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ABSTRACT
We build on an emerging line of workwhich studies strategic manip-

ulations in training data provided to machine learning algorithms.

Specifically, we focus on the ubiquitous task of linear regression.

Priorwork focused on the design of strategyproof algorithms, which

aim to prevent such manipulations altogether by aligning the in-

centives of data sources. However, algorithms used in practice are

often not strategyproof, which induces a strategic game among

the agents. We focus on a broad class of non-strategyproof algo-

rithms for linear regression, namely ℓp norm minimization (p > 1)

with convex regularization. We show that when manipulations are

bounded, every algorithm in this class admits a unique pure Nash

equilibrium outcome. We also shed light on the structure of this

equilibrium by uncovering a surprising connection between strate-

gyproof algorithms and pure Nash equilibria of non-strategyproof

algorithms in a broader setting, which may be of independent in-

terest. Finally, we analyze the quality of equilibria under these

algorithms in terms of the price of anarchy.
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1 INTRODUCTION
Linear regression aims to find a linear relationship between explana-

tory variables and response variables. Under certain assumptions,

it is known that minimizing a suitable loss function on training

data generalizes well to unseen test data [3]. However, traditional

analysis assumes that the algorithm has access to untainted data

drawn from the underlying distribution. Relaxing this assumption,

a significant body of recent work has focused on making machine

learning algorithms robust to stochastic or adversarial noise; the

former is too benign [14, 15, 22, 26], while the latter is too pes-

simistic [4, 8, 16, 19]. A third model, more recent and prescient, is

that of strategic noise, which is a game-theoretic modeling of noise

that sits in between the two. Here, it is assumed that the training

set is provided by self-interested agents, who may manipulate to

minimize loss on their own data.

We focus on strategic noise in linear regression. Dekel et al. [12]

provide an example of retailer Zara, which uses regression to pre-

dict product demand at each store, partially based on self-reported

data provided by the stores. Given limited supply of popular items,
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store managers may engage in strategic manipulation to ensure

the distribution process benefits them, and there is substantial ev-

idence that this is widespread [7]. Strategic behavior by even a

small number of agents can significantly affect the overall system,

including agents who have not participated in such behavior. Prior

work has focused on designing strategyproof algorithms for linear

regression [9, 12, 28], under which agents provably cannot benefit

by misreporting their data. While strategyproofness is a strong

guarantee, it is only satisfied by severely restricted algorithms. In-

deed, as we observe later in the paper, most practical algorithms

for linear regression are not strategyproof.
When strategic agents with competing interests manipulate the

input data under a non-strategyproof algorithm, a game is induced

between them. Game theory literature offers several tools to an-

alyze such behaviour, such as Nash equilibria and the price of

anarchy [27]. We use these tools to answer three key questions:

• Does the induced game always admit a pure Nash equilib-

rium?

• What are the characteristics of these equilibria?

• Is there a connection between strategyproof algorithms and

equilibria of non-strategyproof algorithms?

We consider linear regression algorithms which minimize the

ℓp -norm of residuals (wherep > 1) with convex regularization. This

class includes most popular linear regression algorithms, including

the ordinary least squares (OLS), lasso, group lasso, ridge regression,

and elastic net regression. Our key result is that the game induced

by an algorithm in this class has three properties: a) it always has

a pure Nash equilibrium, b) all pure Nash equilibria result in the

same regression hyperplane, and c) there exists a strategyproof

algorithm which returns this equilibrium regression hyperplane

given non-manipulated data. We also analyze the quality of this

equilibrium outcome, measured by the pure price of anarchy. We

show that for a broad subset of algorithms in this class, the pure

price of anarchy is unbounded.

1.1 Related Work
A special case of linear regression is facility location in one di-

mension [25], where each agent i is located at some yi on the

real line. An algorithm elicits the preferred locations of the agents

(who can misreport) and chooses a location y to place a facility. A

significant body of literature in game theory is devoted to under-

standing strategyproof algorithms in this domain [6, 25], which

includes placing the facility at the median of the reported locations.

A more recent line of work studies equilibria of non-strategyproof

algorithms such as placing the facility at the average of the re-

ported locations [30, 31, 34]. Similarly, in the more general linear

regression setting, prior work has focused on strategyproof algo-

rithms [9, 12, 28]. We complete the picture by studying equilibria

of non-strategyproof algorithms for linear regression.
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We use a standard model of strategic manipulations in linear

regression [9, 12, 28]. Perote and Perote-Pena [28] designed a strat-

egyproof algorithm in two dimensions. Dekel et al. [12] proved

that least absolute deviations (LAD), which minimizes the ℓ1-norm

of residuals without regularization, is strategyproof. Chen et al.

[9] extended their result to include regularization, and designed a

new family of strategyproof algorithms in high dimensions. They

also analyzed the loss in mean squared error (MSE) under a strate-

gyproof algorithm as compared to the OLS, which minimizes MSE.

They showed that any strategyproof algorithm has at least twice

as much MSE as the OLS in the worst case, and that this ratio is

Θ(n) for LAD. Our result (Theorem 4.10) shows that the ratio of

the equilibrium MSE under the algorithms we study to the optimal

MSE of the OLS is unbounded. Through the connection we estab-

lish to strategyproof algorithms (Theorem 4.8), this also implies

unbounded ratio for the broad class of corresponding strategyproof

algorithms.

Finally, we mention that strategic manipulations have been stud-

ied in various other machine learning contexts, e.g., manipulations

of feature vectors [13, 17], strategic classification [13, 17, 24], com-

petition among different algorithms [1, 2, 18, 23], or manipulations

due to privacy concerns [5, 10].

2 MODEL
In linear regression, we are given n training data points of the form

(xi ,yi ), where xi ∈ R
d
are the explanatory variables, andyi ∈ R is

the response variable.
1
LetX be the matrix with xi as its i

th
column,

andy = (y1, . . . ,yn ). The goal of a linear regression algorithm is to

find a hyperplane with normal vector β such that βT xi is a good
estimate of yi . The residual of point i is ri = |yi − βT xi |.

Algorithms: We focus on a broad class of algorithms parametrized

by p > 1 and a regularizing function R : Rd → R. The (p,R)-
regression algorithm minimizes the following loss function over

β :

L(y,X , β) =
∑n
i=1 |yi − βT xi |

p + R(β). (1)

We assume that R is convex and differentiable. For p > 1, this

objective is strictly convex, admitting a unique optimum β∗. When

there is no regularization, we refer to it as the (p, 0)-regression
algorithm.

Strategic model: We follow a standard model of strategic in-

teractions studied in the literature [9, 12, 28]. Training data point

(xi ,yi ) is provided by an agent i . N = [n] := {1, . . . ,n} denotes the
set of all agents. xi is public information, which is non-manipulable,

but yi is held private by agent i . We assume a subset of agents

H ⊂ N (with h = |H |) are honest and always report ỹi = yi . The
remaining agents in M = N \ H (withm = |M |) are strategic and

may report ỹi , yi . Note that we allow all agents in N be strategic;

that is, we allow H = ∅ and M = N . For convenience, we assume

thatM = [m] and H = {m+ 1, . . . ,n}. However, we emphasize that

our algorithms do not know which agents are strategic and which

are honest. Given a set of reports ˜y, honest agents’ reports are
denoted by ˜yH (note that ˜yH = yH ) and strategic agents’ reports

by ˜yM . In accordance with related literature, we focus our analysis

1
Following standard convention, we assume the last component of eachxi is a constant,
say 1.

to the training set and do not consider strategic manipulation in

test data, leaving this for future work.

