
Demystifying Emergent Intelligence and Its Effect on
Performance In Large Robot Swarms

John Harwell
Department of Computer Science and
Engineering, University of Minnesota

harwe006@umn.edu

London Lowmanstone
Department of Computer Science,

Harvard University
lowmanstone@college.harvard.edu

Maria Gini
Department of Computer Science and
Engineering, University of Minnesota

gini@umn.edu

ABSTRACT
We investigate the emergence of swarm intelligence using task allo-
cation in large robot swarms. First, we compare task decomposition
graphs of different levels of richness and measure the emergent
intelligence arising from self-organized task allocation by deriving
STOCH-N1, a stochastic allocation algorithm which contextualizes
per-robot task allocation decisions based on a previous task’s neigh-
borhood within the graph. The results are compared to other state
of the art algorithms. Second, we derive MAT-OPT: a greedy algo-
rithm that optimally solves the swarm task allocation problem by
representing the swarm’s task allocation space as a matroid under
some restrictive assumptions. We compare the MAT-OPT alloca-
tion method, which disregards task dependencies, with STOCH-N1,
which emphasizes collective learning of graph structure (including
dependencies). Results from an object gathering task show that
swarm emergent intelligence (1) is sensitive to the richness of task
decomposition graphs (2) is positively correlated with performance,
(3) arises out of learning and exploitation of graph connectivity and
structure, rather than graph content.

KEYWORDS
Swarm Robotics; Foraging; Task Allocation; Task Decomposition;
Matroids
ACM Reference Format:
John Harwell, London Lowmanstone, and Maria Gini. 2020. Demystifying
Emergent Intelligence and Its Effect on Performance In Large Robot Swarms.
In Proc. of the 19th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2020), Auckland, New Zealand, May 9–13, 2020,
IFAAMAS, 9 pages.

1 INTRODUCTION
Swarm robotics (SR) is the study of large-scale robotic systems
consisting of either homogeneous or heterogeneous robots called
agents. Originally an offshoot of Swarm Intelligence, SR initially
focused on approaches inspired from natural systems such as bees,
ants, and termites [33] with which they share the core principles of
scalability, emergence, flexibility, and robustness. Scalability is the
ability of SR systems to scale to hundreds or thousands of agents,
due to a lack of centralized control or single point of failure [20].
Emergence is the appearance of self-organizing behaviors (and there-
fore intelligence) arising through a collective search process within
the swarm due to robot interactions [10, 38]. Flexibility results
from reactive and adaptive swarm-level behaviors arising from

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

localized decision making that mitigates adversity and exploits ben-
eficial changes in dynamic environmental conditions and evolving
problem definitions [15, 37]. Robustness is the swarm’s ability to
tolerate fluctuations in the number of agents due to introduction
of new agents, robotic failures, or sensor/actuator noise. Unlike
many multi-agent systems which cannot withstand unpredictable
losses, a high failure rate within a swarm does not prevent the
accomplishment of its objective [20].

The duality between SR and natural systems enables effective
parallels to be drawn with many naturally occurring problems, such
as foraging, collective transport of heavy objects, environmental
monitoring/cleanup, self-assembly, exploration, and collective deci-
sion making [16, 32]. SR systems are well suited to tackle problems
where robustness and flexibility is key to success, such as space [31].

We study foraging from a task allocation perspective. In a for-
aging task, robots gather objects from across a finite operating
arena and bring them to a central location (often called the nest) for
further processing. Foraging is one of the most extensively studied
applications of SR due to its straightforward mapping to important
real-world applications [16] such as tracking lake health, clearing
a corridor on a mining operation, hazardous material cleanup, or
search and rescue [16, 19, 32]. In this work, we seek to quantify the
relationship between swarm emergent intelligence and the rich-
ness of the task decomposition graph used for allocation, and to
understand the origin of the emergent intelligence that arises from
various task allocation methods. Specifically, we seek answers to
the following questions:
Q.1 Do complex task decomposition graphs result in greater

swarm emergent intelligence than compound graphs,
and is higher intelligence correlated with higher per-
formance?

Q.2 Is the emergence of swarm intelligencewithin task de-
composition graphs a function of the graph connec-
tivity/structure, or the graph content (nodes and edge
weights)?

Our definitions of compound and complex task decomposition graphs
are drawn from the extended Multi-Robot Task Allocation (MRTA)
taxonomy terminology proposed by [18]. They separate the con-
cept of atomic tasks, which are not decomposable, from that of
decomposable tasks, which are. They define compound tasks as
tasks having exactly one possible decomposition (which is multi-
agent allocatable), and complex tasks, as tasks which have multiple
decompositions (each of which is multi-agent allocatable).

1.1 Background and Related Work
Matroids generalize notions of independence in linear algebra and
graphs, and are attractive because matroidal problem formulations

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

474

are optimally solvable with simple greedy algorithms [23, 34, 35].
Briefly, a matroidM on S is an ordered pair (S,I), where S is the
ground set ofM, and I is a collection of independent subsets of S
satisfying the following conditions:

M.1 ∅ ∈ I
M.2 If Y ∈ I and X ⊂ Y , then X ∈ I
M.3 If X ,Y ∈ I and |X | < |Y |, then ∃ y ∈ {Y \ X } such that

X ∪ {y} ∈ I

The third condition is the independence augmentation axiom,
also sometimes referred to as the exchange property. If X is inde-
pendent and there exists a larger independent set Y , then X can
be grown to a larger independent set, implying that every max-
imal independent set is maximum; in other words, all maximal
independent sets have the same cardinality.

Correll et al. have shown that SR systems are competitive with de-
terministic approaches when communication is tightly constrained
and/or when only partial information about the environment is
available [4]. Auction-based approaches modeling the task alloca-
tion problem as an intersection of matroids have been shown to
be effective in achieving provably optimal bounds in decentralized
auctions [36]. Auction approaches, while successful in spatially
distributed task allocation in some applications, do not scale well
with the number of robots or tasks [17], and further depend on
regular communication of cost functions which may not be possi-
ble in unstable environments or with unreliable agents. Matthey et
al. modeled the interactions of agents and their physical environ-
ment as chemical reactions between molecules [21] such that no a
priori knowledge of the workload for task allocation was required.

Task partitioning involves dividing a decomposable task into sim-
pler subtasks which aremulti-agent allocatable [18, 29]. Many of the
solutions to foraging tasks found by social insects employ this strat-
egy, and task partitioning in both natural and SR systems has many
well-known benefits, including (1) increased performance at group
level, (2) stimulated specialization, (3) parallel task execution, (4)
reduced interference between individuals due to self-organization
around spatial locality of subtasks in comparison to the unparti-
tioned task, (5) improved exploitation of the environment, and (6)
improved transport efficiency [12, 25, 27]. Prior work on task par-
titioning in SR has focused on allocating individuals to subtasks
to maximize efficiency given the optimal task distribution a pri-
ori [2, 4, 17, 21] and did not consider sequential interdependencies
between subtasks (with [3, 8, 9, 14, 27] being notable exceptions).

