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ABSTRACT
In this paper, we consider the following generalization of the sta-

ble matching problem. We are given a set of doctors and a set

of hospitals. In the classical model, each doctor has a strict total

order over the hospitals. On the other hand, in our model, each

doctor has a pairwise preference over the hospitals, which was in-

troduced by Farczadi, Georgiou, and Könemann. Roughly speaking,

in a pairwise preference, transitivity does not necessarily hold, and

a comparison between some hospitals is not relevant to stability.

Furthermore, we generalize capacity constraints on the hospitals to

matroid constraints. Especially, we focus on the situation in which

we are given a master list over the doctors, and the preference list

of each hospital over the doctors is derived from this master list. For

this problem, we give several hardness results and polynomial-time

solvable cases.
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1 INTRODUCTION
The stable matching problem, which was introduced by Gale and

Shapley [10], is one of the most important mathematical models for

real-world assignment problems. The National Resident Matching

Program in the U.S. is a famous real-world matching scheme, which

assigns graduating medical students to hospitals (see, e.g., [33]). In

this problem, there exist two groups of agents, and each agent has a

preference list over the agents on the other side. Then the goal is to

find a stable matching between these groups for the preference lists.

Many generalizations of the stable matching problem have been

studied (see, e.g., [27]). In this paper, we consider the following two

directions of generalization of the stable matching problem.

The first direction is generalization of preference lists. In this

direction, Irving [11] started the study of ties in preference lists.

It is known that if there exist ties in preference lists, then the

situation dramatically changes (see, e.g., [15] and [27, Chapter 3]

for a survey of stable matchings with ties). For the stable matching

problem with ties, Irving [11] proposed three stability concepts,
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which are called weak stability, strong stability, and super-stability.

Irving [11] proved that there always exists a weakly stable matching,

and a weakly stable matching can be found in polynomial time by

slightly modifying the algorithm of Gale and Shapley [10]. However,

a strongly stable matching and a super-stable matching do not

necessarily exist. Farczadi, Georgiou, and Könemann [6] introduced

a more general preference, which is called a pairwise preference

(see also [4] for its motivation). Roughly speaking, in a pairwise

preference, transitivity does not necessarily hold, and a comparison

between some partners is not relevant to stability.

The second direction is generalization of capacity constraints

to matroid constraints. Matroids can represent not only capacity

constraints but also more complex constraints including hierarchi-

cal capacity constraints (see, e.g., [2]). Thus, matroid constraints

are important from not only the theoretical viewpoint but also the

practical viewpoint. Matroid generalizations of the stable match-

ing problem [7–9, 16, 19, 20, 23, 28, 35] and the popular matching

problem [17, 18] have been extensively studied.

In this paper, we consider the stable matching problem with

pairwise preferences and matroid constraints. Especially, we focus

on the situation in which we are given a master list, and the prefer-

ence list of each agent on one side is derived from this master list.

There exist two reasons to consider this situation. First, a master

list is practically useful (see [14]). Second, to the best of our knowl-

edge, the computational complexity of the general version of the

stable matching problem with ties and matroid constraints is open.

However, the stable matching problem with ties, master lists, and

matroid constraints can be solved in polynomial time [17, 20].

Our contributions. Our contributions are summarized as fol-

lows. In this paper, we assume that we are given a set of doctors, a

set of hospitals, and a master list over the doctors (i.e., each doc-

tor has a pairwise preference over the hospitals). In Section 3, we

prove that the decision versions of the weakly stable matching prob-

lem, the super-stable matching problem, and the strongly stable

matching problem are NP-complete. Especially, we prove that the

decision versions of the weakly stable matching problem and the

strongly stable matching problem are NP-complete even if every

hospital is indifferent between every pair of doctors. In Section 4,

we first prove that if every hospital is indifferent between every pair

of doctors, then the super-stable matching problem can be solved in

polynomial time. Furthermore, we prove that if every preference is

asymmetric (see Section 4 for its definition), then the super-stable

matching problem can be solved in polynomial time. In Section 5,

we prove that if every preference is asymmetric, then the strongly

stable matching problem can be solved in polynomial time.

Technical highlights. In the proofs of the NP-completeness of

the problems of checking the existence of a weakly stable matching,
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a super-stable matching, and a strongly stable matching with pair-

wise preferences in [6, Theorem 1] and [4, Theorem 4], preference

lists are not derived from a master list. Thus, our technical highlight

in the proofs of hardness results is how to reduce an NP-complete

problem to an instance with a master list.

Our technical highlight in polynomial-time algorithms can be

described as follows. Our algorithms are based on the results in [17].

In the algorithm proposed in [17] for the strongly stable matching

problem, when some doctor applies, this doctor simply chooses the

hospitals that are not dominated by any other hospital. However,

in our setting, this is not sufficient. We have to carefully select a

subset of the hospitals that are not dominated (see Algorithm 4).

Related work. In the one-to-one setting, Irving [11] proposed

polynomial-time algorithms for finding a super-stable matching

and a strongly stable matching (see also [26]). In the many-to-one

setting, Irving, Manlove, and Scott [12] proposed a polynomial-time

algorithm for finding a super-stable matching, and Irving, Manlove,

and Scott [13] and Kavitha, Mehlhorn, Michail, and Paluch [22]

proposed polynomial-time algorithms for finding a strongly sta-

ble matching. In the many-to-many setting, Scott [34] considered

super-stability, and the papers [3, 24, 25] considered strong stability.

Olaosebikanand and Manlove [29, 30] considered super-stability

and strong stability in the student-project allocation problem.

For the situation in which a master list is given, Irving, Manlove,

and Scott [14] gave simple polynomial-time algorithms for finding a

super-stablematching and a strongly stablematching. O’Malley [31]

gave polynomial-time algorithms for finding a super-stable match-

ing and a strongly stable matching in the many-to-one setting. For

matroid constraints, Kamiyama [17, 20] gave polynomial-time al-

gorithms for finding a super-stable matching and a strongly stable

matching in the many-to-one and many-to-many settings. It should

be noted that Kamiyama [17, 20] considered usual preferences (i.e.,

complete and transitive preference lists).

Farczadi, Georgiou, and Könemann [6] introduced the stable

matching problem with pairwise preferences, and they gave hard-

ness results and a polynomial-time solvable case. Furthermore, in

[1], the authors proved that if both sides can have cycles in the

preference lists, then the problem of determining the existence of

a weakly stable matching is NP-complete. Furthermore, Cseh and

Juhos [4] gave a complete picture of the complexity of the stable

matching problem with pairwise preferences.

2 PRELIMINARIES
For each set 𝑋 and each element 𝑥 , we define 𝑋 + 𝑥 := 𝑋 ∪ {𝑥}
and 𝑋 − 𝑥 := 𝑋 \ {𝑥}. For each positive integer 𝑧, we define [𝑧] :=
{1, 2, . . . , 𝑧}. Define [0] := ∅. A pairM = (𝑈 ,I) of a finite set𝑈 and

a non-empty family I of subsets of𝑈 is called amatroid if for every
pair of subsets 𝐼 , 𝐽 of𝑈 , the following conditions are satisfied.

(I1) If 𝐼 ⊆ 𝐽 and 𝐽 ∈ I, then 𝐼 ∈ I.
(I2) If 𝐼 , 𝐽 ∈ I and |𝐼 | < |𝐽 |, then there exists an element 𝑢 in

𝐽 \ 𝐼 such that 𝐼 + 𝑢 ∈ I.
A member of I is called an independent set of M.

2.1 Problem formulation
In this paper, we are given a finite simple (not necessarily complete)

bipartite graph 𝐺 = (𝑉 , 𝐸) such that 𝑉 is partitioned into subsets

𝐷 and 𝐻 , and each edge in 𝐸 connects a vertex in 𝐷 and a vertex in

𝐻 . We call a vertex in 𝐷 (resp., 𝐻 ) a doctor (resp., hospital). If there
exists an edge in 𝐸 that connects a doctor 𝑑 in 𝐷 and a hospital ℎ

in 𝐻 , then we denote by (𝑑,ℎ) this edge. In this paper, we assume

that |𝐷 | ≤ |𝐸 | and |𝐻 | ≤ |𝐸 |. For each subset 𝐹 of 𝐸 and each doctor

𝑑 in 𝐷 (resp., hospital ℎ in 𝐻 ), we denote by 𝐹 (𝑑) (resp., 𝐹 (ℎ)) the
set of edges (𝑑 ′, ℎ′) in 𝐹 such that 𝑑 ′ = 𝑑 (resp., ℎ′ = ℎ). We are

given a complete (i.e., for every pair of doctors 𝑑, 𝑑 ′, at least one
of 𝑑 ≿𝐻 𝑑 ′ and 𝑑 ′ ≿𝐻 𝑑 holds) and transitive binary relation ≿𝐻
on 𝐷 . For each pair of doctors 𝑑,𝑑 ′ in 𝐷 , we write 𝑑 ≻𝐻 𝑑 ′ (resp.,
𝑑 ∼𝐻 𝑑 ′) if 𝑑 ≿𝐻 𝑑 ′ and 𝑑 ′ �𝐻 𝑑 (resp., 𝑑 ≿𝐻 𝑑 ′ and 𝑑 ′ ≿𝐻 𝑑). For

each doctor 𝑑 in 𝐷 , we are given a subset 𝑅𝑑 of 𝐸 (𝑑) × 𝐸 (𝑑) that
does not contain (𝑒, 𝑒) for any edge 𝑒 in 𝐸 (𝑑). Assume that we are

given a doctor 𝑑 in 𝐷 and a pair of edges 𝑒, 𝑓 in 𝐸 (𝑑).
• If (𝑒, 𝑓 ) ∈ 𝑅𝑑 and (𝑓 , 𝑒) ∉ 𝑅𝑑 , then we write 𝑒 ≻𝑑 𝑓 .
• If (𝑒, 𝑓 ) ∉ 𝑅𝑑 and (𝑓 , 𝑒) ∉ 𝑅𝑑 , then we write 𝑒 ∼𝑑 𝑓 .
• If (𝑒, 𝑓 ) ∈ 𝑅𝑑 and (𝑓 , 𝑒) ∈ 𝑅𝑑 , then we write 𝑒 ∥𝑑 𝑓 .