The (p,R)-regression algorithm takes as input X and ˜y, and re-

turns β∗ minimizing the loss in Equation (1). We say that yi =

(β∗)T xi is the outcome for agent i . Since X and yH are non ma-

nipulable, we can treat them as fixed. Hence, ˜yM is the only input

which matters, and yM is the output for these manipulating agents.

For an algorithm f , we use the notation f (˜yM ) = yM , and let fi
denote the function returning agent i’s outcome yi . A strategic

agent i manipulates to ensure this outcome is as close to her true

response variable yi as possible. Formally, agent i has single-peaked
preferences ⪰i (with strict preference denoted by ≻i ) over yi with
peak at yi . That is, for all a < b ≤ yi or a > b ≥ yi , we have b ≻i a.
Agent i is perfectly happy when yi = yi . In this work, we assume

that for each agent i , both yi and ỹi are bounded (WLOG, say they

belong to [0, 1]).

Nash equilibria: This strategic interaction induces a game among

agents inM , and we are interested in the pure Nash equilibria (PNE)

of this game. We say that ˜yM is a Nash equilibrium (NE) if no strate-

gic agent i ∈ M can strictly gain by changing her report, i.e., if

∀i, ∀ ỹ′i , fi (˜yM ) ⪰i fi (ỹ
′
i ,˜yM\{i }). We say that ˜yM is a pure Nash

equilibrium (PNE) if it is a NE and each ỹi is deterministic. Let

NEf (y) denote the set of pure Nash equilibria under f when the

peaks of agents’ preferences are given by y.2 For ̂yM ∈ NEf (y), let
f (̂yM ) be the corresponding PNE outcome.

Strategyproofness: We say that an algorithm f is strategyproof
if no agent can benefit by misreporting her true response vari-

able regardless of the reports of the other agents, i.e., ∀i, ∀˜yM ,

fi (yi ,˜yM\{i }) ⪰i fi (˜yM ). Note that strategyproofness implies that

each agent reporting her true value (i.e. ˜yM = yM ) is a pure Nash

equilibrium.

Pure price of anarchy (PPoA):. It is natural to measure the

cost of selfish behavior on the overall system. A classic notion

is the pure price of anarchy (PPoA) [20, 27], which is defined as

the ratio between the maximum social cost under any PNE and

the optimal social cost under honest reporting, for an appropriate

measure of social cost. Here, social cost is a measure of the overall

fit. In regression, it is typical to measure fit using the ℓq norm of

absolute residuals for some q. While we study the equilibrium of ℓp
regression mechanism for different p values, we need to evaluate

them using a single value of q, so that the results are comparable.

For our theoretical analysis, we use mean squared error (which

corresponds to q = 2) since it is the standard measure of fit in

literature [9]. One way to interpret our results is: If our goal were to
minimize the MSE, which ℓp regression mechanism would we choose,
assuming that the strategic agents would achieve equilibrium? In

the full version of the paper,
3
we also present empirical results for

other values of q. Slightly abusing the notation by letting f map all

reports to all outcomes (not just for agents inM), we write:

PPoA(f ) = max

y∈[0,1]n

max
̂y∈NEf (y)

∑n
i=1 |yi − fi (̂y)|2∑n

i=1 |yi − yOLSi |2
,

2
Equilibria can generally depend on the full preferences, but results in Section 4 show

only peaks matter.

3
Available anonymously at: https://firstlastanon.github.io/files/equilibrium.pdf
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where yOLS is the outcome of OLS (i.e. the (2, 0)-regression algo-

rithm) under honest reporting, which minimizes mean squared

error. Note that the PPoA, as we have defined it, measures the im-

pact of the behavior of strategic agents on all agents, including on

the honest agents.

3 WARM-UP: THE 1D CASE
As a warm-up, we briefly review the more restricted facility location

setting in one dimension. Here, each agent i has an associated scalar
value yi ∈ [0, 1] and the algorithm must produce the same outcome

for all agents (i.e. yi = y j ∀ i, j ∈ N ). Hence, the algorithm is a

function f : [0, 1]m → R. This is a special case of linear regression

where agents have identical independent variables.

We provide a detailed overview of prior work in this 1D setting

in the full version of the paper.
3
Briefly, in this setting, the (p,R)-

regression algorithm described in Section 2 reduces to f (ỹ1, . . . , ỹm ) =

argminy∈R
∑m
i=1 |ỹi − y |p +

∑n
i=m+1 |yi − y |p + R(y). For p = 1,

this is known to be strategyproof [9]. However, for p > 1, which

is the focus of our work, this is not strategyproof. Yamamura and

Kawasaki [34] show that for a family of facility location algorithms,

including the (p, 0)-regression algorithm for p > 1 with no honest

agents or regularization, there is always a pure Nash equilibrium,

the PNE outcome is unique, and the outcome matches with that

of a strategyproof algorithm. Below, we extend this to all (p,R)-
regression algorithm with p > 1 and convex regularizer R (and with

the possibility of honest agents). We omit the proof because, in the

next section, we prove this more generally for the linear regression

setting (Theorems 4.6, 4.7, and 4.8).

Theorem 3.1. Consider facility location with n agents, of which a
subset of agentsM are strategic and have single-peaked preferences
with peaks at yM ∈ [0, 1]m . Let f denote the (p,R)-regression al-
gorithm with p > 1 and convex regularizer R. Then, the following
statements hold for f .

(1) For eachyM , there is a pure Nash equilibrium̂yM ∈ NEf (yM ).
(2) For each yM , all pure Nash equilibria ̂yM ∈ NEf (yM ) have

the same outcome f (̂yM ).
(3) There exists a strategyproof algorithm h such that for all

yM and all pure Nash equilibria ̂yM ∈ NEf (yM ), f (̂yM ) =

h(yM ).

Theorem 3.1 guarantees the existence of a pure Nash equilibrium

and highlights an interesting structure of the equilibrium. The next

immediate question is to analyze the quality of this equilibrium. We

show that the PPoA of any (p, 0)-regression algorithm (i.e. without

regularization) is Θ(n). Interestingly, this holds even if only a single

agent is strategic, and the bound is independent of p. The proof
appears in the full version of the paper.

3

Theorem 3.2. Consider facility location with n agents, of which
a subset of agentsM are strategic. Let f denote the (p, 0)-regression
algorithm with p > 1. When |M | ≥ 1, PPoA(f ) = Θ(n).

We remark that both Theorems 3.1 and 3.2, due to their generality,

are novel results in the facility location setting.

4 LINEAR REGRESSION
We now turn to the more general linear regression setting, which

is the focus of our work, and highlight interesting similarities and

differences to the facility location setting. Recall that for linear

regression, the (p,R)-regression algorithm finds the optimal β∗

minimizing the loss function:

L(˜y,X , β) =
m∑
i=1

|ỹi − βT xi |
p +

n∑
i=m+1

|yi − βT xi |
p + R(β)

Let i ∈ M be a strategic agent. Recall that her outcome is de-

noted by yi = (β∗)T xi . Let bri (˜y−i ) = {ỹi ∈ [0, 1] : fi (ỹi ,˜y−i ) ⪰i
fi (ỹ

′
i ,˜y−i ) ∀ ỹ

′
i ∈ [0, 1]} denote the set of her best responses as a

function of the reports ˜y−i of the other agents. Informally, it is the

set of reports that agent i can submit to induce her most preferred

outcome.