In many cases, a priori optimal task distributions are not feasible
because (1) complete information on the environment is not avail-
able, (2) the environment itself is unstable[22, 30], or (3) the task
decomposition is complex, and the space of possible agent-task al-
locations is exponential in the number of agents and tasks [18]. We
investigate self-organized task partitioning as a possible solution in
such cases, in which robots self-allocate tasks and the interactions
between robots working on inter-dependent subtasks implicitly
disseminate the costs of these tasks to the swarm as a whole, and
give rise to measurable emergent intelligence [15].

Prior work on self-organized task partitioning in foraging has
utilized a compound task decomposition graph representing task
dependencies and hierarchy with a compound root task and two
atomic subtaskswhich enabled utilization of a single existing cache [3,

8, 9, 14, 27, 28]. Caches are temporary storage sites where materials
can be dropped and picked up asynchronously. Asynchronicity can
be beneficial because it can reduce material losses due to imbalances
between foraging and processing rates [13]. We extend this to a
complex task decomposition graph with a multiplely decomposable
root task which collectively enables more complex swarm behaviors
such as cache creation, transfer, and depletion. This generalizes the
task partitioning approach in [14] by eliminating the requirement
for the cache in the arena to be maintained by an outside process.

To answer Q.1, we derive the algorithm STOCH-N1, which uses
the neighborhood of a finished task within a task decomposition
graph to stochastically allocate a new task.We evaluate its emergent
intelligence and performance across compound and complex task
decomposition graphs for a foraging task, and show that swarm
emergent intelligence is strongly correlated with performance, and
greater for complex than for compound task decomposition graphs.

To answer Q.2, we derive MAT-OPT, a matroid [23, 34, 35] theo-
retic method in which we are able to prove that if we disregard task
dependencies from our task decomposition graph, an extension of
our task decomposition graph is optimally solvable with a greedy
algorithm for a single robot under some restrictions. It then follows
that an optimal allocation policy for the swarm is the disjoint union
of individual robot policies (intersection of matroids [36]). By com-
paring the performance of MAT-OPT under constraints with that
of STOCH-N1, we can determine whether emergent intelligence
is more tied to graph content (tasks within the graph, treated as
independent by MAT-OPT), or to graph structure; MAT-OPT should
be the highest performing allocation method if it is the former.

We compare the emergent intelligence and performance of MAT-
OPT against STOCH-N1 (which is specifically designed to enable
collective learning of graph connectivity, including task dependen-
cies), and other state of the art approaches at real-world scales
(swarms of > 1,000 robots). We show that swarm emergent intelli-
gence is strongly tied to collective learning of graph connectivity
and structure (as opposed to graph content) by injecting accurate
knowledge about graph content (task costs), and comparing re-
sulting performance. STOCH-N1 is the most highly performing
method in all tested cases, providing strong quantitative evidence
supporting the suitability of SR systems for dangerous/unstable
environments in which only partial or incomplete information is
available. MAT-OPT is shown to be suboptimal in many cases, due
to its disregard for graph structure and dependencies; however,
results suggest future synergies between theoretical methods lever-
aging emergent intelligence is possible.

2 TASK ALLOCATION SPACES
We first consider the derivation of the task allocation space swarms
will move through as robots choose tasks, as separate from the task
allocation method, which defines how a robot will move through
the allocation space. Previous work [8, 9, 14, 27] on task partitioning
divided the overall decomposable task T into a sequence of two
interdependent atomic subtasks. We extend this decomposition by
relaxing subtask atomicity, allowing robots to partition subtasks
into yet simpler subtasks (Fig. 1). This recursive task partitioning
process results in a complex task decomposition graph [18] with a
multiplely decomposable root task T . Recursive task partitioning

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

475

Figure 1: Complex decomposition of T via task partition-
ing for a single robot. Gd (Va , Ed) is a complete binary tree
formed by the black edges connecting the task nodes. Each
ϕi is formed by connecting the nodes at height i within
Gd (Va , Ed) together with the blue edges.

results in a complete binary tree, which we denote by Gd (Va , Ed),
where Va is the set of all tasks in the tree, and Ed is the set of
connecting edges.

We consider a self-organizing swarm S given an objective O
to minimize the cost of repetitively completing T . Let ϕa = {v ∈
Va |heiдht(v) = 0, 1, 2, . . .} be the set of sets of verticeswith height i .
Each ϕa ∈ Φa is a topologically ordered task decomposition within
Gd (Va , Ed) (Fig. 1), and an equivalent means to accomplish O
(different functionalities in the terminology of [36]). From a natural
standpoint, these decomposition sequences and the tasks within
them are analogous to the castes and observed task specialization
common among insects such as ants, bees, etc. [7, 8].

Each rs ∈ S will execute a series of task allocations a = 1, . . . ,A
(multiple task allocations may occur simultaneously, or involve a
single robot at a single instant in time); all robot task allocation
decisions are independent. Each time rs finishes a task vf ∈ Va−1,
it allocates a new task va ∈ Va .

During allocation at Ta , rs allocates a task va from Ga (Va , Ea)
to execute next, minimizing a temporally varying cost function
C(v, t). C(v, t) represents the cost to rs of executing va starting at
time t . As rs allocates itself tasks over time, its allocation history
clearly forms a directed, weighted path within Ga (Va , Ea). rs seeks
a temporal path through Ga (Va , Ea) that is optimal (of minimal
cost). Defining decision variables xi j ∈ {0, 1} indicating that task
j has been allocated to robot i , and a utility ui j for the allocation
(i, j), solving this problem optimally for S is equivalent to solving
the following linear program for each allocation a ∈ A:

max f (xi j ,ui j)

s.t.
∑
a∈A

|Va |∑
j=1

xi j <= 1

|S |∑
i=1

xi j <= T

(1)

with f (xi j ,ui j) a monotonically decreasing function. Each possible
task is assigned at most once, and robots can change their allocated
task at most once per timestep.

