/abs/1705.05065

[30] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and

Martin Riedmiller. 2014. Deterministic policy gradient algorithms.

[31] Richard Sutton and Andrew Barto. 1998. Reinforcement Learning: An Introduction.
MIT Press.

[32] George E Uhlenbeck and Leonard S Ornstein. 1930. On the theory of the Brownian

motion. Physical review 36, 5 (1930), 823.

[33] Matej Večerík, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal

Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller.

2017. Leveraging demonstrations for deep reinforcement learning on robotics

problems with sparse rewards. arXiv preprint arXiv:1707.08817 (2017).

[34] Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone. 2018.

Deep tamer: Interactive agent shaping in high-dimensional state spaces. In Thirty-
Second AAAI Conference on Artificial Intelligence.

[35] Nicholas R. Waytowich, Vinicius G. Goecks, and Vernon J. Lawhern. 2018.

Cycle-of-Learning for Autonomous Systems from Human Interaction. CoRR
abs/1808.09572v1 (2018). arXiv:1808.09572v1 https://arxiv.org/abs/1808.09572v1

[36] Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J Mankowitz, and Shie Man-

nor. 2018. LearnWhat Not to Learn: Action Elimination with Deep Reinforcement

Learning. In Advances in Neural Information Processing Systems 31, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.).

Curran Associates, Inc., 3562–3573.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

473

http://arxiv.org/abs/1802.05313
http://arxiv.org/abs/1802.05313
http://arxiv.org/abs/1810.11545
http://arxiv.org/abs/1810.11545
http://proceedings.mlr.press/v80/haarnoja18b.html
https://github.com/hill-a/stable-baselines
http://dl.acm.org/citation.cfm?id=2980539.2980738
http://dl.acm.org/citation.cfm?id=2980539.2980738
http://papers.nips.cc/paper/4918-learning-from-limited-demonstrations.pdf
http://papers.nips.cc/paper/4918-learning-from-limited-demonstrations.pdf
https://doi.org/10.1109/ICRA.2018.8463162
http://arxiv.org/abs/1805.11593
http://arxiv.org/abs/1805.11593
https://github.com/aravindr93/hand_dapg
https://doi.org/10.15607/RSS.2018.XIV.049
http://dl.acm.org/citation.cfm?id=2998981.2999127
http://dl.acm.org/citation.cfm?id=2998981.2999127
http://arxiv.org/abs/cs.LG/1511.05952
http://arxiv.org/abs/arXiv:1705.05065
https://arxiv.org/abs/1705.05065
http://arxiv.org/abs/1808.09572v1
https://arxiv.org/abs/1808.09572v1

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Proposed Approach
	5 Experimental Setup and Results
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Component Analysis

	6 Discussion and Conclusion
	6.1 Future Work

	Acknowledgments
	References