4.1 Properties of the Algorithm, Best
Responses, and Pure Nash Equilibria

We begin by establishing intuitive properties of (p,R)-regression
algorithms. We first derive the following lemmas.

Lemma 4.1. Fix strategic agent i ∈ M and reports ˜y−i of the other
agents. Let ỹ1i and ỹ

2

i be two possible reports of agent i , and let β
1 and

β2 be the corresponding optimal regression coefficients, respectively.
Then, ỹ1i , ỹ

2

i implies β1 , β2.

Proof. Suppose for contradiction that β1 = β2 = β∗. We

note that at the optimal regression coefficients, the gradient of

our strictly convex loss function must vanish. Let the loss functions

on the two instances be given by L1
and L2

, respectively. So for

k ∈ {1, 2},

Lk (β) = |ỹki − xTi β |
p +

∑
j,i

|ỹj − xTj β |
p + R(β).

Since β∗ is optimal for L1
, taking the derivative, we have

∇R(β∗) −
∑
j,i

p |ỹj − xTj β
∗ |p−2(ỹj − xTj β

∗)xj

= p |ỹ1i − xTi β
∗ |p−2(ỹ1i − xTi β

∗)xi

, p |ỹ2i − xTi β
∗ |p−2(ỹ2i − xTi β

∗)xi ,

where the last inequality follows because ỹ1i , ỹ2i and xi is not
the 0 vector (its last element is a non-zero constant). Hence, the

gradient of L2
at β∗ is not zero, which is a contradiction. □

Lemma 4.2. For a1 ≥ a2, b1 ≥ b2, and p ≥ 1, we have

|a1 − b1 |
p + |a2 − b2 |

p ≤ |a1 − b2 |
p + |a2 − b1 |

p

Proof. Note that vector (a1 − b2,a2 − b1) majorizes the vector

(a1−b1,a2−b2). For p ≥ 1, f (x) = |x |p is a convex function. Hence,

by the Karamata majorization inequality, the result follows. □

Lemma 4.3. The outcome yi of agent i is continuous in ˜y, and
strictly increasing in her own report ỹi for any fixed reports ˜y−i of
the other agents.

Proof. For continuity, we refer to Corollary 7.43 in Rockafellar

and Wets [33], which states that function F (˜y) = argminβ L(˜y, β)
is single-valued and continuous on its domain, when function L :
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Rm ×Rn → R ∪ {−∞,∞} is proper4, strictly convex, lower semi-

continuous, and has L∞(0, β) > 0, ∀β , 0.
5
It is easy to check that

our loss function given in Equation (1) satisfies these conditions.

Hence, its minimizer β∗ is continuous in ˜y. Since y = Xβ∗, it
follows that y is also continuous in ˜y.

For strict monotonicity, first note that yi = xTi β
∗
. Now con-

sider two instances of (p,R)-linear regression, u andw , that differ

only in agent i’s reported response, denoted ỹui and ỹwi , respec-

tively in the two instances. Hence, ỹui , ỹwi . Let βu and βw be

the corresponding optimal regression parameters. Without loss of

generality, assume ỹui > ỹwi , and for contradiction, suppose that

xTi β
w ≥ xTi β

u
. Using Lemma 4.1, we get that βu , βw . Because

our strictly convex loss function has a unique minimizer, we have

L(˜yu , βu ) < L(˜yu , βw ) and L(˜yw , βw ) < L(˜yw , βu ). Let us de-
fineCu =

∑
j,i |ỹj − xTj β

u |p +R(βu ) andCw =
∑
j,i |ỹj − xTj β

w |p+

R(βw ), we get

|ỹui − xTi β
u |p + Cu < |ỹui − xTi β

w |p + Cw . (2)

|ỹwi − xTi β
w |p + Cw < |ỹwi − xTi β

u |p + Cu . (3)

Adding Equations (3) and (2), we have:

|ỹui −x
T
i β

u |p + |ỹwi −xTi β
w |p < |ỹui −x

T
i β

w |p + |ỹwi −xTi β
u |p (4)

Note that because we assumed ỹui > ỹwi and xTi β
w ≥ xTi β

u
,

using Lemma 4.2, we get

|ỹui − x ti β
w |p + |ỹwi − x ti β

u |p ≤ |ỹui − x ti β
u |p + |ỹwi − x ti β

w |p ,

which contradicts Equation 4. □

The last lemma demonstrates that (p,R)-regression cannot be

strategyproof. Consider an instance where each strategic agent

i has yi < {0, 1} and these true data points do not all lie on a

hyperplane. Then under honest reporting, not all strategic agents

can be perfectly happy, and any agent i with yi > yi (or yi < yi )
can slightly decrease (or increase) her report to achieve a strictly

more preferred outcome. Next, we show that the best response of

an agent is always unique and continuous in the reports of the

other agents.

Lemma 4.4. For each strategic agent i , the following hold about
the best response function bri .

(1) The best response is unique, i.e., |bri (˜y−i )| = 1 for any reports
˜y−i of the other agents.

(2) bri is a continuous function of ˜y−i .

Proof. We first show uniqueness of the best response. By Lemma

4.3, fi is continious and strictly increasing in ỹi . Consider the mini-

mization problem: argminỹi ∈[0,1] |yi − fi (ỹi ,˜y−i )|
p
, where ˜y−i is

constant. So for now, let us consider fi to be a function of only ỹi .
Since ỹi ∈ [0, 1], it achieves a minimum at a = fi (0) and a maxi-

mum at b = fi (1). If a ≤ b ≤ yi , then the minimum of the problem

is achieved at ỹi = 1. Symmetric case holds for yi ≤ a ≤ b where

minimum is achieved at ỹi = 0. Lastly, ifyi ∈ [a,b], by intermediate

value theorem, ∃ ỹi s.t fi (ỹi ) = yi , which is then the minimum. In

all cases, the minimum is unique since fi is strictly increasing. We

now show that this unique minimum ỹ∗i is indeed the unique best

response. If yi ∈ [a,b] then reporting ỹ∗i makes agent i perfectly

4
A function is proper if the domain on which it is finite is non-empty.

5L∞(0, β ) is known as the horizon function of L.

happy as her outcome matches the peak of her preference, which

is clearly best response. If yi > b, then ỹ∗i = 1 and her outcome

is yi = b. Under any other report, her outcome would be yi ≤ b,
which cannot be more preferred. A symmetric argument holds for

yi < a case.

Now we can use the uniqueness of the best response to argue

its continuity. More specifically, we want to show that bri (˜y−i ) =
argminỹi ∈[0,1] д(ỹi ,˜y−i ) is continuous, where д(ỹi ,˜y−i ) = |yi −

fi (ỹi ,˜y−i )|p is jointly continious due to the continuity of fi . We use

the sequence definition of continuity. Fix a convergent sequence

{˜yn
−i } → ˜y−i . Since there is always a unique minimum, the se-

quence {bri (˜yn−i )} is well-defined. We want to show {bri (˜yn−i )} →
bri (˜y−i ). By the Bolzano-Weirstrass theorem, every bounded se-

quence in R has a convergent sub-sequence. Therefore, this has

a convergent sub-sequence {bri (˜y
nk
−i )} that converges to some θ .