2.1 STOCH-N1 Task Allocation Space
To answer Q.1, we derive a task allocation space sensitive to task
decomposition graph richness. We induce a subgraph Ga (Va , Ea)
on Gd (Va , Ed) containing all tasks available to rs for allocation

after it has finished task vf ∈ VA at timeTa by adding edges to Ed
to form Ea (union of solid and dotted edges in Fig. 2). Formally:

Ea = {eji ∀ ei j ∈ Ed } ∪ {ei j ∀ vi ,vj ∈ Va : i , j, siblinд(vi ,vj)}
(2)

Ga (Va , Ea) (Fig. 2) then represents the union of possible task allo-
cations for each task vf ∈ VA rs could have finished. We contextu-
alize this task allocation graph around vf by defining its allocation
neighborhood, restricting the tasks that can be allocated:

Enbhd = Ea \ {e ∈ Ea : dist(vf ,v) ≤ rnbhd ∀ v ∈ VA} (3)

Enbhd induces a subgraph Gnbhd (Vnbhd , Enbhd) on Ga (Va , Ea)
with central vertex vf and radius rnbhd . In this work we restrict
our study to rnbhd = 1; future work may further explore larger
neighborhoods. Examples of the three possible cases of this induced
subgraph on Ga (Va , Ea) with rnbhd = 1 are shown in Fig. 2.

Figure 2: Task allocation neighborhoods
Gnbhd (Vnbhd , Enbhd) within Ga (Va , Ea) induced by Enbhd
for each vf ∈ Va . A task is either the root (node 0, blue),
a leaf node (node 7, purple), or neither (node 6, red). The
three possible cases of allocation neighborhoods reachable
from vf are shown via different colored edges.

2.2 MAT-OPT Task Allocation Space
We create a set of task allocation graphs G|A |(V|A | , E |A |) (one
for each task allocation rs performs) connected through time via
sets of directed edges such that the connecting edges Ea−1 from
Ga−1(Va−1, Ea−1) to Ga (Va , Ea) each represent a possible task
allocation decision leading from a specific vf ∈ Va−1 to any va ∈
Va . Given such connectivity, it is clear that rs can choose its next
task va without restrictions resulting from the neighborhood of
va−1 (i.e., rnbhd = ∞). Formally, G|A |(V|A | , E |A |) is defined by:

V|A | =
A⋃
a=1
Va

E |A | =
(A−1⋃
a=2
{va−1 ∈ Va−1,va ∈ Va : eva−1,va }

) (4)

That is, for all a = 2, . . . ,A,deд−(v) = deд+(v) = |Va | ∀ v ∈ Va .
Using the notation of [36], we define an allocation v ∈ V|A |

more formally as a triplet (s,vj ,ϕk), read as “robot s performs
task vj to for ϕk ”. Then, O can be more precisely defined as O ⊆
{(vj ,ϕk)|vj ∈ V|A | ,ϕk ∈ Φ |A |}. That is, a robot allocates a task
vj ∈ Va from ϕk ∈ Φa in order to help complete O by performing
a task from the task sequence at height k within G|A |(V|A | , E |A |).
We assign an independent set Irs to each rs ∈ S, containing sets

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

476

of triplets {(s,vj ,ϕk)} which are the feasible sets of functionality-
requirement [36] allocations. Then,Mrs ∈ M,Mrs = (V|A | ,Irs)
are matroids containing the set of maximal independent sets for
each Irs . From [36], an optimal task allocation policy can be ob-
tained from the intersection of these matroids (a reframing of
Eqn. (1)).

We now set our matroid optimality constraints and prove that
Mrs satisfies the matroid properties M.1, M.2, M.3:

(1) C(v, t) monotonicity and accuracy. We assume C(v, t) is a
monotonically increasing function which accurately esti-
mates the cost of performing a task v starting at time t , and
that this accuracy is maintained regardless of the task allo-
cations chosen. That is, while a task allocation at Ta might
affect future task costs at time Ta′ , those cost changes do
not violate monotonicity. By our definition, −C(v, t) is a
sub-modular monotone function [36].
Environments such as large-scale robotics warehouses are
well modeled by cost functions of this type. For example,
data about how long it takes to find an object of a specific
type and bring it to a specific location are well known, and
provide excellent estimates of the execution time for tasks.
However, sensor/actuator error can still cause the theoreti-
cally collision-free paths to not be collision free in practice,
thus increasing actual task execution times beyond estimates,
but not to reduce them.

(2) Task allocation independence. While a task chosen by rs might
affect the future task cost estimates of another robot rs ′ ,
such effects will not change rs ′ ’s allocation decisions, due to
C(v, t) monotonicity and submodularity.

(3) Task allocation frequency. We assume rs can abort its current
task and allocate a new one at any point in time.

(4) Task Switching Cost. We assume rs can switch tasks with-
out cost, or equivalently, with equal cost. Without loss of
generality, task switching costs can be encoded in C(v, t).

(5) Temporal precedence constraint satisfaction: All constraints
for a task vj are satisfied when rs allocates itself vj . That is,
for a task vj at position j within a task sequence ϕi , other
robots have already completed all tasks v0 . . .vj−1 in the
specific instantiation of the sequence. This is a restatement
of the assumptions of [5, 9], in which task independence
is unaffected by group dynamics, and effectively removes
task dependencies from Ga (Va , Ea). This is a necessary as-
sumption for proving Mrs is a graphic matroid, because
graphic matroids cannot contain cycles, and edges between
tasks within the same Va trivial form cycles between the
allocations performed at Ta and Ta+1.

We wish to create an independence system Irs overV|A | and,
furthermore, show thatMrs = (V|A | ,Irs) is a matroid. We define
Irs as:

Irs = {I : I ⊂ V|A | , |I ∩Va | ≤ 1 ∀ a = 1, . . . ,A} (5)

Irs consists of every set of task allocation decisions that rs can
make (rs cannot choose more than one task during a single allo-
cation). Since tasks take varying amounts of time, task allocation
decisions can occur at any 1 ≤ t ≤ T . Depending on the previous
decisions made (i.e., the members of a particular X ∈ Irs), at some

Figure 3: Unrolled task allocation graph G|A |(V|A | , E |A |)
shown for arbitrary task allocation times a − 1,a,a + 1.

time t∗ another decision will be made and another vertex added to
X (i.e., a robot aborts its current task and starts the new task, which
had smaller cost than the remaining portion of its current task).
For another Y ∈ Irs ,X , Y , t∗ will occur while rs is executing a
task, and 0 tasks from Gt ∗ (Vt ∗ , Et ∗) will be added to Y (if the new
task does not have a lower cost estimate than the remaining part of
rs ’s current task). Effectively, robots perform task allocation each
timestep, choosing to continue their current task or to abort it and
choose a new one, depending on which they think will have smaller
cost and finish first.

