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ABSTRACT
Zero-sum games have long guided artificial intelligence research,
since they possess both a rich strategy space of best-responses
and a clear evaluation metric. What’s more, competition is a vital
mechanism in many real-world multi-agent systems capable of
generating intelligent innovations: Darwinian evolution, themarket
economy and theAlphaZero algorithm, to name a few. In two-player
zero-sum games, the challenge is usually viewed as finding Nash
equilibrium strategies, safeguarding against exploitation regardless
of the opponent. While this captures the intricacies of chess or Go,
it avoids the notion of cooperation with co-players, a hallmark of
the major transitions leading from unicellular organisms to human
civilization. Beyond two players, alliance formation often confers
an advantage; however this requires trust, namely the promise of
mutual cooperation in the face of incentives to defect. Successful
play therefore requires adaptation to co-players rather than the
pursuit of non-exploitability. Here we argue that a systematic study
of many-player zero-sum games is a crucial element of artificial
intelligence research. Using symmetric zero-sum matrix games, we
demonstrate formally that alliance formationmay be seen as a social
dilemma, and empirically that naïve multi-agent reinforcement
learning therefore fails to form alliances. We introduce a toy model
of economic competition, and show how reinforcement learning
may be augmented with a peer-to-peer contract mechanism to
discover and enforce alliances. Finally, we generalize our agent
model to incorporate temporally-extended contracts, presenting
opportunities for further work.
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1 INTRODUCTION
Minimax foundations. Zero-sum two-player games have long
been a yardstick for progress in artificial intelligence (AI). Ever
since the Minimax theorem [25, 81, 86], researchers has striven for
human-level play in grand challenge games with combinatorial
complexity. Recent years have seen progress in games with in-
creasingly many states: both perfect information (e.g. backgammon
[79], checkers [66], chess, [15], Hex [1] and Go [73]) and imperfect
information (e.g. Poker [53] and Starcraft [85]).

The Minimax theorem [81] states that every finite zero-sum two-
player game has an optimal mixed strategy. Formally, if x and y are
the sets of possiblemixed strategies of the players andA is the payoff
matrix of the game, thenmaxx miny xTAy = miny maxx xTAy = V ,
with V referred to as the value of the game. This property makes
two-player zero-sum games inherently easier to analyze, as there
exist optimal strategies which guarantee each player a certain value,
no matter what their opponent does.

Zero-sum two-player games have three appealing features:
(1) There is an unambiguous measure of algorithm performance,

namely performance against a human expert.
(2) The size of the game tree gives an intuitive measure of com-

plexity, generating a natural difficulty ordering for research.
(3) The minimax and Nash strategies coincide, so in principle

there is no need for a player to adapt to another’s strategy.
Limitations of zero-sum two-player games. The above prop-

erties of two-player zero-sum games makes them relatively easy to
analyze mathematically, but most real-world interactions extend
beyond direct conflict between two individuals. Zero-sum games
are rare. Indeed, the chances of a random two-player two-action
game being epsilon-constant-sum follow a triangular distribution,
as shown empirically in Figure 1. Importantly, this distribution has
low density near ϵ = 0: zero-sum games are even rarer than one
might naïvely expect. Thus, a research programme based around
agent performance in two-player zero-sum games may fail to cap-
ture some important social abilities. More explicitly, property (3)
is problematic: human intelligence is arguably predicated on our
sociality [59], which exactly represents our ability to dynamically
respond to a variety of co-players. Relatedly, natural environments
are rarely purely adversarial; most environments are mixed-motive,
where interactions between individuals comprise a combination of
cooperation and competition. In other words, two-player constant-
sum is a reasonable mathematical starting point for coarse-grained
multi-agent interactions, but to understand the fine detail, we must
move beyond this class of games.
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Figure 1: Two-player games were randomly generated with
payoffs for each player drawn fromU (0, 1). A game is defined
to be epsilon-constant-sum if the sums of both players’ pay-
offs are mutually within ℓ1 distance epsilon of each other.
1000 games were sampled and a histogram plotted.

Approaches to multi-agent cooperation. There are various
ways to move beyond zero-sum two-player interactions. One av-
enue is provided by zero-sum games between two teams of agents,
as done in environments such as soccer [48] or Dota 2 [56]. Here,
each team of agents faces an internal coordination problem. How-
ever, this does not address the limitation of (3) at the level of the
team’s strategy. Moreover, as the teams are fixed, the individuals
face no problem of team formation [3, 31, 63], an important feature
of socio-economic interactions, evinced by the substantial literature
on cooperative game theory; see [23] for a review.