Let bri (˜y−i ) = θ∗. We want to first show θ = θ∗. By the conti-

nuity of д, {д(θ∗,˜ynk
−i )} → д(θ∗,˜y−i ). Also by the minimum, for

every individual element of the subsequence nk , we have that

д(θ∗,˜ynk
−i ) ≥ д(bri (˜y

nk
−i ), ỹ

nk ). Now again by continuity of д, both
the above sequences converge and we have: д(θ∗,˜y−i ) ≥ д(θ ,˜y−i )).
Since θ∗ is the unique minimizer for ˜y−i , we have that θ = θ∗. So,
every convergent sub-sequence of bri (˜yn−i ) converges to bri (˜y−i ).
Since this is a bounded sequence, we have that if {˜yn

−i } → ˜y−i ,
then {bri (˜yn−i )} → bri (˜y−i ). Thus, bri is continuous. □

We remark that part 1 of Lemma 4.4 is a strong result: it es-

tablishes a unique best response for every possible single-peaked

preferences that the agent may have (in fact, our proof shows that

this best response depends only on the peak and not on the full

preferences). This allows us to avoid further assumptions on the

structure of the agent preferences.

Finally, we derive a simple characterization of pure Nash equi-

libria in our setting. We show that under a PNE, each strategic

agent i must be in one of three states: either she is perfectly happy

(yi = yi ), or wants to decrease her outcome (yi > yi ) but is already
reporting ỹi = 0, or wants to increase her outcome (yi < yi ) but is
already reporting ỹi = 1.

Lemma 4.5. ˜yM is a pure Nash Equilibrium if and only if (yi <
yi ∧ ỹi = 1) ∨ (yi > yi ∧ ỹi = 0) ∨ (yi = yi ) holds for all i ∈ M .

Proof. For the ‘if’ direction, we check that in each case, agent

i ∈ M cannot change her report to attain a strictly better outcome.

When yi < yi and ỹi = 1, every other report ỹ′i < ỹi = 1 will result

in an outcome y′i < yi < yi (Lemma 4.3), which the agent prefers

even less. A symmetric argument holds for the yi > yi and ỹi = 0

case. Finally, when yi = yi , the agent is already perfectly happy.

For the ‘only if’ direction, suppose ˜yM is a PNE. Consider agent

i ∈ M . The only way the condition is violated is if yi < yi and
ỹi , 1 or yi > yi and ỹi , 0. In the former case, Lemma 4.3 implies

that for a sufficiently small ϵ > 0, agent i increasing her report to

ỹ′i = 1+ ϵ must result in an outcome y′i ∈ (yi ,yi ], which the agent

strictly prefers over yi . This contradicts the assumption that ˜yM is

a PNE. A symmetric argument holds for the second case. □

Note that Lemma 4.5 immediately implies a naïve but simple

algorithm to find a pure Nash equilibrium. Since ỹi ∈ {0,yi , 1}
for each i , this induces 3m possible ˜yM vectors. For each such
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vector, we can compute the outcome of the mechanismy, and check
whether the conditions of Lemma 4.5 are satisfied. This might lead

one to believe that the strategic game that we study is equivalent

to the finite game induced by the 3
m

possible strategy profiles.

However, this is not true because limiting the strategy set of the

agents can give rise to new equilibria which are not equilibria of the

original game. We give an explicit example illustrating this below.

We further discuss the issue of computing a PNE in Section 5.

Example 1: Finite game leading to different equilibria. We use a

1D facility location example — recall that this is a special case of

linear regression — to illustrate this point. Consider an example

with two agents 1 and 2 with true points y1 = 0.4 and y2 = 0.5,

respectively, whose preferences are such that each agent i strictly
prefers outcome y1 to y2 when |y1 − yi | < |y2 − yi |.

If the agents are allowed to report values in the range [0, 1], then

the unique PNE of the game is agent 1 reporting ỹ1 = 0 and agent

2 reporting ỹ2 = 1, and the PNE outcome is y = 0.5.

Now, consider the version with finite strategy spaces, where

each agent i must report ỹi ∈ {0, 1,yi }. Suppose the agents report
honestly, i.e., ˜y = y = (0.4, 0.5). Then, the outcome is y = 0.45. The

only way agent 1 could possibly improve is by reporting 0, but in

that case the outcome would be y = 0.25, increasing |y − y1 |. A
similar argument holds for agent 2. Hence, honest reporting is a

PNE of the finite game, but not of the original game.

4.2 Analysis of Pure Nash Equilibria
Weare now ready to prove themain results of ourwork.We begin by

showing that a PNE always exists, generalizing the first statement

of Theorem 3.1 from 1D facility allocation to linear regression.

Theorem 4.6. For p > 1 and convex regularizer R, the (p,R)-
regression algorithm admits a pure Nash Equilibrium.

Proof. Consider the mapping T from the reports of strategic

agents to their best responses, i.e., T (ỹ1, . . . , ỹm ) = (br1(˜y−1), . . . ,
brm (˜y−m )). Recall that best responses are unique due to Lemma 4.4.

Also, note that pure Nash equilibria are precisely fixed points of

this mapping.

Brouwer’s fixed point theorem states that any continuous func-

tion from a convex compact set to itself has a fixed point [29]. Note

that T is a function from [0, 1]m to [0, 1]m , and [0, 1]m is a convex

compact set. Further, T is a continuous function since each bri is a

continuous function (Lemma 4.4). Hence, by Brouwer’s fixed point

theorem, T has a fixed point (i.e. pure Nash equilibrium). □

Next, we show that there is a unique pure Nash equilibrium

outcome (i.e. all pure Nash equilibria lead to the same hyperplane

β∗), generalizing the second statement in Theorem 3.1.

Theorem 4.7. For any p > 1 and convex regularizer R, the (p,R)-
regression algorithm has a unique pure Nash equilibrium outcome.

Proof. Assume by contradiction that there are two equilibria ˜y1

and˜y2, which result in distinct outcomes β1 and β1, respectively. By
Lemma 4.5, any agent i with yi > max(y1i ,y

2

i ) or yi < min(y1i ,y
2

i )

must have the same report in both cases. Similarly, any agent i
with y2i < yi < y1i must have ỹ1i = 0 and ỹ2i = 1. A symmetric

case holds for agents i with y1i < yi < y2i . Lastly, any agent i

with yi = y2i < y1i must have ỹ2i ∈ [0, 1] and ỹ1i = 0. Similar

arguments hold for the remaining symmetric cases. In all such

instances, we note that agents change their reports weakly in the

opposite direction to their respective projections. If only one agent

changed, Lemma 4.3 shows that it leads to a contradiction. We rely

on a similar technique to show that multiple agents changing also

leads to a contradiction. Note that the only exception to this are

agents k ∈ B, whose preference lies on both hyperplanes (i.e. on

their intersection).

Let A be the set of points who change their reports weakly in

the opposite direction as their projections, B as defined above, and

S, the remaining agents who either do not change or are honest.