To prove Irs is an independence system, we now proveM.1,M.2.
M.1 is true by construction, as V|A | = ∅ is admissable under
Eqn. (5).M.2 is also satisfied by construction, because we defined
Irs so that for every X ∈ Irs , no pair of elements in X are a part of
the sameVa , by Eqn. (5). Thus, for a subset of X , which has fewer
elements, it would also be true that no pair of elements would be
a part of the same Va . Since Irs is an independence system, any
I ∈ Irs is an independent set.

Finally, we must prove M.3 for Irs for any rs ∈ S, in a simi-
lar manner to [36]: for any two sets of task allocation decisions
{X }, {Y }, if |X | < |Y |, we can take an allocation decision from Y
and add it to X and still have a valid independent set. Since X and
Y contain at most one element per allocation time, then we must
have |X | < |Y | ≤ A, and therefore there must be least one time
Ta∗ for which |X ∩ Va∗ | = 0 and |Y ∩ Va∗ | = 1. Then we know
Y ∩Va∗ ⊆ Y \ X such that X ∪ {Y ∩Va∗ } ⊂ Irs . In other words,
since |Y | > |X |, it must have done an allocation at a time when
X did not, and this allocation can be added to X to form a new
independent set.

This concludes the proof ofM.3, and thereforeMrs = (V|A | ,Irs)
for allMrs ∈ M are matroids.

3 TASK ALLOCATION METHODS
3.1 STOCH-N1 Task Allocation Method

We define a method capable of task allocation in each of the 3
cases for Gnbhd (Vnbhd , Enbhd) from Fig. 5 in Algorithm 1.
EmployPartitioninд() and ChooseChild() are the task partitioning
and subtask selection methods from [14], and βi is the Task Allo-
cation Block (TAB), a binary tree consisting of a root partition-
able task β00 and its two subtasks, β01, β02. We use numerical
subscripts ij attached to βi j to denote the jth task within a TAB
rooted at vertex i (we use a left-to-right numbering scheme, as
depicted in Fig. 1). In previous work, there was only a single TAB,
β0 = Gnbhd (Vnbhd , Enbhd) with |Va | = 3.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

477

Algorithm 1 STOCH-N1()
INPUT:β ,vf OUTPUT:β ′,va
1: if vf = β0 then
2: β ′ ← SwitchContext(β , βparent (vf))
3: else
4: β ′ ← SwitchContext(β , βvf)
5: end if
6: if EmployPartitioning(β ′) then
7: return β ′, ChooseChild(β ′)
8: else
9: return β ′,β ′0
10: end if

Lines 6-10 of Algorithm 1 are unambiguous if and only if |Va | =
3, because for such graphs, only a single partitionable task exists,
and all partitioning decisions are rooted at that node, regardless
of vf . However, for vf ∈ Va , |Va | > 3 that are neither the root
or a leaf node, ambiguity exists in which node to consider as the
pseudo-root for the purposes of partitioning (see Fig. 4). Should
the pseudo-root be parent(vf), considering vf to be a pseudo-leaf
node within a 3 node graph rooted at parent(vf)? Or should it be
vf , considering vf as the root node of a 3 node tree encompassing
vf and its two children? We solve the ambiguity of which node to
consider as the pseudo root by allowing multiple β ⊂ Ga (Va , Ea);
every vertexv that is not a root or leaf is both the root of a β rooted
at v , and a leaf within a β rooted at parent(v) (see Fig. 4). With
this extended TAB definition, we now consider the question of
how rs should update the TAB associated with vf (the definition of
the SwitchContext() function). From the task decomposition graph

Figure 4: Task Allocation Contexts (TABs) within
Ga (Va , Ea). vf with unambiguous partition points in
red (root and leaf nodes), and ambiguous partition points
in gold.

structure, each subtask (βi1, βi2) is half of the work of βi0, it should
therefore have half the cost under C(v, t). The further this ratio
becomes unbalanced, themore likely that stochastic variances in the
swarm and/or environment will cause tasks to unexpectedly take
longer, and the less reliable task estimates should be considered. So
a robot attempting to stochastically minimize the cost of the tasks
they choose should change the current βi to a different βj within
Ga (Va , Ea), depending on how “balanced” task cost estimates are
between different β ⊂ Ga (Va , Ea); that is, how close the cost
estimate for ˆβi0 is to the sum of the cost estimates of its subtasks
(ˆβi1 + ˆβi2). We formalize this intuition in the following equations,
which comprise the essence of SwitchContext():

θβ (βi , βj) = Ωβr

(| ˆβi0 − (ˆβi1 + ˆβi2)|/ ˆβi0
| ˆβj0 − (ˆβj1 + ˆβj2)|/ ˆβj0

− Ωβo

)
(6)

Pβsw (βi , βj) =
1

1 + e−θβ (βi ,βj)
(7)

Where Ωβr is the reactivity of the logistic function, and Ωβo
is the offset. In the degenerate case in which the ratios are ex-
actly equal, Pβsw is 0.5 (we choose Ωβo = 1.0 in this work). Us-
ing Eqn. (7), and our extended TAB definition, a robot is con-
strained in its choices to update βi by the structure ofGa (Va , Ea) to
{{βi }∪{βj : vf = βj1, j2}} ifvf = βi0, and {{βi }∪{βj : vf = βj0}}
otherwise.

The STOCH-N1 algorithm (Algorithm 1) extends the task allo-
cation algorithms from previous work [3, 8, 9, 14, 27] (lines 6-10)
with lines 1-5, solving the problem of task partition node ambigu-
ity. It realizes Gnbhd (Vnbhd , Enbhd) with rnbhd = 1, because all
β ∈ Gnbhd (Vnbhd , Enbhd) have radius 1, and therefore va will be
a distance of at most 1 from vf . It is therefore well suited to investi-
gate the effect of Ga (Va , Ea) richness on emergent intelligence. It
approximately solves Eqn. (1) via stochastic greedy allocation for a
single a ∈ A at a time, not considering future allocations, and does
not have any guarantees of optimality.

3.2 MAT-OPT Task Allocation Method
rs seeks an optimal path (measured by C(v, t)) between va1 and
vaA, which belong to G1(V1, E1) and GA(VA, EA), respectively.
We define a global greedy algorithm GG capable of finding the
lowest cost path between va1 and va2 by determining the best
decision for a robot to take at any time. Let v̂a be the robot’s cost
estimate of a task va ∈ Va using our cost measure C(v, t) at time
Ta . The algorithm begins with F0 = ∅, and iteratively selects at task
allocation time T1 the element va ∈ V1 independent from Fa−1
maximizing −C(va , t):

Fa = Fa−1
⋃{

argmax
va :Fi−1∪{va }∈Irs

−C(va , t |Fa−1)
}

(8)

It follows that the GG algorithm gives the optimal decision path
for rs [23]. The path is not guaranteed to be unique; all optimal
paths will have the same overall cost and cardinality due to M.3.