Alternatively, one might consider lifting the zero-sum restriction.
Much recent work in multi-agent reinforcement learning (MARL)
has focussed on social dilemmas with two or more players, e.g.
[26, 29, 34, 44, 45, 58, 87]. These domains challenge learning agents
to adapt and shape the learning of their co-players to achieve co-
ordinated, cooperative outcomes without being exploited. In this
sense, they directly address the limitations of (3). However, the
general-sum case lacks the benefits conferred by properties (1) and
(2). Indeed, there is no canonical metric of multi-agent performance,
which makes comparisons between algorithms particularly difficult.

A third strand of work investigates scenarios in which cooper-
ation is a given. Examples of such multi-agent learning problems
include negotiation [16], coalition formation [2] and communica-
tion, both through a “cheap talk” channel [28, 54] and grounded in
environment actions. These tasks certainly probe the abilities of
agents to co-adapt, for they require intricate coordination. However,
this is achieved at the expense of removing some of the adversar-
ial dynamics. For example, in Hanabi any subset of agents are by
definition incentivized to work together [6].

Finally, back in the two-player zero-sum setting, it is possible to
optimize not for win-rate against an arbitrary opponent, but rather
for maximum winning margin against some fixed background of
exploitable opponents. For instance, in rock-paper-scissors against
an opponent who always plays rock, you should always play paper,
eschewing the mixed Nash. By definition one must adapt to one’s

co-players. Indeed, the identification of learning of robust best-
responses has been extensively studied; see [5, 43, 84, 84] for a range
of applications. Nevertheless, the necessity of choosing background
opponents removes some of the advantages conferred by properties
(1) and (2).

Our contributions. We have three goals. First, to mathemati-
cally define the challenge of forming alliances. Second, to demon-
strate that state-of-the-art reinforcement learning, used to great
effect in two-player zero-sum games, fails to form alliances. Third,
to provide a parsimonious and well-motivated mechanism for the
formation of alliances by RL agents, namely contracts.

We focus on alliance formation inmany-player (> 2-player) zero-
sum games as a relatively understudied arena for AI research. We
examine symmetric zero-sum many-player games, and provide em-
pirical results showing that alliance formation in such games often
yields a social dilemma, thus requiring online adaptation between
co-players. Viewing these games through the prism of reinforce-
ment learning, we empirically show that standard independent re-
inforcement learning agents fail to learn to form alliances. We then
propose a simple protocol that can be used to augment reinforce-
ment learning agents, allowing them to learn peer-to-peer contracts,
thus enabling them to make alliances. We study the impact of this
protocol via a toy model of economic competition, demonstrating
that contract-augment agents outperform the model-free baseline.
Finally, we extend our model to incorporate enforcement by pun-
ishment, demonstrating the potential for our method to scale to
spatially and temporally extended scenarios.

2 PRELIMINARIES
2.1 Related work
We are far from the first to study many-player zero-sum games; see
for instance [13, 41, 55, 57]. Bonnet et al. [11] have recently studied
coalitions in Piglet, although they consider the coalition to be fixed
from the beginning of the game. Our novel contributions come
from studying alliance formation rigorously as a social dilemma,
demonstrating the failure modes of MARL in alliance formation,
and providing a mechanism for the learning of contracts. Despite
much progress in this field, the problem of learning to form lasting,
adaptable alliances without human data remains open.

The cooperative game theory literature provides several methods
for coordinating agents in competitive settings [12, 17]. That line
of work typically focuses on the question of how to share the joint
gains of a team between the team members, in a fair way [4, 10, 52]
or in a way that fosters the stability of the coalition [17, 21, 24,
60]. Such work has also been used as a foundation for building
agents that cooperate and negotiate with humans [36, 39, 51, 61].
In particular, researchers have proposed algorithms for robust team
formation [31, 38, 70, 89] and sharing resources [19, 62, 68]. Our
work builds on these strong foundations, being the first to apply
MARL in this setting, and demonstrating the efficacy of a concrete
protocol that allows MARL agents to form alliances.

Our MARL approach augments agents with the ability to negoti-
ate and form contracts regarding future actions. Many protocols
have been suggested for multi-agent negotiation, as discussed in
various surveys on the topic [39, 40, 62, 68]. Some propose agent
interaction mechanisms [30, 42, 64, 65, 75], whereas others aim to
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characterize the stability of fair outcomes for agents [20, 35, 38, 80].
However, the focus here lies on solution concepts, rather than the
online learning of policies for both acting in the world and devel-
oping social ties with others.