Recall yi = xTi β . Then ∀k ∈ B ,xT
k
β1 = xT

k
β2 and ∀ i ∈ A:(

ỹ1i ≥ ỹ2i ⇒ xTi β
2 ≥ xTi β

1

)
∧

(
ỹ2i ≥ ỹ1i ⇒ xTi β

1 ≥ xTi β
2

)
. (5)

LetC1 =
∑
j ∈S |ỹj − xTj β

1 |p+R(β1) andC2 =
∑
j ∈S |ỹj − xTj β

2 |p

+R(β2). Noting that β1 and β2 uniquely minimize the loss for in-

stances 1 and 2, respectively, and β1 , β2, we have:∑
i ∈A

|ỹ1i − xTi β
1 |p +

∑
k ∈B

|ỹ1k − xT
k
β1 |p + C1

<
∑
i ∈A

|ỹ1i − xTi β
2 |p +

∑
k ∈B

|ỹ1k − xT
k
β2 |p + C2,

and ∑
i ∈A

|ỹ2i − xTi β
2 |p +

∑
k ∈B

|ỹ2k − xT
k
β2 |p + C2

<
∑
i ∈A

|ỹ2i − xTi β
1 |p +

∑
k ∈B

|ỹ2k − xT
k
β1 |p + C1.

Adding two equations above, we have∑
i ∈A

{
|ỹ1i − xTi β

1 |p + |ỹ2i − xTi β
2 |p

}
<∑

i ∈A

{
|ỹ1i − xTi β

2 |p + |ỹ2i − xTi β
1 |p

}
.

(6)

Due to Equation (5), when we apply Lemma 4.2 to each i ∈ A:

|ỹ1i − xTi β
2 |p + |ỹ2i − xTi β

1 |p ≤ |ỹ1i − xTi β
∗
1
|p + |ỹ2i − xTi β

2 |p . (7)

Thus adding this up for all i , we have:∑
i ∈A

{
|ỹ1i − xTi β

2 |p + |ỹ2i − xTi β
1 |p

}
≤∑

i ∈A

{
|ỹ1i − xTi β

1 |p + |ỹ2i − xTi β
2 |p

}
,

(8)

which contradicts Equation (6). □

While the result above illustrates that the PNE outcome is unique,

the equilibrium strategy may not be. This stems from different

sets of reports mapping to the same regression hyperplane. In

the simplest case, consider the ordinary least squares (OLS) with

no regularization, i.e., the (2, 0)-regression, where all n agents are

strategic. Given X ∈ Rd×n
, the OLS produces a linear mapping

from the reports ˜y to the outcomes y given by H˜y = y, where
H = X (XTX )−1XT ∈ Rn×n

is a symmetric idempotent matrix

of rank d (known as the hat matrix). When n > d , H is singular,

leading to infinitely many ˜y which map to the same y. Of course,
they need to still satisfy the conditions of being a PNE (Lemma 4.5).
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For a concrete example, if the n true data points lie on a hyperplane,

any of the infinitely many reports ˜y under which OLS returns this

hyperplane — making all n agents perfectly happy — is a PNE.

Given the linear structure of OLS, one wonders if our results can

be extended to all linear mappings. We say a game is induced by

a linear mapping if a matrix H relates the agents’ outcomes y to

their reports ˜y by the equation H˜y = y. When H is a hat matrix

arising from OLS, Theorems 4.6 and 4.7 show that the induced

game admits a PNE with a unique outcome. Interestingly, it is easy

to show that the proof of Theorem 4.6 (existence of PNE) can be

extended to all matrices H . However, there are matricies for which

the corresponding game has multiple PNE outcomes. We give an

example below. It is an interesting open question to identify the

precise conditions onH for the induced game to satisfy Theorem 4.7

and thus have a unique PNE outcome.

Example 2: Multiple PNE Outcomes in General Linear Mappings.
Consider the following matrix:

H =

[
0.8 −1

−1.2 1

]
Suppose the agents’ preferred values are given by y = (0, 0). Then,

when they report ˜y = (0, 0), the outcome is y = (0, 0). This is

clearly a PNE as both agents are perfectly happy. When they report

˜y = (1, 1), the outcome is y = (−0.2,−0.2). While neither agent

is perfectly happy as the outcome is lower than their preferred

value, neither can increase their outcome because they are already

reporting 1. Hence, this is also a PNE with a different outcome.

4.3 Connection to Strategyproofness
A social choice rule maps true preferences of the agents (y) to a

socially desirable outcome (y or β∗). Strategyproofness is a strong
requirement: when f is strategyproof, honest reporting is a domi-
nant strategy for each agent (i.e., it is an optimal strategy regardless

of the strategies of other agents).We say that rule f is implementable
in dominant strategies if there exists a rule д such that f (y) is a
dominant strategy outcome under д. Although a seemingly weaker

requirement (since for a strategyproof rule f , one can set д = f ),
the classic revelation principle argues otherwise: if f can be im-

plemented in dominant strategies, then directly eliciting agents’

preferences and implementing f must be strategyproof.

A weaker requirement is that f beNash-implementable, i.e., there
exists д such that the Nash equilibrium outcome under д is f (y).6

Generally, not every Nash-implementable rule is strategyproof.

However, in restricted domains, this may not be true. A classic line

of work in economics [11, 21, 32] proves this for “rich” preference

domains. It is easy to check that our domain with single-peaked

preferences does not satisfy their “richness” condition. For single-

peaked preferences, we noted in Section 3 that Yamamura and

Kawasaki [34] proved such a result in 1D facility location for a

family of algorithms with unique PNE outcomes. We extend this

to the more general linear regression setting. At this point, we

make two remarks. First, the result we establish is stronger than

6
This is weaker because for a strategyproof rule f , f (y) is a dominant strategy equi-

librium outcome (and thus also a Nash equilibrium outcome) under f itself.

the revelation principle (albeit in this specific domain) as it “con-

verts” Nash-implementability (rather than the stronger dominant-

strategy-implementability) into strategyproofness. Second, the re-

sult of Yamamura and Kawasaki [34] for 1D facility location relied

on the analytical form of the PNE outcome, so strategyproofness

could be explicitly checked. However, the analytical form of the

PNE outcome is unknown in the linear regression setting, requiring

an indirect argument to establish strategyproofness.

We note that our result actually applies to a even broader set-

ting than linear regression: specifically, it applies to any function

f : [0, 1]m → Rm
which has a unique PNE outcome and satisfies

an additional condition. We believe that this could have further

implications in the theory about implementability of rules, and

may be of independent interest. Lastly, as noted by Chen et al. [9],

strategyproof mechanisms for linear regression are scarce. This

result introduces a new parametric family of strategyproof mecha-

nisms: for given (p,R), the corresponding strategyproof mechanism

outputs the unique PNE outcome of (p,R)-regression.

Theorem 4.8. LetM be a set of agents with |M | =m. Each agent
i holds a private yi ∈ [0, 1]. Let f be a function which elicits agent
reports ˜y ∈ [0, 1]m and returns an outcome y ∈ Rm . Each agent i
has single-peaked preferences over yi with peak at yi . Suppose the
following are satisfied:

(1) For each i ∈ M and each ˜y−i ∈ [0, 1]m−1, yi = fi (ỹi ,˜y−i ) is
continuous and strictly increasing in ỹi .

(2) For each y ∈ [0, 1]m and each T ⊆ M , f has a unique pure
Nash equilibrium outcome when agents in T report honestly
and agents inM \T strategize.

For y ∈ [0, 1]m , let h(y) denote the unique pure Nash equilibrium
outcome under f when all agents strategize. Then, h is strategyproof.

Proof. Let y denote the true peaks of agent preferences. To

show that h is strategyproof, we need to show that each agent i
weakly prefers reporting her true yi to any other y′i , regardless of
the reports y′

−i submitted to h by the other agents. Fix y′
−i . Let

hi denote the outcome of h for agent i . We want to show that

hi (yi ,y′
−i ) ⪰i hi (y

′
i ,y

′
−i ) for all y

′
i ∈ [0, 1].