In real SR systems, a global greedy algorithm is not possible in
general: environment conditions can change, robots can enter/leave
an operating area, robots can fail, sensor/actuator errors can result
in unpredictable congestion. All these events affect the optimal
decision path, and cannot be known a priori.

We now define a local greedy algorithm (LG) for determining
what decision a robot should make without any information about
future costs, and show that this algorithm gives the same result
as GG. The LG algorithm begins with an empty set FLG , and at
each task allocation a = 1, . . . ,A, it adds argmaxva ∈Va v̂a to FLG
(accurate task selections ensured by accurate and monotonically
increasing task cost estimates).

We prove that LG gives the same result as GG with a proof
by contradiction. Assume that LG does worse than GG. That is,∑
v ∈FLG v̂ <

∑
v ∈FGG v̂ . Note that since FGG is maximally inde-

pendent, and LG chooses exactly one task at each allocation, both
FGG and FLG have exactly one task from eachVa . Thus, in order for

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

478

∑
v ∈FLG v̂ <

∑
v ∈FGG v̂ to be true, it must also be true that there

exists some task allocation time Ta∗ for which the task chosen by
GG from Va∗ has a smaller estimated cost than the task chosen by
LG from Va∗. However, this is impossible, because we have defined
LG to take the task with the least cost from each Va . Thus, since
LG cannot do worse than GG, it must also be optimal. □

4 APPLICATION TO A FORAGING TASK
We instantiate the task decomposition graph shown in Fig. 5, ex-
tending previous work [8, 14, 27] which explicitly or implicitly
defined the following tasks, implemented as vertices comprising
Va (gold vertices in Fig. 5):

Figure 5: Task decomposition graph, Gd (Va , Ed), for a for-
aging task. Solid edges indicate task decomposition, dashed
blue edges indicate task sequences (ϕi , i = {0, 1, 2}). Gold
tasks were defined in previous work [14], red tasks are de-
fined in this work.
• Generalist: Acquire a free block of highest utility and bring
it to the nest. This is T , and one way of accomplishing the
swarm objective O via ϕ0.
• Harvester : Acquire a free block of highest utility and bring
it to the existing cache of highest utility, calculated as:

µĈj
(t) =

e
−τĈj (t) |Ĉj |

rs − Cj

Cj − nest

 (9)

where |Ĉj | is the estimated size of the jth cache known to rs
(caches might not exist anymore, and therefore a robot only
has estimates of their existence). This equation emphasizes
selection of caches that are close to the position of rs , but
also that are closer to the nest, while accounting for the
relevancy of a robot’s information about Cj [14]. This task
accomplishes part of O via ϕ1.
• Collector Acquire a block from the existing cache of highest
utility (Eqn. (9)) and bring it to the nest. This task accom-
plishes part of O via ϕ1.

We extend prior work with the following tasks, implemented as
vertices comprising the task sequence ϕ2 (red vertices in Fig. 5):
• Cache Starter : Acquire a free block of highest utility and bring
it partway back to the nest, and then drop it at a feasible site
to start aDe Novo cache, according to Eqn. (10). A feasible site
is one at least a distance η from all known caches Ĉ1 . . . Ĉn .
The best cache site x for rs is computed as follows:

max
x

µrs

s.t.

x − Ĉm

 ≥ η, m = 1, . . . ,n.
(10)

where

µrs =
(

x − xrs

x − xrs − nest

2

)−1 (11)

Intuitively, cache sites that are close to xrs are better (less
work to get to, less chance of being found unsuitable upon

arrival), as are sites that are close to the halfway point be-
tween the robot’s current position and the nest (bisecting the
space maximizes available areas for Collector and Harvester
tasks, reducing interference). This task accomplishes part of
O via ϕ2.
• Cache Finisher: Acquire a free block of highest utility and
place it within a distance η to a De Novo cache (a single free
block a distance η from all other blocks) of maximum utility
(Eqn. (9) with |Ĉj | = 1) in order to create a new cache. This
task accomplishes part of O via ϕ2.
• Cache Transferer : Acquire a block from the existing cache of
highest utility and transport it to the existing cache with the
second highest utility. This accomplishes part of O via ϕ2.
• Cache Collector : Acquire a block from the existing cache of
highest utility (Eqn. (9)) and bring it to the nest. This task
accomplishes part of O via ϕ2.

By defining ϕ2, we have also implicitly defined β1, β2.

4.1 Experimental Setup
The experiments described in this paper have been carried out in
the ARGoS [24] simulator. We employ a dynamical physics model
of the robots in a three dimensional space for maximum fidelity
(robots are still restricted to motion in the XY plane), using a model
of the s-bot developed by [6]. For all experiments we average the
results of 20 experimental runs of T = 10, 000 seconds. We define
our cost measure C(v, t) as the execution time for a given task. We
use a constant swarm density [11] (ratio of swarm size to arena
area) of 10%, which helps to minimize the effects of increasing inter-
robot interactions, allowing us to obtain more reliable measures
of our quantities of interest. That is, by using a constant swarm
density we maintain the same level of inter-robot interaction with
increasing swarm sizes, removing artifacts from increasing robot
interaction levels from the results, which would otherwise arise
from variable density scenarios as swarm size is increased.

We evaluate our derived methods against the following con-
trollers from other state-of-the-art literature [14, 26, 27], summa-
rized briefly here:
• Epsilon Greedy, in which robots choose the task of least cost
with probably ϵ , and a random task otherwise; has a linear
regret bound [1, 26, 28].
• UCB1, in which robots treat task allocation as a multi-armed
bandit problem; has a logarithmic regret bound [1, 26, 28].

4.2 Effect on Performance of Task
Decomposition Graph Richness

To gain insight into the effect of task decomposition graph richness
on performance (and answer Q.1), we compare all methods on
compound and complex task decomposition graphs [18]. We define
a swarm configuration as an (X,Y) point corresponding to a specific
combination of swarm size and task allocation method. We compare
and correlate the levels of emergent intelligence and performance
on both types of graphs using the metric defined by [15], which is a
function of swarm size and robot control algorithm. It computes the
sub-linearity of increases in inter-robot interference across either
(1) linearly increasing swarm sizes, or (2) task allocation methods.
Linear or superlinear increases in interference levels indicates more

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

479

Figure 6: Screen shot of a dual source foraging scenario with
multiple robots (blue blobs), objects to be collected (black
squares), and the nest in the center (gray).