As MARL has become more ubiquitous, so has interest in dy-
namic team formation increased. In two-player settings, the Coco-Q
algorithm achieves social welfare maximizing outcomes on a range
of gridworld games when RL agents are augmented with the ability
to sign binding contracts and make side payments [76]. For many-
agent games, there has been much progress on achieving adhoc
teamwork [77] in fully cooperative tasks, including by modelling
other agents [8], invoking a centralized manager [72] or learning
from past teammates [7]. To our knowledge, no previous work has
studied how alliances may be formed by learning agents equipped
with a contract channel in many-agent zero-sum games.

During review, two complementary works appeared. [37] equips
agents with the ability to negotiate and form contracts as part of a
search algorithm, aligned with yet distinct from our reinforcement
learning approach. [71] defines a framework for reinforcement
learning in N -player games, that can be used to scale up our results,
but does not explicitly tackle alliance formation.

2.2 Multi-agent reinforcement learning
We consider multi-agent reinforcement learning (MARL) in Markov
games [46, 69]. In each game state, agents take actions based on
a (possibly partial) observation of the state space and receive an
individual reward. Agents must learn an appropriate behavior pol-
icy through experience while interacting with one another. We
formalize this as follows. Let M be an n-player partially observ-
able Markov game defined on a finite set of states S. The obser-
vation function O : S × {1, . . . ,n} → Rd specifies each player’s
d-dimensional view on the state space. From each state, each player
may take actions from each of the sets A1, . . . ,An respectively.
As a result of the joint action (a1, . . . ,an ) ∈ A1 × · · · × An the
state changes, following the stochastic transition function T : S ×

A1 × · · · × An → ∆(S), where ∆(S) denotes the set of discrete
probability distributions over S. We denote the observation space
of player i by Oi = {oi | s ∈ S,oi = O(s, i)}. Each player receives
an individual reward denoted by r i : S × A1 × · · · × AN → R for
player i . We denote the joint actions, observations and policies for
all players by ®a, ®o and ®π respectively.

In MARL, each agent learns, independently through its own
experience of the environment, a behavior policy π i : Oi → ∆(Ai ),
which we denote π (ai |oi ). Each agent’s goal is to maximize a long
term γ -discounted payoff,1 namely

V i
®π (s0) = E

(
∞∑
t=0

γ t r i (st , ®at )

)
, (1)

where ®at is a sampled according to the distribution ®πt and st+1 is
sampled according to the distribution T (st , ®at ). In our setup, each
agent comprises a feedforward neural network and a recurrent
module, with individual observations as input, and policy logits
and value estimate as output. We train our agents with a policy
gradient method known as advantage actor-critic (A2C) [78], scaled
up using the IMPALA framework [27]. Details of neural network
1For all of our experiments, γ = 0.99.

configuration and learning hyperparameters are provided alongside
each experiment to aid reproducibility.

3 ALLIANCE DILEMMAS
In this section we formally introduce the notion of an alliance
dilemma, a definition which captures the additional complexity
present in n-player zero-sum games when n > 2.

Intuition. The simplest class of multi-player zero-sum games
are the symmetric 2-action, 3-player repeated matrix games. Par-
ticularly interesting games in this class are those which reduce to
two-player social dilemmas if one of the participants adheres to a
fixed policy. Here, one agent can make the team formation problem
hard for the other two, and may be able to unreasonably generate
winnings, since independent reinforcement learning algorithms in
social dilemmas converge to defecting strategies. In other words,
a appropriately configured “stubborn” agent can force the two dy-
namic agents into a social dilemma, whence MARL finds the worst
collective outcome for them: the Nash.2

Social dilemmas. A two-player matrix game,

R, R S, T
T, S P, P

is called a social dilemma if and only if [18, 49]:
(1) R > P : mutual cooperation is preferred to mutual defection.
(2) R > S : mutual cooperation is preferred to being exploited by

a defector.
(3) either T > R: exploiting a cooperator is preferred over mu-

tual cooperation (greed), or P > S : mutual defection is pre-
ferred over being exploited by a defector (fear).