Note that h(y′i ,y
′
−i ) finds the unique PNE outcome under f in

the hypothetical scenario where the agents’ preferences have peaks

aty′
, as opposed to the real scenario in which the peaks are aty. Let

us define a helper function дi : [0, 1] → R such that дi (λ) returns
the unique PNE outcome for agent i under f , when the report of

agent i is fixed to λ and the other agents strategize according to

their preferences y′
−i and reach equilibrium (this is well-defined

due to condition 2 of the theorem). Note that this is independent

of agent i’s preferences as we fixed her report to λ. Let ̂y−i be an
equilibrium strategy of the other agents in this case. Then, (λ,̂y−i )
is a PNE under f for allm agents with preferences y′

if and only

if agent i is happy with reporting λ. The other agents are already
happy given agent i’s report. Using condition 1 of the theorem and

an argument similar to Lemma 4.5, this is equivalent to

(дi (λ) > y′i ∧ λ = 0) ∨ (дi (λ) < y′i ∧ λ = 1) ∨ (дi (λ) = y
′
i ) (9)

By condition 2 of the theorem, we know that for each y′i ∈

[0, 1], there exists a unique λ∗(y′i ) satisfying Equation (9). Note

that hi (y
′
i ,y

′
−i ) = дi (λ

∗(y′i )). Using this, we can derive three key

properties of the function дi . Let a = дi (0) and b = дi (1).

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

516



• a ≤ b : Assume for contradiction that a > b. Choose y′i ∈

(b,a). Note that λ = 0 implies дi (λ) = a > y′i , which satisfies

the first clause of Equation (9), while λ = 1 implies дi (λ) =
b < y′i , which satisfies the second clause of Equation (9).

Hence, both λ = 0 and λ = 1 satisfy Equation (9), which is a

contradiction, since λ∗ is unique.
• ∀λ ∈ [0, 1], дi (λ) ∈ [a,b] : Assume for contradiction that

there exists λ̂ ∈ [0, 1] such that дi (λ̂) < [a,b]. WLOG, assume

дi (λ̂) = k < a (hence, λ̂ , 0). Choose y′i = k . Note that λ = 0

implies д(λ) = a > k = y′i , which satisfies the first clause

of Equation (9). Similarly, for λ = λ̂, we have дi (λ̂) = k =
y′i , which satisfies the third clause of Equation (9). Hence,

both λ = 0 and λ = λ̂ , 0 satisfy Equation (9), which is a

contradiction.

• дi : [0, 1] → [a,b] is surjective/onto: Assume for contra-

diction that there exists ∃c ∈ (a,b) such that д(λ) , c for
any λ ∈ [0, 1]. Choose y′i = c . Hence, there is no λ satisfying

the third clause in Equation (9). We see that for λ = 0, we

have дi (λ) = a < c , which violates the first clause. Similarly,

for λ = 1, we have дi (λ) = b > c , which violates the second

clause. Hence, there is no λ satisfying Equation (9), which is

again a contradiction.

We are now ready to show that hi (yi ,y′
−i ) = дi (λ

∗(yi )) ⪰i
дi (λ

∗(y′i )) = hi (y
′
i ,y

′
−i ) for ally

′
i ∈ [0, 1]. Ifyi ∈ [a,b], then it is easy

to see that λ∗(yi ) is the unique value which satisfies дi (λ
∗(yi )) = yi

(this exists because дi is onto). That is, in the equilibrium where

agent i reports her true preference, she is perfectly happy. If yi < a,
then it is easy to check that λ∗(yi ) = 0 satisfies Equation (9), and

we have дi (λ
∗(yi )) = a. Since дi (λ

∗(y′i )) ∈ [a,b] for any y′i , she will
not strictly prefer this outcome. A symmetric argument holds for

the yi > b case. This establishes strategyproofness of h. □

Corollary 4.9. Let f denote the (p,R)-regression algorithm with
p > 1 and convex regularizer R. Then, there exists a strategyproof
algorithm h such that ∀y ∈ [0, 1]m and ̂y ∈ NEf (y), f (̂y) = h(y).

Proof. We already established that the (p,R)-regression algo-

rithm satisfies the conditions of Theorem 4.8. Specifically, fi is con-
tinuous and strictly increasing in the report of agent i (Lemma 4.3).

The second condition follows from Theorems 4.6 and 4.7, which

hold irrespective of which agents are strategic and which are honest.

Hence, the result follows immediately from Theorem 4.8. □

4.4 Pure Price of Anarchy
So far, our results in linear regression draw conclusions that are

similar to those in the 1D facility location setting. We proved that

in both cases, a PNE exists, the PNE outcome is unique, and it co-

incides with the outcome of a strategyproof algorithm. However,

there are fundamental differences between the two settings, which

we now highlight. The pure price of anarchy is one such differ-

ence. In the 1D case, we illustrated that the PPoA is Θ(n) when no

regularizer is used (Theorem 3.2). While high, this is still bounded.

In linear regression, we show that the PPoA is unbounded when

no regularizer is used. What if we do use a convex regularizer?

In practice, the regularizer is often multiplied by a real number

λ, denoting the weight given to regularization, which is tuned by

the algorithm designer. We show that for any convex function R,
the PPoA remains unbounded if λR is used as the regularizer for

a large enough λ. This does leave open the question whether the

PPoA might be bounded for some regularizer with a small weight;

we leave this for future work. Informally, the next result shows

that strategic behavior can make the overall system unboundedly

worse-off.

Theorem 4.10. For any p > 1 and convex regularizer R, there
exists λ∗ > 0 such that the PPoA of the (p, λR) regression algorithm
is unbounded for every λ ≥ λ∗. In particular, the PPoA of the (p, 0)-
regression algorithm is unbounded.

Proof. We consider cases depending on whether the regularizer

R is constant or not. Startingwith the latter, whenR is not a constant

function, there exist β1 and β2 such that R(β1) < R(β2). Recall that
the (p, λR)-regression objective is to minimize

∑n
i=1 |ỹi − βT xi |p +

λR(β) given the agent reports ˜y. Choose λ∗ > n. Note that

sup

˜y1,˜y2

����� n∑
i=1

|ỹ1i − βT xi |
p −

n∑
i=1

|ỹ2i − βT xi |
p

�����
≤ sup

˜y1,˜y2

����� n∑
i=1

|ỹ1i − ỹ2i |

����� ≤ n < λ∗.

We show that the PPoA of (p, λR)-regression is unbounded for

all λ ≥ λ∗. Consider an instance with n > d agents whose honest

points all lie on the hyperplane β2. Let̂y denote agent reports under

some PNE. By our choice of λ∗, it follows that
∑n
i=1 |ŷi − βT

1
xi |

p +

λR(β1) <
∑n
i=1 |ŷi − βT

2
xi |

p + λR(β2) regardless of the value of

̂y. Hence, the uniquely optimal hyperplane returned by (p, λR)-
regression is not β2, and therefore has non-zero MSE. In contrast,

the OLS trivially returns β2 and has zero MSE, resulting in un-

bounded PPoA for the (p, λR)-regression.
We now consider the case where R is a constant function. Hence,

it does not affect the minimization objective of (p, λR)-regression.