Figure 7: Observed emergent intelligence via self-
organization for all methods on compound and complex
task decomposition graph for scenario in Fig. 6 using a 10%
swarm density under imperfect information.

random and/or disorganized motion and therefore less emergent
intelligence. Previous work on task partitioning exclusively used
single source foraging scenarios, in which all objects are distributed
in a single cluster within a rectangular arena [8, 14, 15, 27]. In this
work we utilize a dual source foraging scenario, shown in Fig. 6, in
order to provide swarms a richer environment to learn and exploit,
as opposed to the simpler single source environment.

From Fig. 7, we see that the observed levels of self-organization
are uniformly higher for complex task decomposition graphs than
for compound graphs across all tested methods, even those not
specifically designed to be sensitive to task decomposition graph
richness. The STOCH-N1 method, which was specifically designed
to be sensitive to graph richness, has the highest emergent intel-
ligence and performance across all scales. Comparing Fig. 7 and
Fig. 8 we observe that, generally speaking, higher levels of swarm
intelligence are positively correlated with higher performance.

4.3 Emergence of Swarm Intelligence from
Task Decomposition Graph Richness

To investigate the origin of swarm emergent intelligence (Q.2),
we ran two additional sets of experiments. First, we enforce our
matroid optimality constraints by artificially injecting the swarm
with perfect knowledge about evolving task costs (C(v, t)) at every

Figure 8: Performance for all methods on compound and
complex task decomposition graphs scenario in Fig. 6 using
a 10% swarm density under imperfect information.

timestep. From our measurements (not shown), in a ~1,000 robot
swarmwith a density of 10%, no more than 3% of robots are engaged
in collision avoidance at any given time, on average (for the smaller
swarms, it is much less), and C(v, t) monotonicity is maintained.
We cannot guarantee multiple robots will not interact within a
finite operating arena (as strictly required to realize the MAT-OPT
task allocation space without task dependencies), but our use of a
low swarm density reduces the probability that interactions will
violate cost function monotonicity (e.g., obviating the occurrence
of excessive inter-robot interference at high densities).

Figure 9: Performance difference comparison on a com-
pound task decomposition graph between swarms operating
under matroid optimality constraints vs. relaxation. Nega-
tive values indicate that a performance drop was observed
when constraints were relaxed, when compared with Fig. 8.

We frame these results in terms of performance drops, compar-
ing the drop in performance when matroid optimality constraints
are relaxed between two otherwise identical swarms. In Fig. 9, neg-
ative values indicate a drop in performance, and positive values
indicate that swarms operating under imperfect information per-
formed better. We see performance drops consistently for both the
MAT-OPT and the ϵ-greedy methods on the compound task decom-
position graph, in the neighborhood of ~5% as expected, as they
are the methods most sensitive task cost accuracy. The increased
performance of UCB1 under relaxation is somewhat anomalous,

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

480

though we speculate that it could be due to many robots allocating
themselves the same sequence of tasks, which at larger swarm sizes
resulted in increased congestion at the shared caches. In Fig. 10, we
see much smaller scales of performance drops in general, and more
cases in which the swarm operating under perfect information does
better than the one without it.

Figure 10: Performance difference comparison on a com-
plex task decomposition graph between swarms operating
under matroid optimality constraints vs. relaxation. Nega-
tive values indicate that a performance drop was observed
when constraints were relaxed, when compared with Fig. 8.

5 DISCUSSION
We observe in Fig. 7 that the self-organization measure we employ
(derived by [15]) is sensitive to the task allocation method, and
that considerable self-organization emerges, in comparison to the
baseline random allocation method. However, in this work we have
only established a rough correlation between emergent intelligence
and performance, as we see that even though swarms using random
task allocation still outperform more “intelligent” methods such
as UCB1 in many cases. One would expect that the MAT-OPT and
ϵ-greedy methods, even without optimality constraints in place (as
in this case), would do better than randomized allocations.

Comparing the heatmaps in Fig. 8 across all methods, it is clear
that the richness of the task allocation graph positively affects self
organization, which we believe is due to the swarm’s increased
ability to dynamically adapt to changing traffic flows as time pro-
gresses. From this we can answer Q.1 and conclude that (1) task
decomposition graph richness has an important and measurable
effect on the emergent intelligence of a swarm, (2) more complex
task decomposition graphs result in higher levels of emergent in-
telligence, (3) swarm emergent intelligence is positively correlated
with performance.

Within Fig. 9 (compound task decomposition graph), we see
empirical evidence that our matroid optimality constraints and
method of enforcement were valid through the consistent perfor-
mance drops observed across scales for MAT-OPT and ϵ-greedy.
Examining Fig. 10, we see a general lack of trends between perfor-
mance under relaxation vs. under constraints, for all tested meth-
ods, which we attribute to the higher levels of swarm intelligence
present via the complex task decomposition graph. That is, the lack
of trends is due to collective learning of the graph structure, rather
than graph content, which gives rise to higher levels of swarm in-
telligence, and the richer structure of the complex decomposition
graph overwhelms the effect of the optimality constraints.

For both types of decomposition graphs, the MAT-OPT method
was not the optimal method, even under constraints, though we
do observe the largest performance boost of all the tested methods
under perfect information. MAT-OPT ignores task decomposition
graph structure, and assumes independent tasks, which is shown
to be an invalid assumption. In addition, from Fig. 8 and the perfor-
mance drops in Fig. 9, Fig. 10, STOCH-N1 performs the best under
both imperfect and perfect information, though it experiences per-
formance drops, rather than increases, under perfect information.
Random performed the second best in many cases, though it was
outperformed by UCB1 in some cases. From these observations we
can answer Q.2, concluding that from a task allocation perspective,
swarm intelligence arises out collective learning of the structure
and connectivity of the graph, rather than collective learning of the
graph content (tasks and task costs), and that task dependencies
cannot be ignored even in independent task allocation decisions
made by individual robots.

From this discussion, it is clear that leveraging emergent intelli-
gence is crucial in establishing (practically) optimal task allocation
policies in robot swarms, and that maximally performing solu-
tions (possibly without optimality guarantees) need to incorporate
stochasticity in order to mitigate (or exploit) their inherent ran-
domness. We have also shown that there are formal task allocation
methods (UCB1) well suited to traditional typical environments
when perfect information is not available. Finally, our MAT-OPT
results suggest that emergent intelligence has the potential, un-
der the right conditions, to work synergistically with theoretical
models, if task independence is guaranteed.