Notice that if 𝑒 ≻𝑑 𝑓 , then 𝑓 ⊁𝑑 𝑒 . Furthermore, if 𝑒 ∼𝑑 𝑓 (resp.,

𝑒 ∥𝑑 𝑓 ), then 𝑓 ∼𝑑 𝑒 (resp., 𝑓 ∥𝑑 𝑒). For each doctor 𝑑 in 𝐷 and each

pair of edges 𝑒, 𝑓 in 𝐸 (𝑑), we write 𝑒 ≿𝑑 𝑓 if at least one of 𝑒 ≻𝑑 𝑓
and 𝑒 ∼𝑑 𝑓 holds. Intuitively speaking, 𝑒 ≻𝑑 𝑓 means that 𝑑 strictly

prefers 𝑒 to 𝑓 (i.e., there exists a strong incentive to move from 𝑓

to 𝑒), 𝑒 ∼𝑑 𝑓 means that 𝑑 does not know the relation between 𝑒

and 𝑓 yet (i.e., there exists a weak incentive to move between 𝑒 and

𝑓 ), and 𝑒 ∥𝑑 𝑓 means that 𝑒 and 𝑓 are equally good for 𝑑 (i.e., there

does not exist an incentive to move between 𝑒 and 𝑓 ). See also [4].

Lastly, we are given a matroid N = (𝐸,J) such that for every edge

𝑒 in 𝐸, {𝑒} ∈ N. For example, N can represent capacity constraints

on 𝐻 (see Section 3). We assume that for every subset 𝐼 of 𝐸, we

can determine whether 𝐼 ∈ J in time bounded by a polynomial in

the size of 𝐺 . That is, in this paper, we consider the oracle model.

We denote by EO the time required to determine whether 𝐼 ∈ J
for each subset 𝐼 of 𝐸. In this paper, we assume that EO ≥ |𝐸 |.

A subset𝑀 of 𝐸 is called a matching in 𝐺 if

(M1) |𝑀 (𝑑) | ≤ 1 for every doctor 𝑑 in 𝐷 , and

(M2) 𝑀 ∈ J .

For each matching𝑀 in𝐺 and each doctor 𝑑 in 𝐷 such that𝑀 (𝑑) ≠
∅, we denote by 𝜇𝑀 (𝑑) the unique edge in𝑀 (𝑑).

Assume that we are given a matching 𝑀 in 𝐺 and an edge 𝑒 =

(𝑑, ℎ) in 𝐸 \𝑀 . We say that 𝑑 weakly (resp., strongly) prefers 𝑒 on
𝑀 if one of the following conditions is satisfied.

(D1) 𝑀 (𝑑) = ∅.
(D2) 𝑀 (𝑑) ≠ ∅ and 𝑒 ≿𝑑 𝜇𝑀 (𝑑) (resp., 𝑒 ≻𝑑 𝜇𝑀 (𝑑)).
Furthermore, we say that 𝐻 weakly (resp., strongly) prefers 𝑒 on𝑀
if one of the following conditions is satisfied.

(H1) 𝑀 + 𝑒 ∈ J .

(H2) 𝑀 + 𝑒 ∉ J , and there exists an edge 𝑓 = (𝑑 ′, ℎ′) in𝑀 such

that 𝑑 ≿𝐻 𝑑 ′ (resp., 𝑑 ≻𝐻 𝑑 ′) and𝑀 + 𝑒 − 𝑓 ∈ J .

A matching𝑀 in𝐺 is said to be weakly stable if there does not exist
an edge 𝑒 = (𝑑,ℎ) in 𝐸 \𝑀 such that 𝑑 and𝐻 strongly prefer 𝑒 on𝑀 .

A matching𝑀 in 𝐺 is said to be super-stable if there does not exist
an edge 𝑒 = (𝑑, ℎ) in 𝐸 \𝑀 such that 𝑑 and 𝐻 weakly prefer 𝑒 on

𝑀 . A matching𝑀 in𝐺 is said to be strongly stable if there does not
exist an edge 𝑒 = (𝑑, ℎ) in 𝐸 \𝑀 such that 𝑑 and 𝐻 weakly prefer 𝑒

on 𝑀 , and at least one of 𝑑 and 𝐻 strongly prefers 𝑒 on 𝑀 . In the
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problem Weakly Stable Matching, we first solve the decision

version of Weakly Stable Matching, which is defined below, and

if a weakly stable matching in𝐺 exists, then we find a weakly stable

matching in𝐺 . The decision version of Weakly Stable Matching

is the problem of determining whether there exists a weakly stable

matching in𝐺 . Similarly, the problems Super-Stable Matching

and Strongly Stable Matching are defined.

Since ≿𝐻 is transitive, it is not difficult to see that there exists a

unique positive integer 𝑘 such that we can partition 𝐷 into the non-

empty subsets 𝐷1, 𝐷2, . . . , 𝐷𝑘 satisfying the following conditions.

• For every integer 𝑖 in [𝑘] and every pair of doctors 𝑑,𝑑 ′ in
𝐷𝑖 , we have 𝑑 ∼𝐻 𝑑 ′.

• For every pair of integers 𝑖, 𝑗 in [𝑘] such that 𝑖 < 𝑗 and every

pair of doctors 𝑑 in 𝐷𝑖 and 𝑑
′
in 𝐷 𝑗 , we have 𝑑 ≻𝐻 𝑑 ′.

We can find such a partition in 𝑂 ( |𝐸 |2) time. For each integer 𝑖 in

[𝑘], we define 𝐷 [𝑖] := ⋃𝑖
𝑗=1 𝐷 𝑗 . Define 𝐷 [0] := ∅.

Assume that we are given a subset 𝐹 of 𝐸. Define U(𝐹 ) as the
family of subsets 𝐹 ′ of 𝐹 such that |𝐹 ′(𝑑) | ≤ 1 for every doctor 𝑑

in 𝐷 . Define the matroid U(𝐹 ) by U(𝐹 ) := (𝐹,U(𝐹 )).

2.2 Basics of matroids
Assume that we are given a matroidM = (𝑈 ,I). Then a subset 𝐶

of 𝑈 is called a circuit of M if 𝐶 is not an independent set of M, but

every proper subset of 𝐶 is an independent set of M.

Lemma 2.1 (See, e.g., [32, Lemma 1.1.3]). Assume that we are
given a matroidM = (𝑈 ,I). Then for every pair of distinct circuits
𝐶1,𝐶2 of M such that 𝐶1 ∩𝐶2 ≠ ∅ and every element 𝑢 in 𝐶1 ∩𝐶2,
there exists a circuit 𝐶 of M such that 𝐶 ⊆ (𝐶1 ∪𝐶2) \ {𝑢}.

Assume that we are given a matroidM = (𝑈 ,I) and an indepen-

dent set 𝐼 ofM. It is not difficult to see that for every element 𝑢 in

𝑈 \ 𝐼 such that 𝐼 +𝑢 ∉ I, 𝐼 +𝑢 contains a circuit ofM as a subset, and

(I1) implies that 𝑢 belongs to this circuit. Furthermore, Lemma 2.1

implies that such a circuit is uniquely determined. We call this

circuit the fundamental circuit of 𝑢 for 𝐼 andM, and we denote by

CM (𝑢, 𝐼 ) this circuit. It is well known (see, e.g., [32, p.20, Exercise 5])
that for every element 𝑢 in𝑈 \ 𝐼 such that 𝐼 +𝑢 ∉ I, CM (𝑢, 𝐼 ) is the
set of elements 𝑢 ′ in 𝐼 +𝑢 such that 𝐼 +𝑢 −𝑢 ′ ∈ I. For each element

𝑢 in 𝑈 \ 𝐼 such that 𝐼 + 𝑢 ∉ I, we define DM (𝑢, 𝐼 ) := CM (𝑢, 𝐼 ) − 𝑢.
Then for each matching𝑀 in 𝐺 and each edge 𝑒 = (𝑑,ℎ) in 𝐸 \𝑀
such that𝑀 + 𝑒 ∉ J , (H2) can be restated as follows. There exists

an edge (𝑑 ′, ℎ′) in DN (𝑒,𝑀) such that 𝑑 ≿𝐻 𝑑 ′ (resp., 𝑑 ≻𝐻 𝑑 ′).
We can easily prove the following lemma by using Lemma 2.1.