We say that the social dilemma is strict iff in addition
(4) 2R > T + S : mutual cooperation is preferred over an equal

mix of defection and cooperation.
There is some debate as to the importance of this final condition:
for example, several papers in the experimental literature violate
it [9]. We shall demonstrate that pathological behavior arises in
gradient-based learning even in non-strict social dilemmas. Thus
from the perspective of alliances, the first three conditions should
be considered to be the important ones.

Many-player zero-sum games. An n-player 2-action game is
called zero-sum if and only if for each vector of simultaneous pay-
offs (U1, . . .Un ), the following holds:

∑n
i=1Ui = 0. In other words,

a gain in utility for any one player is exactly balanced by a loss in
utility for the rest. A well-known corollary of this is that every out-
come is Pareto efficient. However, from the perspective a k-player
alliance (k < n) within the zero-sum game, Pareto improvements
are possible. Note that many-player zero-sum is strictly more gen-
eral than the class of pairwise zero-sum games recently studied in
the context of learning [5]. Importantly, we make no restriction on
the payoffs for interactions between strict subsets of players.

Alliance dilemmas. An alliance dilemma in an n-player zero-
sum 2-action matrix game is a social dilemma which arises for a
2If each agent is running a no-regret algorithm then the average of their strategies
converges to a coarse-correlated equilibrium [32]. Empirically, there is much evidence
in the literature to suggest that reinforcement learning does reliably find the Nash in
social dilemma settings, but this is not theoretically guaranteed.
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2-player subset, on the basis of the current policies of their co-
players. Mathematically, denote the action space for player i by
{a0i ,a

1
i } with 1 ≤ i ≤ n. An alliance dilemma is a social dilemma for

players i and j which arises when the game is reduced according to
some fixed policies for the rest of the players πk (a0k ,a

1
k ) for k , i, j .

It is not immediately clear whether such situations are ubiquitous
or rare. In this section we shall show that at least in the atomic
setting described above, alliance dilemmas arise often in randomly
generated games. Moreover, we shall justify the informal statement
that gradient-based learning fails to achieve reasonable outcomes
in the presence of alliance dilemmas, by considering the learning
dynamics in two easily interpretable examples.

3.1 Counting alliance dilemmas
How often can a stubborn agent in symmetric three-player two-
action matrix games generate a social dilemmas for their two op-
ponents? To answer this question we randomly sample 1000 such
games, parameterized by 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 as follows:

Actions Payoffs
(0, 0, 0) ( 13 ,

1
3 ,

1
3 )

(0, 0, 1) (
1−p
2 ,

1−p
2 ,p)

(0, 1, 0) (
1−p
2 ,p,

1−p
2 )

(0, 1, 1) (q,
1−q
2 ,

1−q
2 )

(1, 0, 0) (p,
1−p
2 ,

1−p
2 )

(1, 0, 1) (
1−q
2 ,q,

1−q
2 )

(1, 1, 0) (
1−q
2 ,

1−q
2 ,q)

(1, 1, 1) ( 13 ,
1
3 ,

1
3 )

For each game we consider 11 possibilities for the stubborn
player’s policy, by discretizing the probability of taking action
0 with step size 0.1. For each of these we compute the resulting
matrix game for the remaining players and check the social dilemma
conditions. If these yield a social dilemma, then the original game
is an alliance dilemma, by definition. We find that 54% of games
contain an alliance dilemma, with 12% of these being strict alliance
dilemmas. Figure 2(A) depicts the distribution of these alliance
dilemmas in p-q space. The structure is seen to be the effect of the
linear inequalities in the definition of a social dilemma. Figure 2(B)
demonstrates that alliance dilemmas arise for stubborn policies that
are more deterministic. This stands to reason: the stubborn player
must leach enough of the zero-sum nature of the game to leave a
scenario that calls for cooperation rather than pure competition.

3.2 The failure of gradient-based learning
There are two values of p and q which result in easily playable
games. When p = 1 and q = 0 we obtain the Odd One Out game.
Here, you win outright if and only if your action is distinct from
that of the other two players. Similarly, the combination p = 0 and
q = 1 defines theMatching game. Here, you lose outright if and only
if your action is distinct from that of the other two players. It is easy
to verify that both of these games contain an alliance dilemma. Odd
One Out has a non-strict greed-type dilemma, while Matching has
a strict fear-type dilemma. This classification is intuitively sensible:
the dilemma in Odd One Out is generated by the possibility of
realizing gains, while the dilemma in Matching arises because of
the desire to avoid losses.