6 CONCLUSIONS AND FUTUREWORK
We have investigated the effect that the richness of task decom-
position graph has on emergent swarm intelligence. We derived
compound task decomposition graphs enabling swarms to utilize
existing caches, and complex task decomposition graphs enabling
them to create/destroy caches. We have shown that task decompo-
sition graph richness is positively correlated with swarm emergent
intelligence and performance for many task allocation methods in
an object gathering task. We have further studied the emergence
of swarm intelligence as it relates to task decomposition graphs,
showing that it arises out of learning and exploitation of graph struc-
ture, rather than graph context (task costs of nodes). Future work
should investigate the conditions under which emergent swarm
intelligence can be made to work synergistically with theoretical
models. More work is also needed to refine the relationship between
emergent intelligence and performance. In order to facilitate future
research and collaboration, the code used for this research is open
source, and can be found at https://github.com/swarm-robotics.

ACKNOWLEDGMENTS
We gratefully acknowledge Amazon Robotics, the MnDRIVE RSAM
initiative at the University of Minnesota, and the Minnesota Super-
computing Institute for their support.

REFERENCES
[1] Peter Auer and Paul Fischer. 2002. Finite-time Analysis of the Multiarmed Bandit

Problem*. Technical Report. 235–256 pages.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

481

[2] Spring Berman, Ádám Halász, M. Ani Hsieh, and Vijay Kumar. 2009. Optimized
stochastic policies for task allocation in swarms of robots. IEEE Transactions on
Robotics 25, 4 (aug 2009), 927–937.

[3] Arne Brutschy, Giovanni Pini, Carlo Pinciroli, Mauro Birattari, and Marco Dorigo.
2014. Self-organized task allocation to sequentially interdependent tasks in swarm
robotics. Autonomous Agents and Multi-Agent Systems 28, 1 (2014), 101–125.

[4] Nikolaus Correll. 2008. Parameter estimation and optimal control of swarm-
robotic systems: A case study in distributed task allocation. In Proc. IEEE Int’l
Conf. on Robotics and Automation. 3302–3307. http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4543714

[5] Torbjørn S. Dahl, Maja Matarić, and Gaurav S. Sukhatme. 2009. Multi-robot task
allocation through vacancy chain scheduling. Robotics and Autonomous Systems
57, 6-7 (2009), 674–687. https://doi.org/10.1016/j.robot.2008.12.001

[6] Marco Dorigo. 2005. Swarm-bot: An experiment in swarm robotics. In Proc. IEEE
Swarm Intelligence Symposium. 199–207.

[7] Ana Duarte, Franz J Weissing, Ido Pen, Laurent Keller, and Laurent Keller2. 2011.
An Evolutionary Perspective on Self-Organized Division of Labor in Social Insects.
Source: Annual Review of Ecology, Evolution, and Systematics 42 (2011), 91–110.
https://doi.org/10.11

[8] Eliseo Ferrante, Ali Emre Turgut, Edgar Duéñez-Guzmán, Marco Dorigo, and
Tom Wenseleers. 2015. Evolution of Self-Organized Task Specialization in Robot
Swarms. PLoS Computational Biology 11, 8 (2015). https://doi.org/10.1371/journal.
pcbi.1004273

[9] Marco Frison, Nam Luc Tran, Nadir Baiboun, Arne Brutschy, Giovanni Pini,
Andrea Roli, Marco Dorigo, and Mauro Birattari. 2010. Self-organized Task
Partitioning in a Swarm of Robots. In Swarm Intelligence. Vol. LNCS 6234. Springer,
Berlin, Heidelberg, 287–298.

[10] Aram Galstyan, Tad Hogg, and Kristina Lerman. 2005. Modeling and mathe-
matical analysis of swarms of microscopic robots. In Proc. IEEE Swarm Intelli-
gence Symposium, SIS 2005. 209–216. https://doi.org/10.1109/SIS.2005.1501623
arXiv:cs/0604110

[11] Heiko Hamann. 2013. Towards swarm calculus: urn models of collective decisions
and universal properties of swarm performance. Swarm Intelligence 7 (2013),
145–172. https://doi.org/10.1007/s11721-013-0080-0

[12] Adam G. Hart, Carl Anderson, and Francis L.W. Ratnieks. 2002. Task partitioning
in leafcutting ants. (2002). https://doi.org/10.1007/s10211-002-0062-5

[13] Adam G Hart and Francis L W Ratnieks. 2000. Leaf caching in Atta leafcutting
ants: discrete cache formation through positive feedback. Animal Behaviour 59
(2000), 587–591. https://doi.org/10.1006/anbe.1999.1332

[14] John Harwell and Maria Gini. 2018. Broadening applicability of swarm-robotic
foraging through constraint relaxation. IEEE Int’l Conf. on Simulation, Modeling,
and Programming for Autonomous Robots (SIMPAR) (May 2018), 116–122. https:
//doi.org/10.1109/SIMPAR.2018.8376280

[15] John Harwell and Maria Gini. 2019. Swarm Engineering Through Quantitative
Measurement of Swarm Robotic Principles in a 10,000 Robot Swarm. International
Joint Conference on Artificial Intelligence (IJCAI) (August 2019).

[16] Joshua P. Hecker and Melanie E. Moses. 2015. Beyond pheromones: evolving
error-tolerant, flexible, and scalable ant-inspired robot swarms. Swarm Intelligence
9, 1 (2015), 43–70. https://doi.org/10.1007/s11721-015-0104-z

[17] M. Ani Hsieh, Ádám Halász, Spring Berman, and Vijay Kumar. 2008. Biologi-
cally inspired redistribution of a swarm of robots among multiple sites. Swarm
Intelligence 2, 2-4 (2008), 121–141. https://doi.org/10.1007/s11721-008-0019-z

[18] G. Ayorkor Korsah, Anthony Stentz, and M. Bernardine Dias. 2013. A comprehen-
sive taxonomy for multi-robot task allocation. The International Journal of Robot-
ics Research 32, 12 (2013), 1495–1512. https://doi.org/10.1177/0278364913496484

[19] Thomas H. Labella and Marco Dorigo. 2006. Division of Labor in a Group of
Robots Inspired by Ants’ Foraging Behavior. ACM Trans. on Autonomous and

Adaptive Systems (TAAS) 1, 1 (Sept. 2006), 4–25.
[20] Kristina Lerman, Alcherio Martinoli, and Aram Galstyan. 2004. A Review of

Probabilistic Macroscopic Models for Swarm Robotic Systems. In Swarm Robot-
ics. SR 2004, E. Şahin and W.M. Spears (Eds.). Vol. LNCS 3342. Springer Berlin
Heidelberg. http://www.isi.edu/~lerman/

[21] Löic Matthey, Spring Berman, and Vijay Kumar. 2009. Stochastic strategies for a
swarm robotic assembly system. Proc. IEEE Int’l Conf. on Robotics and Automation
(2009), 1953–1958. https://doi.org/10.1109/ROBOT.2009.5152457

[22] Nils Napp and Radhika Nagpal. 2014. Distributed amorphous ramp construction
in unstructured environments. Springer Tracts in Advanced Robotics 104, 2014
(2014), 105–119. https://doi.org/10.1007/978-3-642-55146-8_8

[23] James G. Oxley. 2006. Matroid Theory (Oxford Graduate Texts in Mathematics).
Oxford University Press, Inc., New York, NY, USA.