Lemma 2.2. Assume that we are given a matroid M = (𝑈 ,I),
independent sets 𝐼 , 𝐽 of M such that 𝐼 ⊆ 𝐽 , and an element 𝑢 in𝑈 \ 𝐽
such that 𝐼 + 𝑢 ∉ I. Then 𝐽 + 𝑢 ∉ I and CM (𝑢, 𝐼 ) = CM (𝑢, 𝐽 ).

Lemma 2.3 (See, e.g., [17, Lemma 2]). Assume that we are given a
matroid M = (𝑈 ,I), circuits 𝐶,𝐶1,𝐶2, . . . ,𝐶𝑥 of M, and distinct ele-
ments 𝑢1, 𝑢2, . . . , 𝑢𝑥 in𝑈 . Furthermore, we assume that the following
conditions are satisfied.

• 𝑢𝑖 ∈ 𝐶 ∩𝐶𝑖 holds for every integer 𝑖 in [𝑥].
• 𝑢𝑖1 ∉ 𝐶𝑖2 holds for every pair of distinct integers 𝑖1, 𝑖2 in [𝑥].
• 𝐶 \ (⋃𝑥

𝑖=1𝐶𝑖 ) ≠ ∅.
Then there exists a circuit 𝐶 ′ of M such that 𝐶 ′ ⊆ (𝐶 ∪ (⋃𝑥

𝑖=1𝐶𝑖 )) \
{𝑢1, 𝑢2, . . . , 𝑢𝑥 }.

Assume that we are given a matroidM = (𝑈 ,I). Then a maximal

independent set ofM is called a base ofM. Notice that the condition

(I2) implies that all the bases of M have the same size. For each

subset 𝑋 of 𝑈 , we define I|𝑋 as the family of subsets 𝐼 of 𝑋 such

that 𝐼 ∈ I, and we define M|𝑋 := (𝑋,I|𝑋 ). It is known [32, p.20]

that for every subset 𝑋 of𝑈 ,M|𝑋 is a matroid. For each subset 𝑋

of 𝑈 , we define rM (𝑋 ) as the size of a base of M|𝑋 . Furthermore,

for each pair of disjoint subsets 𝑋, 𝐼 of 𝑈 , we define p(𝐼 ;𝑋 ) as
rM (𝐼 ∪ 𝑋 ) − rM (𝑋 ). For each subset 𝑋 of 𝑈 , we define I/𝑋 as the

family of subsets 𝐼 of 𝑈 \ 𝑋 such that p(𝐼 ;𝑋 ) = |𝐼 |, and we define

M/𝑋 := (𝑈 \ 𝑋,I/𝑋 ). It is known [32, Proposition 3.1.6] that for

every subset 𝑋 of𝑈 ,M/𝑋 is a matroid.

Lemma 2.4 (See, e.g., [32, Proposition 3.1.25]). Assume that
we are given a matroid M = (𝑈 ,I). Then for every pair of disjoint
subsets 𝑋,𝑌 of𝑈 , (M/𝑋 ) |𝑌 = (M| (𝑋 ∪ 𝑌 ))/𝑋 .

Lemma 2.5 (See, e.g., [32, Proposition 3.1.7]). Assume that we
are given a matroid M = (𝑈 ,I), a subset 𝑋 of 𝑈 , and a base 𝐵 of
M|𝑋 . For every subset 𝐼 of𝑈 \𝑋 , 𝐼 is an independent set (resp., a base)
of M/𝑋 if and only if 𝐼 ∪ 𝐵 is an independent set (resp., a base) of M.

Assume that we are given two matroids M1 = (𝑈 ,I1) and M2 =

(𝑈 ,I2). A subset 𝐼 of𝑈 is called a common independent set ofM1 and

M2 if 𝐼 ∈ I1 ∩ I2. If we can determine whether 𝐼 ∈ I1 ∩ I2 in time

bounded by a polynomial in |𝑈 | for every subset 𝐼 of 𝑈 , then we

can find a maximum-size common independent set ofM1 andM2

in time bounded by a polynomial in |𝑈 |. For example, if we use the

algorithm proposed in [5], we can find a maximum-size common

independent set of M1 and M2 in 𝑂 ( |𝑈 |2.5EO′) time, where EO′

represents the time required to determine whether 𝐼 ∈ I𝑖 for each
subset 𝐼 of𝑈 and each integer 𝑖 in {1, 2}.

3 HARDNESS RESULTS
The goal of this section is to prove that the decision versions of

our problems are NP-complete by reduction from Vertex Cover.

In Vertex Cover, we are given a finite simple undirected graph

𝑄 = (𝑁, 𝐿) such that 𝑁 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and 𝐿 = {𝑒1, 𝑒2, . . . , 𝑒𝑚},
where we define 𝑛 := |𝑁 | and 𝑚 := |𝐿 |. We are given a positive

integer𝑤 such that𝑤 ≤ 𝑛. If there exists an edge in 𝐿 connecting

vertices 𝑣𝑖 and 𝑣 𝑗 in 𝑁 , then we denote by 𝑣𝑖𝑣 𝑗 this edge. For each

subset 𝐶 of 𝑁 , we call 𝐶 a vertex cover in 𝑄 if |{𝑢, 𝑣} ∩𝐶 | ≥ 1 for

every edge 𝑢𝑣 in 𝐿. Then the goal of Vertex Cover is to determine

whether there exists a vertex cover 𝐶 in 𝑄 such that |𝐶 | ≤ 𝑤 . It is
known [21] that Vertex Cover is NP-complete. We prove that the

decision versions of Weakly Stable Matching with Capacities,

Super-Stable Matching with Capacities, and Strongly Stable

Matching with Capacities, which are defined below, are NP-
complete. In these problems, we are given a positive integer 𝑐 (ℎ)
for each hospital ℎ in 𝐻 , and J is defined as the family of subsets 𝐼

of 𝐸 such that |𝐼 (ℎ) | ≤ 𝑐 (ℎ) for every hospital ℎ in 𝐻 .

Theorem 3.1. The decision version of Strongly Stable Match-

ing with Capacities is NP-complete even if 𝑘 = 1.

Proof. Clearly, the decision version of Strongly StableMatch-

ing with Capacities is in NP. Assume that we are given an in-

stance (i.e., 𝑄 and𝑤 ) of Vertex Cover. We construct an instance

of Strongly Stable Matching with Capacities as follows (see
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Figure 1). For each vertex 𝑣𝑖 in 𝑁 , 𝐷 contains a vertex 𝑎𝑖 . For each

edge 𝑒𝑖 in 𝐿, 𝐷 contains a vertex 𝑧𝑖 . For each integer 𝑖 in [𝑛 −𝑤],
𝐷 contains a vertex 𝑏𝑖 . For each vertex 𝑣𝑖 in 𝑁 , 𝐻 contains a vertex

𝑝𝑖 . For each edge 𝑒𝑖 = 𝑣 𝑗1𝑣 𝑗2 in 𝐿, 𝐻 contains vertices 𝑞𝑖, 𝑗1 and

𝑞𝑖, 𝑗2 . Furthermore, 𝐻 contains vertices 𝑠, 𝑟1, 𝑟2, . . . , 𝑟𝑛−𝑤 . For each
vertex 𝑣𝑖 in 𝑁 , 𝐸 contains edges (𝑎𝑖 , 𝑝𝑖 ) and (𝑎𝑖 , 𝑠). For each edge

𝑒𝑖 = 𝑣 𝑗1𝑣 𝑗2 in 𝐿 and each integer 𝑗 in { 𝑗1, 𝑗2}, 𝐸 contains edges

(𝑧𝑖 , 𝑝 𝑗 ) and (𝑧𝑖 , 𝑞𝑖, 𝑗 ). For each integer 𝑖 in [𝑛−𝑤], 𝐸 contains edges

(𝑏𝑖 , 𝑟𝑖 ) and (𝑏𝑖 , 𝑠). The capacity of each hospital is defined as fol-

lows. For each vertex 𝑣𝑖 in 𝑁 , we define 𝑐 (𝑝𝑖 ) := 1. For each edge

𝑒𝑖 = 𝑣 𝑗1𝑣 𝑗2 in 𝐿 and each integer 𝑗 in { 𝑗1, 𝑗2}, we define 𝑐 (𝑞𝑖, 𝑗 ) := 1.

Define 𝑐 (𝑠) := 𝑛 −𝑤 . Furthermore, for each integer 𝑖 in [𝑛 −𝑤], we
define 𝑐 (𝑟𝑖 ) := 1. The preferences are defined as follows.