Figure 2: The presence of absence of alliance dilemmas in
1000 simulated three-player zero-sum matrix games. (A) Al-
liance dilemmas arise for characteristic values of the param-
eters p and q of the three-player zero-sum game. (B) Alliance
dilemmas become more common as the policy of the stub-
born agent becomes more deterministic.

Despite the simplicity of these games, gradient-based learning
fails to find alliances when pitched against a stubborn agent with
a deterministic policy (see Figure 3). More precisely, in Matching
the optimal solution for agents in an alliance is to match actions,
taking the opposite action from the stubborn agent to gain reward
1
2 each. However, policies initialised anywhere other than these
optimal policies converge to both taking the same action as the
stubborn agent, each getting reward 1

3 . In Odd One Out, the optimal
symmetric alliance solution is to each match the stubborn agent 3

4
of the time, for an average reward of 3

8 .
3 The learning dynamics of

the system tend towards a fixed point in which both agents never
match the stubborn agent, gaining no reward at all. In this game, we
also see that the system is highly sensitive to the initial conditions
or learning rates of the two agents; small differences in the starting
point lead to very different trajectories. We provide a mathematical
derivation in Appendix ?? which illuminates our empirical findings.

Despite the fact that Matching yields a strict social dilemma
while Odd One Out gives a non-strict social dilemma, the learning
dynamics in both cases fail to find the optimal alliances. As we
anticipated above, this suggests that condition (4) in the definition
of social dilemmas is of limited relevance for alliance dilemmas.

3If non-stubborn agents both match the stubborn agent with probability p , their
expected joint return is 2

3p
2 + 2p(1 − p).
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Figure 3: The learning dynamics of two example games. The
lines shown are the trajectories of agents under softmax pol-
icy gradients with the same learning rate. In Matching (A),
both agents learn to match the stubborn agent. In Odd One
Out (B), neither agent learns to match the stubborn agent.

3.3 Gifting: an alliance dilemma
Previously we saw that alliance dilemmas are a ubiquitous feature
of simultaneous-move games, at least in simple examples. We now
demonstrate that the same problems arise in a more complex envi-
ronment. As our definition of alliance dilemma relies on considering
the policy of a given agent as fixed at each point in time, we shift
our focus to sequential-move games, where such analysis is more
natural, by dint of only one player moving at a time.

In the Gifting game (see Figure 4), each player starts with a pile
ofm chips of their own colour (for our experiments,m = 5). On a
player’s turn they must take a chip of their own colour and either
gift it to another player or discard it from the game. The game ends
when no player has any chips of their own color left; that is to say,
after n ×m turns. The winner is the player with the most chips
(of any colour), with k-way draws possible if k players have the
same number of chips. The winners share a payoff of 1 equally, and
all other players receive a payoff of 0. Hence Gifting is a constant-
sum game, which is strategically equivalent to a zero-sum game,
assuming no externalities. Moreover, it admits an interpretation as
a toy model of economic competition based on the distribution of
scarce goods, as we shall see shortly.

That “everyone always discards” is a subgame perfect Nash equi-
librium is true by inspection; i.e. no player has any incentive to
deviate from this policy in any subgame, for doing so would merely

Figure 4: The Gifting game. Each player has taken 1 turn.
Player 0 gifted a blue chip to player 2; player 1 discarded a
yellow chip; player 2 gifted a red chip to player 0.

advantage another player, to their own cost. On the other hand, if
two players can arrange to exchange chips with each other then
they will achieve a two-way rather than a three-way draw. This
is precisely an alliance dilemma: two players can achieve a better
outcome for the alliance should they trust each other, yet each can
gain by persuading the other to gift a chip, then reneging on the
deal. Accordingly, one might expect that MARL fails to converge
to policies that demonstrate such trading behavior.

Results.4 This expectation is borne out by the results in Figure
5(A–C). Agents start out with different amounts of discarding be-
havior based on random initialization, but this rapidly increases.
Accordingly, gifting behavior to agents decreases to zero during
learning. The result is a three-way draw, despite that fact that two
agents that agreed to exchange could do better than this. To demon-
strate this final point, we replace the second player with a bot which
reciprocates the gifting behavior of player 0; see Figure 5(D–F). Un-
der these circumstances, player 0 learns to gift to player 1, leading
to a two-way draw. Player 2 initially learns to discard, but soon this
behavior confers no additional reward, at which point the entropy
regularizer leads to random fluctuation in the actions chosen.