Thus, without loss of generality, let R = 0. We will be using y
p
i

to denote the projection of the (p, 0)-regression equilibrium plane

at some xi and y
p
for the vector of all projections. We use yOLS

i
to denote the projection at xi of the (2, 0)-regression line using

the honest points and yOLS
for the vector of all such projections.

Thus, PPoA ≥ MSEeq/MSEh , where MSEeq =
∑
i (yi − y

p
i )

2
and

MSEh =
∑
i (yi − yOLS

i )2.

Consider the following example. There are four agents with

reported values (0, 0), ( 1−ϵ
2
, 1), ( 1+ϵ

2
, 0), (1, 1). That is, ˜y = (0, 1−ϵ

2
,

1+ϵ
2
, 1). Let the (p, 0)-regression line for these points pass through

(0,y
p
1
), ( 1−ϵ

2
,y

p
2
), ( 1+ϵ

2
,y

p
3
), (1,y

p
4
). By the symmetry of the problem

this line must also pass through ( 1
2
, 1
2
). For p = 1, we have that

y1 = [0, 1−ϵ
2
, 1+ϵ

2
, 1]. Note that the residuals for points 2 and 3 are

higher than for points 1 and 4, and observe that for p > 1, the (p, 0)-
linear regression algorithm progressively tries to minimize the

larger residuals. One can check that for p > 1,y
p
2
= y1

2
+a = 1−ϵ

2
+a

and y
p
3
= y1

3
− a = 1+ϵ

2
− a for some a > 0. Since all ℓp -regression

lines pass through ( 1
2
, 1
2
), by similar triangles we have that forp > 1,

y
p
1
= y1

1
+ a

ϵ =
a
ϵ . Now if the preferred/true values of the 4 agents

are y = (0,y
p
2
,y

p
3
, 1), the reported values above are a pure Nash

Equilibrium, and the projection values are unique (by Theorem 4.7).
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Note this is regardless of whether agents 1 and 4 are strategic or

honest. As such, we haveMSEeq = 2

( a
ϵ
)
2

.

For MSEh , we use the structure of the OLS hat matrix and the

symmetry of the honest points to derive the following analytic

expression for the residuals (detailed calculations are in the full

version): we obtainMSEeq = 2

[(
aϵ

(1+ϵ 2)

)
2

+
(

a
1+ϵ 2

)
2

]
.

Thus, we have that the PPoA of (p, 0)-regression satisfies:

PPoA ≥
2

( a
ϵ
)
2

2

[(
aϵ

(1+ϵ 2)

)
2

+
(

a
1+ϵ 2

)
2

] = 1

ϵ 2
1

1+ϵ 2
= 1 +

1

ϵ2

As ϵ → 0, the PPoA becomes unbounded. □

5 IMPLEMENTATION AND EXPERIMENTS
While the main goal of this paper is to understand the structure

of pure Nash equilibria under linear regression, one might wonder

whether, given honest inputs, the unique PNE outcome can be com-

puted efficiently. In this section, we briefly examine this, discover

another aspect in which linear regression departs from 1D facility

location, and describe some interesting phenomena regarding the

PPoA of (p,R)-regression mechanisms in practice. We leave detailed

computational and empirical analysis of (p,R)-regression to future

work.

5.1 Computation of Pure Nash Equilibria
In facility location, a fully constructive characterization of strate-

gyproof algorithms is known [25]. This, along with Theorem 3.1

and a formula of Yamamura and Kawasaki [34], allows easy com-

putation of the PNE outcome of any (p,R)-regression; details are in
the full version.

3
However, characterizing strategyproof algorithms

is a challenging open question for the linear regression setting [9].

Thus, while Theorem 4.8 demonstrates that the PNE outcome is

also the outcome of a strategyproof algorithm, it does not allow us

to derive an analytic expression for the unique PNE outcome.

In Section 4.1, we outlined an exponential-time approach that

follows immediately from Lemma 4.5. However, this is impractical

unless there are very few agents. Turning elsewhere, a standard

approach to computing Nash equilibria is through best-response

updates [1, 2, 34]. Specifically, we start from an (arbitrary) profile of

reports by the agents, and in each step, allow an agent not already

playing her best response, to switch to her best response. If this

process terminates, it must do so at a PNE, regardless of initial

conditions. For 1D facility location, it is easy to show that this

terminates at a PNE in finitely many steps; the details are in the full

version. For linear regression, however, we show that the process

need not terminate in finitely many steps even for the most simple

OLS algorithm; the proof is in the full version.

Proposition 5.1. For the OLS (i.e. (2, 0)-regression algorithm),
there exists a family of instances in which no best-response path
starting from honest reporting terminates in finite steps.

However, we emphasize that the example in the proof of Propo-

sition 5.1 is a worst-case example. In practice, best-response update

works quite well for finding the unique PNE outcome quickly; we

use this approach successfully in the experiments described next.

5.2 Experiments
We conduct experiments with both synthetic data and real data

to measure two aspects of strategic manipulation: the number of

best-response updates needed to reach a PNE and the average PPoA

of (p,R)-regression, which we compare against the average PPoA

of the strategyproof LAD (i.e. (1, 0)-regression) algorithm. We focus

on four key parameters: the number of agents n, the dimension

of independent variables d , the norm value p, and the fraction of

agents who are strategic, denoted α =m/n ∈ [0, 1]. We also vary

the norm q, with regards to which the loss is measured in the PPoA

definition. We provide the detailed experimental procedure and

plots in the full version
3
, but summarize our observations below.

With increasing number of agents, the number of best-response

updates required to obtain PNE increases quickly, while the PPoA

decreases quickly. The dependence on the dimension d is more

interesting. For d < n, both the number of best-response update

steps and the PPoA increase with d . Of course, when d = n, the
only PNE is where all agents are perfectly happy, which means

the number of best-response update steps drop suddenly to zero

and the PPoA drops suddenly to 1. Hence, for d < n, there is a

curse of dimensionality, even though d = n is an ideal scenario. The

effect of the norm p minimized by the regression is also interesting.

Recall that we define the PPoA with respect to the MSE, which

corresponds to q-norm for q = 2. With p ∈ (1, 2], intuitively, one

would expect a tradeoff. Mechanisms with p closer to 1 may be less

vulnerable to manipulation than the OLS (p = 2); indeed, p = 1 is

strategyproof. But given the equilibrium reports, the OLS at least

minimizes the MSE, which is the objective underlying the PPoA

definition, in contrast to mechanisms with p < 2. Thus, we find

it surprising that the PPoA increase monotonically with p. This
observation also holds true for other values of q. In particular, the

strategyproof LAD (i.e. (1, 0)-regression) performs no worse than

the PNE of the (p, 0)-regression for any p > 1.

6 DISCUSSION AND FUTUREWORK
We focus on the role of strategic noise in linear regression, where

data sources manipulate their inputs to minimize their own loss.

We established that a popular class of linear regression algorithms

— minimizing the ℓp loss with a convex regularizer — has a unique

pure Nash equilibrium outcome. Our theoretical results show that

in the worst case, strategic behavior can cause a significant loss

of efficiency, but experiments highlight a less pessimistic average

case, which future work can focus on rigorously analyzing.