(A1) For each vertex 𝑣𝑖 in 𝑁 , (𝑎𝑖 , 𝑝𝑖 ) ∥𝑎𝑖 (𝑎𝑖 , 𝑠).
(A2) For each edge 𝑒𝑖 = 𝑣 𝑗1𝑣 𝑗2 in 𝐿,

– (𝑧𝑖 , 𝑞𝑖, 𝑗1 ) ∼𝑧𝑖 (𝑧𝑖 , 𝑝 𝑗1 ), (𝑧𝑖 , 𝑞𝑖, 𝑗2 ) ∼𝑧𝑖 (𝑧𝑖 , 𝑝 𝑗2 ),
– (𝑧𝑖 , 𝑞𝑖, 𝑗1 ) ∥𝑧𝑖 (𝑧𝑖 , 𝑝 𝑗2 ), (𝑧𝑖 , 𝑞𝑖, 𝑗2 ) ∥𝑧𝑖 (𝑧𝑖 , 𝑝 𝑗1 ), and
– (𝑧𝑖 , 𝑞𝑖, 𝑗1 ) ∥𝑧𝑖 (𝑧𝑖 , 𝑞𝑖, 𝑗2 ), (𝑧𝑖 , 𝑝 𝑗1 ) ∥𝑧𝑖 (𝑧𝑖 , 𝑝 𝑗2 ).

(A3) For each integer 𝑖 in [𝑛 −𝑤], (𝑏𝑖 , 𝑠) ∼𝑏𝑖 (𝑏𝑖 , 𝑟𝑖 ).
(A4) For each pair of doctors 𝑑, 𝑑 ′ in 𝐷 , 𝑑 ∼𝐻 𝑑 ′.

Notice that we can construct this instance in polynomial time.

v1 v2

v3

e1

e2e3

(a)

a1 a2 a3

p1 p2 p3

z1q1,1 q1,2 z2q2,2 q2,3 z3q3,1 q3,3

s

b1r1

(b)

Figure 1: (a) An instance of Vertex Cover such that𝑤 = 2. (b)
The graph obtained from the instance in (a). The bold edges
represent the matching obtained from a solution {𝑣1, 𝑣2} of
Vertex Cover.

First, we assume that there exists a vertex cover𝐶 in𝑄 such that

|𝐶 | ≤ 𝑤 . Without loss of generality, we can assume that |𝐶 | = 𝑤 by

adding vertices. We construct a matching 𝑀 in 𝐺 as follows. For

each vertex 𝑣𝑖 in 𝐶 ,𝑀 contains the edge (𝑎𝑖 , 𝑝𝑖 ). For each vertex 𝑣𝑖
in 𝑁 \𝐶 ,𝑀 contains the edge (𝑎𝑖 , 𝑠). Furthermore, for each integer

𝑖 in [𝑛 −𝑤],𝑀 contains the edge (𝑏𝑖 , 𝑟𝑖 ). For each edge 𝑒𝑖 = 𝑣 𝑗1𝑣 𝑗2
in 𝐿, 𝑀 contains the edge (𝑧𝑖 , 𝑞𝑖, 𝑗 ) for exactly one vertex 𝑣 𝑗 in

{𝑣 𝑗1 , 𝑣 𝑗2 } ∩𝐶 . (Recall that |{𝑣 𝑗1 , 𝑣 𝑗2 } ∩𝐶 | ≥ 1.)

What remains is to prove that𝑀 is a strongly stable matching

in 𝐺 . Since |𝑀 (𝑠) | = 𝑛 −𝑤 , 𝑀 is a matching in 𝐺 . Next, we prove

that 𝑀 is strongly stable. For every edge (𝑎𝑖 , 𝑝𝑖 ) in 𝐸 \ 𝑀 , since

(𝑎𝑖 , 𝑠) ∈ 𝑀 , (A1) implies that 𝑎𝑖 does not weakly prefer (𝑎𝑖 , 𝑝𝑖 ) on
𝑀 . For every edge (𝑎𝑖 , 𝑠) in 𝐸 \𝑀 , since (𝑎𝑖 , 𝑝𝑖 ) ∈ 𝑀 , (A1) implies

that 𝑎𝑖 does not weakly prefer (𝑎𝑖 , 𝑠) on 𝑀 . Let 𝑒𝑖 = 𝑣 𝑗1𝑣 𝑗2 be an

edge in 𝐿. Assume that (𝑧𝑖 , 𝑞𝑖, 𝑗 ) ∈ 𝑀 for a vertex 𝑣 𝑗 in {𝑣 𝑗1 , 𝑣 𝑗2 }∩𝐶 .
Then (A2) implies that it is sufficient to consider the edge (𝑧𝑖 , 𝑝 𝑗 )
in 𝐸 \𝑀 . First, (A2) implies that 𝑧𝑖 does not strongly prefer (𝑧𝑖 , 𝑝 𝑗 )

on 𝑀 . Furthermore, since (𝑎 𝑗 , 𝑝 𝑗 ) ∈ 𝑀 and 𝑎 𝑗 ∼𝐻 𝑧𝑖 , 𝐻 does not

strongly prefer (𝑧𝑖 , 𝑝 𝑗 ) on𝑀 . Lastly, for every integer 𝑖 in [𝑛 −𝑤],
since |𝑀 (𝑠) | = 𝑛 −𝑤 , 𝐻 does not strongly prefer (𝑏𝑖 , 𝑠) on𝑀 . For

every integer 𝑖 in [𝑛 −𝑤], since (𝑏𝑖 , 𝑟𝑖 ) ∈ 𝑀 , (A3) implies that 𝑏𝑖
does not strongly prefer (𝑏𝑖 , 𝑠) on𝑀 . These observations imply that

𝑀 is strongly stable.

Next, we assume that we are given a strongly stable matching𝑀

in 𝐺 . Define 𝐶 as the set of vertices 𝑣𝑖 in 𝑁 such that (𝑎𝑖 , 𝑝𝑖 ) ∈ 𝑀 .

Claim 1. |𝑀 (𝑠) | = 𝑐 (𝑠). Furthermore,𝑀 does not contain (𝑏𝑖 , 𝑠)
for any integer 𝑖 in [𝑛 −𝑤].

Proof. Assume that |𝑀 (𝑠) | < 𝑐 (𝑠). Then there exists an integer

𝑖 in [𝑛−𝑤] such that (𝑏𝑖 , 𝑠) ∉ 𝑀 (𝑠). Thus,𝐻 strongly prefers (𝑏𝑖 , 𝑠)
on𝑀 . Furthermore, 𝑏𝑖 weakly prefers (𝑏𝑖 , 𝑠) on𝑀 . This contradicts

the fact that𝑀 is strongly stable.

Assume that there exists an integer 𝑖 in [𝑛−𝑤] such that (𝑏𝑖 , 𝑠) ∈
𝑀 . In this case, 𝐻 strongly prefers (𝑏𝑖 , 𝑟𝑖 ) on 𝑀 . Furthermore, 𝑏𝑖
weakly prefers (𝑏𝑖 , 𝑟𝑖 ) on 𝑀 . This contradicts the fact that 𝑀 is

strongly stable. □

Claim 2. For every edge 𝑒𝑖 = 𝑣 𝑗1𝑣 𝑗2 in 𝐿 and every integer 𝑗 in
{ 𝑗1, 𝑗2}, we have (𝑧𝑖 , 𝑝 𝑗 ) ∉ 𝑀 .

Proof. Assume that there exist an edge 𝑒𝑖 = 𝑣 𝑗1𝑣 𝑗2 in 𝐿 and an

integer 𝑗 in { 𝑗1, 𝑗2} such that (𝑧𝑖 , 𝑝 𝑗 ) ∈ 𝑀 . Then (A2) implies that

𝑧𝑖 weakly prefers (𝑧𝑖 , 𝑞𝑖, 𝑗 ) on 𝑀 . Furthermore, since 𝑀 (𝑞𝑖, 𝑗 ) = ∅,
𝐻 strongly prefers (𝑧𝑖 , 𝑞𝑖, 𝑗 ) on𝑀 . This contradicts the fact that 𝑀

is strongly stable. □

We are now ready to prove that 𝐶 is a vertex cover in 𝑄 such

that |𝐶 | ≤ 𝑤 . First, we prove that |𝐶 | ≤ 𝑤 . Define𝑤 ′
as the number

of integers 𝑖 in [𝑛] such that (𝑎𝑖 , 𝑠) ∉ 𝑀 . Then Claim 1 implies that

|𝐶 | ≤ 𝑤 ′ ≤ 𝑤 . This completes the proof. Next, we prove that 𝐶 is a

vertex cover in 𝑄 . Assume that there exists an edge 𝑒𝑖 = 𝑣 𝑗1𝑣 𝑗2 in 𝐿

such that |{𝑣 𝑗1 , 𝑣 𝑗2 } ∩𝐶 | = 0. Then (𝑎 𝑗1 , 𝑝 𝑗1 ), (𝑎 𝑗2 , 𝑝 𝑗2 ) ∉ 𝑀 . Thus,

Claim 2 implies that 𝑀 (𝑝 𝑗1 ) = 𝑀 (𝑝 𝑗2 ) = ∅. First, we assume that

𝑀 (𝑧𝑖 ) = ∅. In this case, 𝑧𝑖 strongly prefers every edge in 𝐸 (𝑧𝑖 ) on
𝑀 , and 𝐻 strongly prefers (𝑧𝑖 , 𝑝 𝑗1 ) on𝑀 . This contradicts the fact

that 𝑀 is strongly stable. Second, we assume that there exists an

integer 𝑗 in { 𝑗1, 𝑗2} such that𝑀 contains the edge (𝑧𝑖 , 𝑞𝑖, 𝑗 ). In this

case, (A2) implies that 𝑧𝑖 weakly prefers (𝑧𝑖 , 𝑝 𝑗 ) on𝑀 . Furthermore,

since𝑀 (𝑝 𝑗 ) = ∅, 𝐻 strongly prefers (𝑧𝑖 , 𝑝 𝑗 ) on𝑀 . This contradicts

the fact that𝑀 is strongly stable. This completes the proof. □

Theorem 3.2. The decision version of Super-Stable Matching

with Capacities is NP-complete even if 𝑘 = 2.