We conclude that reinforcement learning is can adapt, but only if
an institution supporting cooperative behavior exists. MARL cannot
create the reciprocal behavior necessary for alliances ex nihilo.
Inspired by the economics literature, we propose a mechanism
which solves this problem: learning to sign peer-to-peer contracts.

4 CONTRACTS
4.1 Binding contracts
The origin of alliance dilemmas is the greed or fear motivation that
drives MARL towards the Pareto-inefficient Nash equilibrium for
any given 2-player subset.5 Humans are adept at overcoming this
problem, largely on the basis of mutual trust [82]. Much previous

4In each episode, agents are randomly assigned to a seat 1, 2 or 3, so must generalize
over the order of play. Each agent’s neural network comprises an MLP with two layers
of 128 hidden units, followed by an LSTM with 128 hidden units. The policy and
value heads are linear layers on top of the LSTM. We train with backpropagation-
through-time, using an unroll length equal to the length of the episode. Optimization
is carried out using the RMSProp optimizer, with decay 0.99, momentum 0, epsilon
0.001 and learning rate 0.000763. The entropy cost for the policy is 0.001443. We
perform training runs initialized with 10 different random seeds and plot the average
with 95% confidence intervals.
5See the definition of social dilemma in Section 3 for a reminder of these concepts.
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Figure 5: Learning curves for MARL on the Gifting environ-
ment. (A–C) Three independent learners quickly converge
to the subgame perfect Nash of never gifting, resulting in
a three-way draw. (D–F) One of the learners is replaced by a
copy botwhich alwaysmimics the actions of thefirst learner.
The first learner now learns to gift, since this will surely be
reciprocated. The result is a two-way draw. Dependent vari-
ables are as follows. (A) Reward. (B) Discard. (C) Gifting. (D)
Reward. (E) Discard. (F) Gifting.

work has considered how inductive biases, learning rules and train-
ing schemes might generate trust in social dilemmas. Viewing the
problem explicitly as an alliance dilemma yields a new perspective:
namely, what economic mechanisms enable self-interested agents
to form teams? A clear solution comes from contract theory [50].
Binding agreements that cover all eventualities trivialize trust, thus
resolving the alliance dilemma.

Contract mechanism. We propose a mechanism for incorpo-
rating peer-to-peer pairwise complete contracts into MARL. The
core environment is augmented with a contract channel. On each
timestep, each player i must submit a contract offer, which com-
prises a choice of partner j , a suggested action for that partner j , and
an action which i promises to take, or no contract. If two players
offer contracts which are identical, then these become binding; that
is to say, the environment enforces that the promised actions are
taken, by providing a mask for the logits of the relevant agents. At
each step, agents receive an observation of the contracts which were
offered on the last timestep, encoded as a one-hot representation.

Contract-aware MARL. To learn in this contract-augmented
environment, we employ a neural network with two policy heads,
one for the core environment and another for the contract channel.
This network receives the core environment state and the previous
timestep contracts as input. Both heads are trained with the A2C
algorithm based on rewards from the core environment, similarly
to the RIAL algorithm [28]. Therefore agents must learn simulta-
neously how to behave in the environment and how to leverage
binding agreements to coordinate better with peers.

Results.6 We run two experiments to ascertain the performance
benefits for contract-augmented agents. First, we train two contract-
augmented agents and one A2C agent together. Figure 6(A–C)
shows that the two contract-augmented agents (Learners 0 and 1)
are able to achieve a 2-way draw and eliminate the agentwithout the
ability to sign contracts. We then train three contract-augmented
agents together. Figure 6(D) demonstrates the reward dynamics
that result as agents vie to make deals that will enable them to do
better than a 3-way draw. Figure 7 shows that signing contracts
has a significant correlation with accruing more chips in a game,
thus demonstrating that contracting is advantageous.

The benefits of contracting have an interesting economic inter-
pretation. Without contracts, and the benefits of mutual trust they
confer, there is no exchange of chips. In economic terms, the “gross
domestic product” (GDP) is zero. Once agents can sign binding
contracts, goods flow around the system — economic productivity
is stimulated. Of course, we should take these observations with a
large grain of salt, for our model is no more than a toy. Nevertheless,
this does hint that ideas from macro-economics may be a valuable
source of inspiration for MARL algorithms that can coordinate and
cooperate at scale. For instance, our model demonstrates the GDP
benefits of forming corporations of a sufficiently large size k > 1
but also a sufficiently small size k < 3.