[24] Carlo Pinciroli et al. 2012. ARGoS: a Modular, Parallel, Multi-Engine Simulator
for Multi-Robot Systems. Swarm Intelligence 6, 4 (2012), 271–295.

[25] Giovanni Pini, Arne Brutschy, Mauro Birattari, and Marco Dorigo. 2011. Task
Partitioning in Swarms of Robots: Reducing Performance Losses Due to Inter-
ference at Shared Resources. In Informatics in Control Automation and Robotics.
Springer, 217–228.

[26] Giovanni Pini, Arne Brutschy, Gianpiero Francesca, Marco Dorigo, and Mauro
Birattari. 2012. Multi-armed Bandit Formulation of the Task Partitioning Problem
in Swarm Robotics. In Swarm Intelligence. ANTS 2012, M. Dorigo et al. (Ed.).
Vol. LNCS 7461. Springer, Berlin, Heidelberg. https://link-springer-com.ezp2.lib.
umn.edu/content/pdf/10.1007

[27] Giovanni Pini, Arne Brutschy, Marco Frison, Andrea Roli, Marco Dorigo, and
Mauro Birattari. 2011. Task partitioning in swarms of robots: An adaptive
method for strategy selection. Swarm Intelligence 5, 3-4 (2011), 283–304. https:
//doi.org/10.1007/s11721-011-0060-1

[28] Giovanni Pini, Matteo Gagliolo, Arne Brutschy, Marco Dorigo, and Mauro Bi-
rattari. 2013. Task partitioning in a robot swarm: A study on the effect of
communication. Swarm Intelligence 7, 2-3 (2013), 173–199. https://doi.org/10.
1007/s11721-013-0078-7

[29] F.L.W. Ratnieks and C. Anderson. 1999. Task partitioning in social insects. Insectes
Sociaux 46, 2 (1999), 95–108. https://doi.org/10.1086/303256

[30] Christopher Rouff. 2007. TR: FS-07-06: Papers from the 2007 AAAI Fall Sympo-
sium. (2007), 112–115. https://doi.org/10.1007/s11721-010-0040-x

[31] Christopher Rouff et al. 2004. Properties of a Formal Method for prediction of
Emergent Behaviors in Swarm-based Systems. In Proc. 2nd International Confer-
ence on Software Engineering and Formal Methods.

[32] Erol Şahin. 2005. Swarm Robotics: From Sources of Inspiration to Domains of
Application. In Swarm Robotics (LNCS 3342). Springer, 10–20.

[33] Amanda J.C. Sharkey. 2007. Swarm robotics and minimalism. Connection Science
19, 3 (2007), 245–260. https://doi.org/10.1080/09540090701584970

[34] William Thomas Tutte. 1959. Matroids and graphs.
[35] Hassler Whitney. 1935. On the Abstract Properties of Linear Dependence. Amer-

ican Journal of Mathematics 57, 3 (1935), 509–533. https://www.jstor.org/stable/
2371182?seq=1

[36] Ryan K. Williams, Andrea Gasparri, and Giovanni Ulivi. 2017. Decentralized
matroid optimization for topology constraints in multi-robot allocation problems.
Proceedings - IEEE International Conference on Robotics and Automation (2017),
293–300. https://doi.org/10.1109/ICRA.2017.7989038

[37] Alan F. T. Winfield, Wenguo Liu, Julien Nembrini, and Alcherio Martinoli. 2008.
Modelling a wireless connected swarm of mobile robots. Swarm Intelligence 2,
2-4 (Dec. 2008), 241–266. https://doi.org/10.1007/s11721-008-0018-0

[38] Alan F. T. Winfield and Jin Sa. 2005. On Formal Specification of Emergent
Behaviours in Swarm Robotic Systems. Science (2005), 363–371.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

482

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4543714
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4543714
https://doi.org/10.1016/j.robot.2008.12.001
https://doi.org/10.11
https://doi.org/10.1371/journal.pcbi.1004273
https://doi.org/10.1371/journal.pcbi.1004273
https://doi.org/10.1109/SIS.2005.1501623
http://arxiv.org/abs/cs/0604110
https://doi.org/10.1007/s11721-013-0080-0
https://doi.org/10.1007/s10211-002-0062-5
https://doi.org/10.1006/anbe.1999.1332
https://doi.org/10.1109/SIMPAR.2018.8376280
https://doi.org/10.1109/SIMPAR.2018.8376280
https://doi.org/10.1007/s11721-015-0104-z
https://doi.org/10.1007/s11721-008-0019-z
https://doi.org/10.1177/0278364913496484
http://www.isi.edu/~lerman/
https://doi.org/10.1109/ROBOT.2009.5152457
https://doi.org/10.1007/978-3-642-55146-8_8
https://link-springer-com.ezp2.lib.umn.edu/content/pdf/10.1007
https://link-springer-com.ezp2.lib.umn.edu/content/pdf/10.1007
https://doi.org/10.1007/s11721-011-0060-1
https://doi.org/10.1007/s11721-011-0060-1
https://doi.org/10.1007/s11721-013-0078-7
https://doi.org/10.1007/s11721-013-0078-7
https://doi.org/10.1086/303256
https://doi.org/10.1007/s11721-010-0040-x
https://doi.org/10.1080/09540090701584970
https://www.jstor.org/stable/2371182?seq=1
https://www.jstor.org/stable/2371182?seq=1
https://doi.org/10.1109/ICRA.2017.7989038
https://doi.org/10.1007/s11721-008-0018-0

	Abstract
	1 Introduction
	1.1 Background and Related Work

	2 Task Allocation Spaces
	2.1 STOCH-N1 Task Allocation Space
	2.2 MAT-OPT Task Allocation Space

	3 Task Allocation Methods
	3.1 STOCH-N1 Task Allocation Method
	3.2 MAT-OPT Task Allocation Method

	4 Application To A Foraging Task
	4.1 Experimental Setup
	4.2 Effect on Performance of Task Decomposition Graph Richness
	4.3 Emergence of Swarm Intelligence from Task Decomposition Graph Richness

	5 Discussion
	6 Conclusions and Future Work
	Acknowledgments
	References