Proof. By defining ≿𝐻 so that 𝐷1 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} and
𝐷2 = {𝑧1, 𝑧2, . . . , 𝑧𝑚} ∪ {𝑏1, 𝑏2, . . . , 𝑏𝑛−𝑤},

we can prove this theorem in the same way as Theorem 3.1. □

Theorem 3.3. The decision version ofWeakly Stable Matching

with Capacities is NP-complete even if 𝑘 = 1 and there do not exist
a doctor 𝑑 in 𝐷 and a pair of edges 𝑒, 𝑓 in 𝐸 (𝑑) such that 𝑒 ∥𝑑 𝑓 .

Proof. We can prove this theorem in a similar way as Theo-

rem 3.1. For each integer 𝑖 in [𝑛 −𝑤], 𝐷 contains vertices 𝑟𝑖,1 and

𝑟𝑖,2 instead of 𝑟𝑖 , and 𝐸 contains edges (𝑏𝑖 , 𝑟𝑖,1) and (𝑏𝑖 , 𝑟𝑖,2) instead
of (𝑏𝑖 , 𝑟𝑖 ). The preferences are defined as follows.
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(B1) For each vertex 𝑣𝑖 in 𝑁 , we have (𝑎𝑖 , 𝑝𝑖 ) ∼𝑎𝑖 (𝑎𝑖 , 𝑠).
(B2) For each edge 𝑒𝑖 = 𝑣 𝑗1𝑣 𝑗2 in 𝐿,

– (𝑧𝑖 , 𝑝 𝑗1 ) ≻𝑧𝑖 (𝑧𝑖 , 𝑞𝑖, 𝑗1 ), (𝑧𝑖 , 𝑞𝑖, 𝑗2 ) ≻𝑧𝑖 (𝑧𝑖 , 𝑝 𝑗1 ),
– (𝑧𝑖 , 𝑝 𝑗2 ) ≻𝑧𝑖 (𝑧𝑖 , 𝑞𝑖, 𝑗2 ), (𝑧𝑖 , 𝑞𝑖, 𝑗1 ) ≻𝑧𝑖 (𝑧𝑖 , 𝑝 𝑗2 ), and
– (𝑧𝑖 , 𝑞𝑖, 𝑗1 ) ∼𝑧𝑖 (𝑧𝑖 , 𝑞𝑖, 𝑗2 ), (𝑧𝑖 , 𝑝 𝑗1 ) ∼𝑧𝑖 (𝑧𝑖 , 𝑝 𝑗2 ).

(B3) For each integer 𝑖 in [𝑛−𝑤], (𝑏𝑖 , 𝑠) ≻𝑏𝑖 (𝑏𝑖 , 𝑟𝑖,1), (𝑏𝑖 , 𝑟𝑖,2) ≻𝑏𝑖
(𝑏𝑖 , 𝑠), and (𝑏𝑖 , 𝑟𝑖,1) ≻𝑏𝑖 (𝑏𝑖 , 𝑟𝑖,2).

(B4) For each pair of doctors 𝑑,𝑑 ′ in 𝐷 , 𝑑 ∼𝐻 𝑑 ′.

The rest of the proof is almost the same as Theorem 3.1 □

4 SUPER-STABLE MATCHINGS
4.1 Case of 𝑘 = 1

In this subsection, we assume that 𝑘 = 1 (i.e., 𝑑 ∼𝐻 𝑑 ′ for every
pair of doctors 𝑑,𝑑 ′ in 𝐷). Then the goal is to prove that in this

case, Super-Stable Matching can be solved in polynomial time.

For each doctor 𝑑 in 𝐷 , we define 𝑆𝑑 as the set of edges 𝑒 in 𝐸 (𝑑)
such that 𝑓 ≿𝑑 𝑒 does not hold for any edge 𝑓 in 𝐸 (𝑑) − 𝑒 . It is
not difficult to see that for every doctor 𝑑 in 𝐷 , we can find 𝑆𝑑 in

𝑂 ( |𝐸 (𝑑) |2) time. Define 𝑆 :=
⋃
𝑑∈𝐷 𝑆𝑑 . Our algorithm is described

in Algorithm 1 (see Section 2 for the definition of the matroid U(𝑆)).
Roughly speaking, we prove that this case can be reduced to the

problem of finding a maximum-size common independent set of

U(𝑆) and N|𝑆 . We can find a maximum-size common independent

set of U(𝑆) and N|𝑆 in 𝑂 ( |𝐸 |2.5EO) time by using the algorithm in

[5]. Thus, the time complexity of Algorithm 1 is 𝑂 ( |𝐸 |2.5EO).

Algorithm 1: Case of 𝑘 = 1

1 Find a maximum-size common independent set 𝐾 of U(𝑆)
and N|𝑆 .

2 if |𝐾 | < |{𝑑 ∈ 𝐷 | 𝐸 (𝑑) ≠ ∅}| then
3 Halt. (There does not exist a super-stable matching in𝐺 .)

4 end
5 Output 𝐾 , and halt. (𝐾 is a super-stable matching in 𝐺 .)

Lemma 4.1. Assume that there exists a super-stable matching 𝑀
in 𝐺 . Then𝑀 is a common independent set of U(𝑆) and N|𝑆 .

Proof. Since𝑀 is a matching in𝐺 , |𝑀 (𝑑) | ≤ 1 for every doctor

𝑑 in 𝐷 and𝑀 ∈ J . Thus, it is sufficient to prove that 𝑀 is a subset

of 𝑆 . Assume that there exists an edge 𝑒 = (𝑑, ℎ) in 𝑀 \ 𝑆 . Then
there exists an edge 𝑓 in 𝐸 (𝑑) − 𝑒 such that 𝑓 ≿𝑑 𝑒 . This implies

that 𝑑 weakly prefers 𝑓 on 𝑀 . The assumption of this subsection

implies that𝐻 weakly prefers 𝑓 on𝑀 . This contradicts the fact that

𝑀 is super-stable. □

We can easily prove the following theorem by Lemma 4.1.

Theorem 4.2. If 𝑘 = 1, then Algorithm 1 can solve Super-Stable
Matching.

4.2 Asymmetric preference case
In this subsection, we assume that there do not exist a doctor 𝑑 in 𝐷

and a pair of edges 𝑒, 𝑓 in 𝐸 (𝑑) such that 𝑒 ∥𝑑 𝑓 . We call this case the

asymmetric preference case. The goal of this subsection is to prove

Theorem 4.7. In the rest of this paper, we define C(·, ·) := CN (·, ·)
and D(·, ·) := DN (·, ·).

For each doctor 𝑑 in 𝐷 and each subset 𝐹 of 𝐸, we define S𝑑 (𝐹 )
as the set of edges 𝑒 in 𝐹 (𝑑) such that 𝑒 ≻𝑑 𝑓 for every edge 𝑓

in 𝐹 (𝑑) − 𝑒 . Clearly, for every doctor 𝑑 in 𝐷 and every subset 𝐹

of 𝐸 (𝑑), we can find S𝑑 (𝐹 ) in 𝑂 ( |𝐹 |2) time. Furthermore, it is not

difficult to see that for every doctor 𝑑 in 𝐷 and every subset 𝐹 of 𝐸,

|S𝑑 (𝐹 ) | ≤ 1. Our algorithm is described in Algorithm 2. Roughly

speaking, each doctor applies to the hospital that dominates any

other hospital. The proposed algorithm is based on the algorithm

proposed in [17] for the super-stable matching problem with ties,

master lists, and matroid constraints. For each integer 𝑡 in [𝑘], the
time complexity of Steps 4 to 14 is𝑂 ( |𝐸 |EO+∑𝑑∈𝐷𝑡

|𝐸 (𝑑) |2). Thus,
the time complexity of Algorithm 2 is 𝑂 ( |𝐸 |2EO) time.

Algorithm 2: Asymmetric preference case

1 Define 𝐾0 := ∅, 𝐹0 := 𝐸, 𝐴0 := ∅, and 𝐿0 := ∅.
2 Set 𝑡 := 1.

3 while 𝑡 ≤ 𝑘 do
4 Define 𝐹𝑡 := 𝐹𝑡−1 \ 𝐿𝑡−1 and 𝐴𝑡 := 𝐴𝑡−1 ∪ 𝐿𝑡−1.
5 if there exists a doctor 𝑑 in 𝐷𝑡 such that 𝐹𝑡 (𝑑) ≠ ∅ and

S𝑑 (𝐹𝑡 ) = ∅ then
6 Output null, and halt.