4.2 Contracts with temporal extent
As it stands, our contract mechanism requires that contracts are ful-
filled immediately, by invoking a legal actions mask on the agent’s
policy logits. On the other hand, many real-world contracts involve
a promise to undertake some action during a specified future period;
that is to say, contracts have temporal extent. Furthermore, directly
masking an agent’s action is a heavy-handed and invasive way to
enforce that agents obey contractual commitments. By contrast,
human contracts are typically enforced according to contract law
[67]. Indeed, in the language of [33] “whatever else they do, all legal
systems recognize, create, vary and enforce obligations”.

Legal systems stipulate that those who do not fulfil their con-
tractual obligations within a given time period should be punished.
Inspired by this, we generalize our contract mechanism. Contracts
are offered and signed as before. However, once signed, agents have
b timesteps in which to take the promised action. Should an agent
fail to do so, they are considered to have broken the contract, and
receive a negative reward of rc . Once a contract is either fulfilled
or broken, agents are free to sign new contracts.

6The neural network is identical to the baseline experiments, except for the addition
of a linear contract head. The optimizer minimizes the combined loss LRL + αLcontract
where α = 1.801635. We include an entropy regularizer for the contract policy, with
entropy cost 0.000534. Training and evaluation methodology are identical to the
baseline experiments.
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Figure 6: Performance of contract-augmented agents on
Gifting. Data comes from evaluation episodes without a
trembling hand policy. (A–C) Learners 0 and 1 are endowed
with the ability to make contracts, but leaner 2 is not. The
contract augment agents use this ability to consistently
achieve a 2-way draw. (D–F) All learners are endowed with
the ability tomake contracts. (D) Rewards across training be-
come more chaotic, since agents are vying with each other
to sign the contracts to secure a 2-way draw (D). As agents
compete to sign contracts guaranteeing themmore gifts, the
number of discards decreases (E) and the number of con-
tracts signed increases (F). Dependent variables are as fol-
lows. (A) Reward. (B) Discard. (C) Contracts signed. (D) Re-
ward. (E) Discard. (F) Contracts signed.

Trembling hand. Learning to sign punishment-enforced con-
tracts from scratch is tricky. This is because there are two ways
to avoid punishment: either fulfil a contract, or simply refuse to
sign any. Early on in training, when the acting policies are random,
agents will learn that signing contracts is bad, for doing so leads to
negative reward in the future, on average. By the time that the act-
ing policies are sensibly distinguishing moves in different states of
the game, the contract policies will have overfitted to never offering
a contract.

To learn successfully, agents must occasionally be forced to sign
contracts with others. Now, as the acting policies become more
competent, agents learn that contracts can be fulfilled, so do not
always lead to negative reward. As agents increasingly fulfil their

Figure 7: 50 games are rolled out in evaluation (after train-
ing). For each game, we record the total number of chips
accrued (points) and contracts signed by each player. We
present a scatter plot of all 150 such values. Linear regression
shows a significant positive correlation between the signing
of gifting contracts and points accrued during the game.

contractual obligations, they can learn to sign contracts with others.
While such contracts are not binding in the sense of legal actions
within the game, they are effectively binding since agents have
learned to avoid the negative reward associated with breaking a
contract.

We operationalize this requirement by forcing agents to follow
a trembling hand policy for contract offers. Every timestep, the
contract mechanism determines whether there are two agents not
already participating in a contract. The mechanism chooses a ran-
dom contract between the two, and applies a mask to the logits of
the contract policy of each agent. This mask forces each agent to
suggest the chosen contract with a given minimum probability pc .
We also roll out episodes without the trembling hand intervention,
which are not used for learning, but plotted for evaluation purposes.

Results.7 We ran one experiment to ascertain the ability of
agents to learn to form gifting contracts. All agents are contract-
aware and have trembling hand policies while learning. We display
our results in Figure 8. Initially agents learn to discard, and indeed
back this up by signing contract for mutual discarding behavior.
However, after some time agents discover the benefits of signing
gifting contracts. Thereafter, the agents vie with each other to
achieve two-player alliances for greater reward. Interestingly, the
agents do not learn to gift as much as in the binding contracts
case: compare Figure 8(B) and Figure 6(E). This is likely because
contracts are not always perfectly adhered to, so there is a remnant
of the fear and greed that drives discarding behavior.