It is also interesting to ponder the implications of our general

result connecting strategyproof algorithms to the unique PNE of

non-strategyproof algorithms beyond linear regression. Similar

results are known in other domains [11, 21, 32], indicating the

possibility of a more general result. Lastly, the study of strategic

noise in machine learning environments is still in its infancy. We

view our work as not only advancing the state-of-the-art, but also as

a stepping stone to more realistic analysis. For example, future work

can move past assuming that agents have complete information

about others’ strategies — a common assumption in the literature [1,

2, 12] — and consider Bayes-Nash equilibria. Considering different

equilibrium concepts or studying strategic noise in other machine

learning tasks may also prove fruitful.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

518



REFERENCES
[1] Omer Ben-Porat and Moshe Tennenholtz. 2017. Best response regression. In

Advances in Neural Information Processing Systems. 1499–1508.
[2] Omer Ben-Porat and Moshe Tennenholtz. 2019. Regression Equilibrium. In

Proceedings of the 20th ACM Conference on Economics and Computation (EC).
173–191.

[3] Olivier Bousquet, Ulrike von. Luxburg, and Ratsch Gunnar. 2004. Introduction to
Statistical Learning Theory. Springer.

[4] N. H. Bshouty, N. Eiron, and E. Kushilevitz. 2002. PAC Learning with Nasty Noise.

Theoretical Computer Science 288, 2 (2002), 255–275.
[5] Y. Cai, C. Daskalakis, and C. H. Papadimitriou. 2015. Optimum Statistical Es-

timation with Strategic Data Sources. In Proceedings of the 28th Conference on
Computational Learning Theory (COLT). 280–296.

[6] Ioannis Caragiannis, Ariel Procaccia, and Nisarg Shah. 2016. Truthful univariate

estimators. In International Conference on Machine Learning. 127–135.
[7] Felipe Caro, Jérémie Gallien, Miguel Díaz, Javier García, José Manuel Corredoira,

Marcos Montes, José Antonio Ramos, and Juan Correa. 2010. Zara uses operations

research to reengineer its global distribution process. Interfaces 40, 1 (2010), 71–
84.

[8] Yudong Chen, Constantine Caramanis, and Shie Mannor. 2013. Robust sparse

regression under adversarial corruption. In International Conference on Machine
Learning. 774–782.

[9] Yiling Chen, Chara Podimata, Ariel D Procaccia, and Nisarg Shah. 2018. Strat-

egyproof linear regression in high dimensions. In Proceedings of the 2018 ACM
Conference on Economics and Computation. ACM, 9–26.

[10] R. Cummings, S. Ioannidis, and K. Ligett. 2015. Truthful Linear Regression. In

Proceedings of the 28th Conference on Computational Learning Theory (COLT).
448—-483.

[11] Partha Dasgupta, Peter Hammond, and Eric Maskin. 1979. The implementation of

social choice rules: Some general results on incentive compatibility. The Review
of Economic Studies 46, 2 (1979), 185–216.

[12] Ofer Dekel, Felix Fischer, and Ariel D Procaccia. 2010. Incentive compatible

regression learning. J. Comput. System Sci. 76, 8 (2010), 759–777.
[13] Jinshuo Dong, Aaron Roth, Zachary Schutzman, BoWaggoner, and Zhiwei Steven

Wu. 2018. Strategic classification from revealed preferences. In Proceedings of the
2018 ACM Conference on Economics and Computation. 55–70.

[14] Benoît Frénay and Michel Verleysen. 2013. Classification in the presence of label

noise: a survey. IEEE transactions on neural networks and learning systems 25, 5
(2013), 845–869.

[15] S. A. Goldman and R. H. Sloan. 1995. Can PAC Learning Algorithms Tolerate

Random Attribute Noise? Algorithmica 14, 1 (1995), 70–84.
[16] Shixiang Gu and Luca Rigazio. 2014. Towards deep neural network architectures

robust to adversarial examples. arXiv:1412.5068. (2014).

[17] M. Hardt, N. Megiddo, C. H. Papadimitriou, and M. Wootters. 2016. Strategic

Classification. In Proceedings of the 7th Innovations in Theoretical Computer Science
Conference (ITCS). 111–122.

[18] Nicole Immorlica, Adam Tauman Kalai, Brendan Lucier, Ankur Moitra, Andrew

Postlewaite, and Moshe Tennenholtz. 2011. Dueling algorithms. In Proceedings of
the 43rd Annual ACM Symposium on Theory of Computing (STOC). 215–224.

[19] M. Kearns and M. Li. 1993. Learning in the Presence of Malicious Errors. SIAM J.
Comput. 22, 4 (1993), 807–837.

[20] Elias Koutsoupias and Christos Papadimitriou. 1999. Worst-case equilibria. In

Annual Symposium on Theoretical Aspects of Computer Science. Springer, 404–413.
[21] Jean-Jacques Laffont and Eric Maskin. 1982. Nash and dominant strategy imple-

mentation in economic environments. Journal of Mathematical Economics 10, 1
(1982), 17–47.

[22] N. Littlestone. 1988. Learning quickly when irrelevant attributes abound: A new

linear-threshold algorithm. Machine Learning 2 (1988), 285–318.

[23] Yishay Mansour, Aleksandrs Slivkins, and Zhiwei Steven Wu. 2017. Competing

bandits: Learning under competition. arXiv:1702.08533. (2017).

[24] R. Meir, A. D. Procaccia, and J. S. Rosenschein. 2012. Algorithms for Strategyproof

Classification. Artificial Intelligence 186 (2012), 123–156.
[25] Hervé Moulin. 1980. On strategy-proofness and single peakedness. Public Choice

35, 4 (1980), 437–455.

[26] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari.

2013. Learning with noisy labels. In Advances in neural information processing
systems. 1196–1204.

[27] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. 2007. Algo-
rithmic game theory. Cambridge university press.

[28] Javier Perote and Juan Perote-Pena. 2004. Strategy-proof estimators for simple

regression. Mathematical Social Sciences 47, 2 (2004), 153–176.
[29] C.C. Pugh. 2003. Real Mathematical Analysis. Springer New York. https://books.

google.ca/books?id=R_ZetzxFHVwC

[30] Régis Renault and Alain Trannoy. 2005. Protectingminorities through the average

voting rule. Journal of Public Economic Theory 7, 2 (2005), 169–199.

[31] Régis Renault and Alain Trannoy. 2011. Assessing the extent of strategic manip-

ulation: the average vote example. SERIEs 2, 4 (2011), 497–513.
[32] Kevin Roberts. 1979. The characterization of implementable choice rules. Aggre-

gation and revelation of preferences 12, 2 (1979), 321–348.
[33] R Tyrrell Rockafellar and Roger J-B Wets. 2009. Variational analysis. Vol. 317.

Springer Science & Business Media.

[34] Hirofumi Yamamura and Ryo Kawasaki. 2013. Generalized average rules as stable

Nash mechanisms to implement generalized median rules. Social Choice and
Welfare 40, 3 (2013), 815–832.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

519

https://books.google.ca/books?id=R_ZetzxFHVwC
https://books.google.ca/books?id=R_ZetzxFHVwC

	Abstract
	1 Introduction
	1.1 Related Work

	2 Model
	3 Warm-Up: The 1D Case
	4 Linear Regression
	4.1 Properties of the Algorithm, Best Responses, and Pure Nash Equilibria
	4.2 Analysis of Pure Nash Equilibria
	4.3 Connection to Strategyproofness
	4.4 Pure Price of Anarchy

	5 Implementation and Experiments
	5.1 Computation of Pure Nash Equilibria
	5.2 Experiments

	6 Discussion and Future Work
	References