7 end
8 Define e(𝑑) as the unique edge in S𝑑 (𝐹𝑡 ) for each doctor

𝑑 in 𝐷𝑡 such that 𝐹𝑡 (𝑑) ≠ ∅.
9 Define 𝐾𝑡 := 𝐾𝑡−1 ∪ {e(𝑑) | 𝑑 ∈ 𝐷𝑡 such that 𝐹𝑡 (𝑑) ≠ ∅}.

10 if 𝐾𝑡 ∉ J then
11 Output null, and halt.

12 end
13 Define 𝐿𝑡 := {(𝑑,ℎ) ∈ 𝐹𝑡 | 𝑑 ∉ 𝐷 [𝑡], 𝐾𝑡 + (𝑑, ℎ) ∉ J}.
14 Set 𝑡 := 𝑡 + 1.

15 end
16 Output 𝐾𝑘 , and halt.

In the rest of this subsection, we assume that Algorithm 2 halts

when 𝑡 = ℓ . Notice that if ℓ = 𝑘 + 1 (resp., ℓ ≤ 𝑘), then Algorithm 2

outputs 𝐾𝑘 (resp., null).

Lemma 4.3. If Algorithm 2 outputs 𝐾𝑘 , then 𝐾𝑘 is a super-stable
matching in 𝐺 .

Proof. Since 𝐾𝑘 is clearly a matching in 𝐺 , it is sufficient to

prove that 𝐾𝑘 is super-stable. Assume that we are given a doctor

𝑑 in 𝐷 and an edge 𝑒 in 𝐸 (𝑑) \ 𝐾𝑘 , and 𝑑 ∈ 𝐷𝑖 for some integer 𝑖

in [𝑘]. If 𝑒 ∈ 𝐴𝑖 , then there exists an integer 𝑗 in [𝑖 − 1] such that

𝑒 ∈ 𝐿𝑗 . This implies that 𝐾𝑗 + 𝑒 ∉ J and 𝑎 ∈ 𝐷 [ 𝑗] for every edge

(𝑎, 𝑝) in D(𝑒, 𝐾 𝑗 ). Furthermore, since 𝐾𝑗 ⊆ 𝐾𝑘 , Lemma 2.2 implies

that 𝐾𝑘 + 𝑒 ∉ J and D(𝑒, 𝐾 𝑗 ) = D(𝑒, 𝐾𝑘 ). Thus, since 𝑎 ∈ 𝐷 [ 𝑗] for
every edge (𝑎, 𝑝) in D(𝑒, 𝐾 𝑗 ), 𝑑 ∈ 𝐷𝑖 , and 𝑗 < 𝑖 , we have 𝑎 ≻𝐻 𝑑 for

every edge (𝑎, 𝑝) in D(𝑒, 𝐾𝑘 ). This implies that 𝐻 does not weakly

prefer 𝑒 on 𝐾𝑘 . If 𝑒 ∈ 𝐹𝑖 , then 𝐹𝑖 (𝑑) ≠ ∅. Thus, we have S𝑑 (𝐹𝑖 ) ≠ ∅
and 𝜇𝐾𝑘

(𝑑) = e(𝑑). This implies that 𝜇𝐾𝑘
(𝑑) ≻𝑑 𝑒 . Thus, 𝑑 does not

weakly prefer 𝑒 on 𝐾𝑘 . This completes the proof. □

Lemma 4.4. If ℓ ≤ 𝑘 , then for every super-stable matching 𝑀 in
𝐺 , every integer 𝑖 in [ℓ], and every doctor 𝑑 in 𝐷𝑖 ,𝑀 (𝑑) ⊆ S𝑑 (𝐹𝑖 ).
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Proof. We call an edge 𝑒 = (𝑑, ℎ) in 𝐸 a bad edge if (i) 𝑑 ∈ 𝐷𝑖
for some integer 𝑖 in [ℓ], (ii) there exists a super-stable matching

𝑀 in 𝐺 such that 𝑒 ∈ 𝑀 , and (iii) 𝑒 ∉ S𝑑 (𝐹𝑖 ). Then proving this

lemma is equivalent to proving that there does not exist a bad edge

in 𝐸. Thus, we assume that there exists a bad edge in 𝐸. Define

Δ as the set of integers 𝑖 in [ℓ] such that there exists a bad edge

𝑒 = (𝑑, ℎ) in 𝐸 such that 𝑑 ∈ 𝐷𝑖 . Let 𝑗 be the minimum integer in Δ.
Furthermore, let us fix a bad edge 𝑒 = (𝑑, ℎ) in 𝐸 such that 𝑑 ∈ 𝐷 𝑗 .
Since 𝑒 is a bad edge, there exists a super-stable matching𝑀 in 𝐺

such that 𝑒 ∈ 𝑀 .

First, we assume that 𝑒 ∈ 𝐴 𝑗 . In this case, there exists an integer

𝑥 in [ 𝑗 − 1] such that 𝑒 ∈ 𝐿𝑥 . This implies that 𝐾𝑥 + 𝑒 ∉ J . Define

𝐶 := C(𝑒, 𝐾𝑥 ). Then since𝑀 ∈ J ,𝐶 \𝑀 ≠ ∅. For every edge (𝑎, 𝑝)
in 𝐶 \𝑀 , since 𝑑 ∈ 𝐷 𝑗 , 𝑎 ∈ 𝐷 [𝑥], and 𝑥 < 𝑗 , we have 𝑎 ≻𝐻 𝑑 .

Assume that there exists an edge 𝑓 = (𝑎, 𝑝) in 𝐶 \𝑀 such that

𝑀 (𝑎) ≠ ∅ and 𝜇𝑀 (𝑎) ≻𝑎 𝑓 . Furthermore, we assume that 𝑎 ∈ 𝐷𝑧
for some integer 𝑧 in [𝑥]. Since 𝑒 ∈ 𝑀 , 𝑓 ≠ 𝑒 holds. This implies

that 𝑓 ∈ 𝐾𝑥 . Thus, 𝑓 ∈ S𝑎 (𝐹𝑧). This implies that there does not

exist an edge 𝑔 in 𝐹𝑧 (𝑎) − 𝑓 such that 𝑔 ≻𝑎 𝑓 . Thus, 𝜇𝑀 (𝑎) ∉ 𝐹𝑧 (𝑎).
This implies that 𝜇𝑀 (𝑎) ∉ S𝑎 (𝐹𝑧). Thus, 𝜇𝑀 (𝑎) is a bad edge in 𝐸.

Since 𝑎 ∈ 𝐷𝑧 and 𝑧 ≤ 𝑥 < 𝑗 . This contradicts the minimality of 𝑗 .

Assume that one of 𝑀 (𝑎) = ∅ and 𝜇𝑀 (𝑎) ⊁𝑎 𝑓 holds for every
edge 𝑓 = (𝑎, 𝑝) in 𝐶 \𝑀 . Then the assumption in this subsection

implies that 𝑓 ≿𝑎 𝜇𝑀 (𝑎) for every edge 𝑓 = (𝑎, 𝑝) in 𝐶 \𝑀 such

that 𝑀 (𝑎) ≠ ∅. Thus, if there exists an edge 𝑓 = (𝑎, 𝑝) in 𝐶 \ 𝑀
such that𝑀 + 𝑓 ∈ J , then 𝑎 weakly prefers 𝑓 on𝑀 and 𝐻 strongly

prefers 𝑓 on𝑀 . However, this contradicts the fact that𝑀 is super-

stable. Thus, 𝑀 + 𝑓 ∉ J holds for every edge 𝑓 = (𝑎, 𝑝) in 𝐶 \𝑀 .

For each edge 𝑓 in 𝐶 \ 𝑀 , we define 𝐶𝑓 := C(𝑓 , 𝑀). Since 𝑀 is

super-stable, 𝑏 ≻𝐻 𝑎 for every edge 𝑓 = (𝑎, 𝑝) in 𝐶 \𝑀 and every

edge (𝑏, 𝑞) in 𝐶𝑓 − 𝑓 . For every edge 𝑓 = (𝑎, 𝑝) in 𝐶 \ 𝑀 , since

𝑎 ≻𝐻 𝑑 , we have 𝑒 ∉ 𝐶𝑓 . Thus, since 𝑓 ∈ 𝐶 ∩𝐶𝑓 for every edge 𝑓 in
𝐶 \𝑀 , Lemma 2.3 implies that there exists a circuit𝐶 ′

ofN such that

𝐶 ′ ⊆ (𝐶 ∪𝐶∗) \ (𝐶 \𝑀), where we define𝐶∗
:=

⋃
𝑓 ∈𝐶\𝑀 𝐶𝑓 . Since

𝐶𝑓 − 𝑓 ⊆ 𝑀 for every edge 𝑓 in 𝐶 \𝑀 , 𝐶 ′ ⊆ 𝑀 . This contradicts

the fact that𝑀 ∈ J . This completes the proof.