5 CONCLUSION
In this paper, we have made five key contributions. We (1) for-
malized one of the challenges of many-player zero-sum games by
introducing the notion of an alliance dilemma. We (2) demonstrated

7The neural network is identical to the binding contracts experiment. For the punish-
ment mechanism, we choose b = 6, rc = −1 and pc = 0.5. Training hyperparameters
are as follows: learning rate 0.002738, environment policy entropy cost 0.004006,
contract loss weight 3.371262 and contract entropy cost 0.002278. All other hyperpa-
rameters are unchanged from the previous experiments.
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Figure 8: Punishment-enforced contracts lead to alliance for-
mation in Gifting. (A) Initially agents achieve a 3-way draw,
receiving 1

3 reward each. Later agents learn to form alliances
inwhich two agents get reward 1

2 and the other 0. (B)After an
initial period in which all agents discard, gifting behavior is
learned. (C) Agents first learn to sign mutually non-gifting
contracts (NG-NG), but later discover the benefit of mutu-
ally gifting contracts (G-G). (D) There is a significant positive
correlation between number of contracts signed and points
scored. Dependent variables are as follows. (A) Reward. (B)
Discard. (C) Contracts signed. (D) Number of chips accrued
vs. number of contracts signed.

that these are ubiquitous, and that (3) gradient-based and reinforce-
ment learning fails to resolve them. We introduced (4) an approach
for allowing MARL agents to form dynamic team, by augmenting
the agents with a binding contract channel. These agents learn to use
contracts as a mechanism for trusting a potential alliance partner.
Finally, we (5) generalized our contract mechanism beyond the bind-
ing case, showing that agents learn to sign temporally-extended
contracts enforced through punishment.

Future work. Our model suggests several avenues for further
work. Most obviously, we might consider contracts in an environ-
ment with a larger state space, such a spatially extended gridworld.
Here, agreeing on specific actions to take within an alliance is likely
too granular. The alliance dilemma would emerge on the level of
the meta-game defined by the policies of different players, defining
a sequential alliance dilemma. There are at least two promising
approaches in such a setting. Firstly, we could incorporate a cen-
tralized agent to whose policy agents could defer, should they wish
to enter an alliance. Secondly, we could make contracts about an
abstraction over the state of the environment, rather than about
atomic actions. Further, one might want to include multiple rounds
of contract negotiation per time step of the environment, along the
lines of [88].

More generally, it would be fascinating to discover how a system
of contracts might emerge and persist within multi-agent learning

dynamics without directly imposing mechanisms for enforcement.
Such a pursuit may eventually lead to a valuable feedback loop from
AI to sociology and economics. Relatedly, we might ask how to scale
contracts beyond the bilateral case, given the exponential explosion
of possible alliances with the number of players in the game. Indeed,
real-world institutions sign large numbers of contracts simultane-
ously, each of which may involve several partners. Finally, we note
that our contract mechanism provides a simple grounded “language”
for agent interaction. We hope to draw a stronger connection be-
tween this work and the emergent communication literature in the
future.

Outlook. Many-player zero-sum games are a common feature of
the natural world, from the economic competition of Adam Smith
[74] to Darwin’s theory of evolution [22] which can be viewed as a
zero-sum game for energy [83]. In many-player zero-sum games a
single agent cannot necessarily play a policy which is impervious
to its opponent’s behavior. Rather, to be successful, an algorithm
must influence the joint strategy across many players. In particular,
zero-sum multi-player games introduce the problem of dynamic
team formation and breakup. This problem is remarkably deep,
touching three strands of multi-agent research beyond two-player
zero-sum games:

(1) Emergent teams must coordinate within themselves to ef-
fectively compete in the game, just as in team games like
soccer.

(2) The process of team formation may itself be a social dilemma.
Intuitively, players should form alliances to defeat others;
however, membership of a alliance requires individuals to
contribute to a wider good which is not completely aligned
with their self-interest.

(3) Decisions must be made about which teams to join and leave,
and how to shape the strategy of these teams. Here commu-
nication is vital, analogously to work on negotiation and
contractual team formation.

In Section 1 we identified three appealing features of zero-sum
two-player games. Many-player zero-sum games inherit the ap-
pealing properties (1) and (2) from their two-player counterparts.
However, the restrictive property (3) does not hold, since there is no
general analogue of the minimax theorem beyond 2-player games.8
For example, the minimax-Q algorithm [47] is not applicable, be-
cause it fails to account for dynamic teams. We have demonstrated
that many-player zero-sum games capture intricate, important and
interesting multi-agent dynamics, amenable to formal study with
appropriate definitions. We look forward to future developments
of AI in this fascinating arena of study.
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