Next, we assume that 𝑒 ∈ 𝐹 𝑗 . Since 𝑒 ∉ S𝑑 (𝐹 𝑗 ), there exists an
edge 𝑓 in 𝐹 𝑗 (𝑑) − 𝑒 such that 𝑒 ⊁𝑑 𝑓 . Then the assumption in this

subsection implies that 𝑓 ≿𝑑 𝑒 . Thus, if𝑀 + 𝑓 ∈ J , then 𝑑 weakly

prefers 𝑓 on𝑀 and 𝐻 strongly prefers 𝑓 on𝑀 . This contradicts the

fact that 𝑀 is super-stable. Thus, 𝑀 + 𝑓 ∉ J . Define 𝑀𝑗−1 as the
set of edges (𝑎, 𝑝) in𝑀 such that 𝑎 ∈ 𝐷 [ 𝑗 −1]. Then the minimality

of 𝑗 implies that𝑀𝑗−1 ⊆ 𝐾𝑗−1. Since 𝑓 ∈ 𝐹 𝑗 , 𝐾𝑗−1 + 𝑓 ∈ J . (Notice

that since {𝑓 } ∈ J , this holds even if 𝑗 = 1.) Thus, (I1) implies

that𝑀𝑗−1 + 𝑓 ∈ J . This implies that there exists an edge (𝑎, 𝑝) in
D(𝑓 , 𝑀) such that 𝑎 ∈ 𝐷 \ 𝐷 [ 𝑗 − 1]. Thus, 𝐻 weakly prefers 𝑓 on

𝑀 . This contradict the fact that𝑀 is super-stable. □

Lemma 4.5. If ℓ ≤ 𝑘 , then for every super-stable matching 𝑀 in
𝐺 , every integer 𝑖 in [ℓ], and every doctor 𝑑 in 𝐷𝑖 ,𝑀 (𝑑) = S𝑑 (𝐹𝑖 ).

Proof. Assume that there exists a super-stable matching 𝑀 in

𝐺 , an integer 𝑖 in [ℓ], and a doctor 𝑑 in 𝐷𝑖 such that𝑀 (𝑑) ≠ S𝑑 (𝐹𝑖 ).
Then Lemma 4.4 implies that𝑀 (𝑑) ⊊ S𝑑 (𝐹𝑖 ). Thus, since |S𝑑 (𝐹𝑖 ) | ≤
1, we have S𝑑 (𝐹𝑖 ) ≠ ∅ and 𝑀 (𝑑) = ∅. Let 𝑒 be the edge in S𝑑 (𝐹𝑖 ).
Then 𝑑 strongly prefers 𝑒 on 𝑀 . If 𝑀 + 𝑒 ∈ J , then 𝐻 strongly

prefers 𝑒 on 𝑀 . This contradicts the fact that 𝑀 is super-stable.

Thus,𝑀 + 𝑒 ∉ J . Define𝑀𝑖−1 as the set of edges (𝑎, 𝑝) in𝑀 such

that 𝑎 ∈ 𝐷 [𝑖−1]. Lemma 4.4 implies that𝑀𝑖−1 ⊆ 𝐾𝑖−1. Furthermore,

since 𝑒 ∈ 𝐹𝑖 , 𝐾𝑖−1 + 𝑒 ∈ J . Thus, (I1) implies that 𝑀𝑖−1 + 𝑒 ∈ J .

This implies that there exists an edge (𝑎, 𝑝) in D(𝑒,𝑀) such that

𝑎 ∈ 𝐷 \ 𝐷 [𝑖 − 1]. This implies that 𝐻 weakly prefers 𝑒 on𝑀 . This

contradict the fact that𝑀 is super-stable. □

Lemma 4.6. If Algorithm 2 outputs null, then there does not exist
a super-stable matching in 𝐺 .

Proof. Notice that in this case, ℓ ≤ 𝑘 . Assume that there exists

a super-stable matching𝑀 in 𝐺 .

First, we assume that Algorithm 2 outputs null in Step 6. Then

there exists a doctor 𝑑 in 𝐷ℓ such that 𝐹ℓ (𝑑) ≠ ∅ and S𝑑 (𝐹ℓ ) = ∅.
Let 𝑒 be an edge in 𝐹ℓ (𝑑). Since Lemma 4.5 implies that𝑀 (𝑑) = ∅,
𝑑 strongly prefers 𝑒 on𝑀 . Thus, since𝑀 is super-stable,𝑀 +𝑒 ∉ J .

Define𝑀ℓ−1 as the set of edges (𝑎, 𝑝) in𝑀 such that 𝑎 ∈ 𝐷 [ℓ − 1].
Lemma 4.5 implies that 𝑀ℓ−1 = 𝐾ℓ−1. Since 𝑒 ∈ 𝐹ℓ , 𝐾ℓ−1 + 𝑒 ∈ J .

Thus,𝑀ℓ−1 + 𝑒 ∈ J . This implies that there exists an edge (𝑎, 𝑝) in
D(𝑒,𝑀) such that 𝑎 ∈ 𝐷 \ 𝐷 [ℓ − 1]. Thus, 𝐻 weakly prefers 𝑒 on

𝑀 . This contradict the fact that𝑀 is super-stable.

Next, we assume that Algorithm 2 outputs null in Step 11. Define
𝑀ℓ as the set of edges (𝑑, ℎ) in 𝑀 such that 𝑑 ∈ 𝐷 [ℓ]. Lemma 4.5

implies that𝑀ℓ = 𝐾ℓ . Since 𝐾ℓ ∉ J ,𝑀ℓ ∉ J . This contradicts the

fact that𝑀 ∈ J . □

The following theorem follows from Lemmas 4.3 and 4.6.

Theorem 4.7. Assume that there do not exist a doctor 𝑑 in 𝐷 and
a pair of edges 𝑒, 𝑓 in 𝐸 (𝑑) such that 𝑒 ∥𝑑 𝑓 . Then Algorithm 2 can
solve Super-Stable Matching.

5 STRONGLY STABLE MATCHINGS
In this section, we assume that there do not exist a doctor 𝑑 in 𝐷

and a pair of edges 𝑒, 𝑓 in 𝐸 (𝑑) such that 𝑒 ∥𝑑 𝑓 . The goal of this
section is to prove Theorem 5.6.

The proposed algorithm is described in Algorithm 3. Our algo-

rithm is based on the algorithm proposed in [17] for the strongly

stable matching problem with ties, master lists, and matroid con-

straints. Roughly speaking, each doctor applies to the set of hos-

pitals that are not dominated by any other hospital. However, we

have to carefully select a subset of the hospitals that are not domi-

nated (see Algorithm 4). In Algorithm 3, Lemmas 2.4 and 2.5 imply

that by finding a base of N|𝑃𝑡−1, we can determine whether 𝐼 is an

independent set of N𝑡 for every subset 𝐼 of 𝑇𝑡 . Notice that since

𝑌𝑡,𝛼+1 ⊆ 𝑌𝑡,𝛼 holds during the course of Algorithm 4, the number

of iterations of Algorithm 4 is 𝑂 (∑𝑑∈𝐷𝑡
|𝐸 (𝑑) |). If we use the algo-

rithm in [5], then since for each integer 𝑡 in [𝑘], the time complexity

of Steps 4 to 19 is 𝑂 ( |⋃𝑑∈𝐷𝑡
𝐸 (𝑑) |2.5EO), the time complexity of

Algorithm 3 is 𝑂 ( |𝐸 |2.5EO).
In the rest of this section, we assume that Algorithm 3 halts

when 𝑡 = ℓ . Notice that if ℓ = 𝑘 + 1 (resp., ℓ ≤ 𝑘), then Algorithm 3

outputs 𝐾𝑘 (resp., null).

Lemma 5.1. For every integer 𝑖 in [ℓ − 1], 𝐾𝑖 is a base of N|𝑃𝑖 .

Proof. First, it should be noted that𝐾0 is a base ofN|𝑃0. Assume

that we are given an integer 𝑗 in [ℓ −1], and this lemma holds when

𝑖 = 𝑗 − 1 (i.e., 𝐾𝑗−1 is a base of N|𝑃 𝑗−1 = (N|𝑃 𝑗 ) |𝑃 𝑗−1). Lemma 2.4

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

589



Algorithm 3: Asymmetric preference case

1 Define 𝐾0 := ∅, 𝐹0 := 𝐸, 𝐴0 := ∅, 𝐿0 := ∅, and 𝑃0 := ∅.
2 Set 𝑡 := 1.

3 while 𝑡 ≤ 𝑘 do
4 Define 𝐹𝑡 := 𝐹𝑡−1 \ 𝐿𝑡−1 and 𝐴𝑡 := 𝐴𝑡−1 ∪ 𝐿𝑡−1.
5 Find the subset 𝑇𝑡 of 𝐹𝑡 by using Algorithm 4.

6 Define 𝑃𝑡 := 𝑃𝑡−1 ∪𝑇𝑡 and N𝑡 := (N/𝑃𝑡−1) |𝑇𝑡 .
7 if there exists a doctor 𝑑 in 𝐷𝑡 such that 𝐹𝑡 (𝑑) ≠ ∅ and

𝑇𝑡 (𝑑) = ∅ then
8 Output null, and halt.

9 end
10 if |{𝑑 ∈ 𝐷𝑡 | 𝐹𝑡 (𝑑) ≠ ∅}| < rN𝑡

(𝑇𝑡 ) then
11 Output null, and halt.

12 end
13 Find a maximum-size common independent set 𝐼𝑡 of

U(𝑇𝑡 ) and N𝑡 .
14 if |𝐼𝑡 | < |{𝑑 ∈ 𝐷𝑡 | 𝐹𝑡 (𝑑) ≠ ∅}| then
15 Output null, and halt.

16 end
17 Define 𝐾𝑡 := 𝐾𝑡−1 ∪ 𝐼𝑡 .
18 Define 𝐿𝑡 := {(𝑑,ℎ) ∈ 𝐹𝑡 | 𝑑 ∉ 𝐷 [𝑡], 𝐾𝑡 + (𝑑, ℎ) ∉ J}.
19 Set 𝑡 := 𝑡 + 1.

20 end
21 Output 𝐾𝑘 , and halt.

Algorithm 4: Subroutine of Algorithm 3

1 Define 𝑌𝑡,1 as the set of edges 𝑒 = (𝑑,ℎ) in 𝐹𝑡 such that

𝑑 ∈ 𝐷𝑡 and 𝑓 ⊁𝑑 𝑒 holds for every edge 𝑓 in 𝐹𝑡 (𝑑) − 𝑒 .
2 Set 𝛼 := 1.

3 do
4 Define 𝑍𝑡,𝛼 as the set of edges 𝑒 = (𝑑, ℎ) in 𝐹𝑡 \ 𝑌𝑡,𝛼

such that 𝑑 ∈ 𝐷𝑡 and {𝑒} ∈ J/(𝑃𝑡−1 ∪ 𝑌𝑡,𝛼 ).
5 Define 𝑌𝑡,𝛼+1 as the set of edges 𝑒 = (𝑑,ℎ) in 𝑌𝑡,𝛼 such

that 𝑒 ≻𝑑 𝑓 for every edge 𝑓 in 𝑍𝑡,𝛼 (𝑑).
6 Set 𝛼 := 𝛼 + 1.

7 while 𝑌𝑡,𝛼−1 \ 𝑌𝑡,𝛼 ≠ ∅;
8 Output 𝑌𝑡,𝛼 as 𝑇𝑡 , and halt.

implies that N𝑗 = (N|𝑃 𝑗 )/𝑃 𝑗−1. Thus, Lemma 2.5 implies that it is

sufficient to prove that 𝐼 𝑗 is a base of N𝑗 . Since 𝐼 𝑗 is an independent

set of N𝑗 , |𝐼 𝑗 | ≤ rN𝑗
(𝑇𝑗 ). Furthermore, the definitions of Steps 10

and 14 imply that |𝐼 𝑗 | ≥ rN𝑗
(𝑇𝑗 ). Thus, |𝐼 𝑗 | = rN𝑗

(𝑇𝑗 ). This implies

that 𝐼 𝑗 is a base of N𝑗 . This completes the proof. □

Lemma 5.2. If Algorithm 3 outputs 𝐾𝑘 , then 𝐾𝑘 is a strongly stable
matching in 𝐺 .

Proof. Since Lemma 5.1 implies that 𝐾𝑘 is an independent set

of N, 𝐾𝑘 is a matching in𝐺 . Thus, what remains is to prove that 𝐾𝑘
is strongly stable. Assume that we are given a doctor 𝑑 in 𝐷 and an

edge 𝑒 in 𝐸 (𝑑) \ 𝐾𝑘 , and 𝑑 ∈ 𝐷𝑖 for some integer 𝑖 in [𝑘].
First, we assume that 𝑒 ∈ 𝐴𝑖 . Then there exists an integer 𝑗 in

[𝑖 − 1] such that 𝑒 ∈ 𝐿𝑗 . This implies that 𝐾𝑗 + 𝑒 ∉ J and 𝑎 ∈ 𝐷 [ 𝑗]

for every edge (𝑎, 𝑝) in D(𝑒, 𝐾 𝑗 ). Since 𝐾𝑗 ⊆ 𝐾𝑘 , Lemma 2.2 implies

that 𝐾𝑘 + 𝑒 ∉ J and 𝑎 ≻𝐻 𝑑 for every edge (𝑎, 𝑝) in D(𝑒, 𝐾𝑘 ). Thus,
𝐻 does not weakly prefer 𝑒 on 𝐾𝑘 . This completes the proof.

Next, we assume that 𝑒 ∈ 𝐹𝑖 . Then 𝐹𝑖 (𝑑) ≠ ∅. Since Algorithm 3

does not output null in Step 15, |𝐼𝑖 | ≥ |{𝑑 ′ ∈ 𝐷𝑖 | 𝐹𝑖 (𝑑 ′) ≠ ∅}|.
Since 𝐼𝑖 ⊆

⋃
𝑑′∈𝐷𝑖

𝐹𝑖 (𝑑 ′), 𝐼𝑖 (𝑑 ′) = ∅ for every doctor 𝑑 ′ in 𝐷𝑖 such
that 𝐹𝑖 (𝑑 ′) = ∅. Thus, since |𝐼𝑖 (𝑑 ′) | ≤ 1 for every doctor 𝑑 ′ in 𝐷𝑖 ,
𝐼𝑖 (𝑑 ′) ≠ ∅ holds for every doctor 𝑑 ′ in 𝐷𝑖 such that 𝐹𝑖 (𝑑 ′) ≠ ∅. In
addition, 𝜇𝐾𝑘

(𝑑) ∈ 𝑇𝑖 . Thus, 𝑒 ⊁𝑑 𝜇𝐾𝑘
(𝑑), i.e., 𝑑 does not strongly

prefer 𝑒 on𝐾𝑘 . If𝑑 does not weakly prefer 𝑒 on𝐾𝑘 (i.e., 𝜇𝐾𝑘
(𝑑) ≻𝑑 𝑒),

then the proof is done. Assume that 𝑒 ∼𝑑 𝜇𝐾𝑘
(𝑑). First, we consider

the case in which 𝑒 ∈ 𝑇𝑖 . In this case, since the proof of Lemma 5.1

implies that 𝐼𝑖 is a base of N𝑖 , 𝐼𝑖 + 𝑒 is not an independent set of N𝑖 .
Thus, Lemmas 2.5 and 5.1 imply that 𝐾𝑖 + 𝑒 ∉ J . Since 𝐾𝑖 ⊆ 𝐾𝑘 ,

Lemma 2.2 implies that𝐾𝑘 +𝑒 ∉ J and 𝑎 ≿𝐻 𝑑 for every edge (𝑎, 𝑝)
in D(𝑒, 𝐾𝑘 ). This implies that 𝐻 does not strongly prefer 𝑒 on 𝐾𝑘 .

Next, we consider the case in which 𝑒 ∉ 𝑇𝑖 . Since 𝑒 ∼𝑑 𝜇𝐾𝑘
(𝑑) and

𝜇𝐾𝑘
(𝑑) ∈ 𝑇𝑖 , the definition of Algorithm 4 implies that {𝑒} is not an

independent set of N/𝑃𝑖 . Thus, Lemma 5.1 implies that 𝐾𝑖 + 𝑒 ∉ J .

Since 𝐾𝑖 ⊆ 𝐾𝑘 , Lemma 2.2 implies that 𝐾𝑘 + 𝑒 ∉ J and 𝑎 ≿𝐻 𝑑 for

every edge (𝑎, 𝑝) in D(𝑒, 𝐾𝑘 ). This implies that 𝐻 does not strongly

prefer 𝑒 on 𝐾𝑘 . This completes the proof. □

Lemma 5.3. If ℓ ≤ 𝑘 , then for every strongly stable matching𝑀 in
𝐺 , every integer 𝑖 in [ℓ], and every doctor 𝑑 in 𝐷𝑖 ,𝑀 (𝑑) ⊆ 𝑇𝑖 (𝑑).

Proof. We call an edge 𝑒 = (𝑑, ℎ) in 𝐸 a bad edge if (i) 𝑑 ∈ 𝐷𝑖
for some integer 𝑖 in [ℓ], (ii) there exists a strongly stable matching

𝑀 in 𝐺 such that 𝑒 ∈ 𝑀 , and (iii) 𝑒 ∉ 𝑇𝑖 . Then proving this lemma

is equivalent to proving that there does not exist a bad edge in 𝐸.

Thus, we assume that there exists a bad edge in 𝐸. Define Δ as the

set of integers 𝑖 in [ℓ] such that there exists a bad edge 𝑒 = (𝑑, ℎ)
in 𝐸 such that 𝑑 ∈ 𝐷𝑖 . Let 𝑗 be the minimum integer in Δ.

First, we consider the case in which there exists a bad edge

𝑒 = (𝑑,ℎ) in 𝐸 such that 𝑑 ∈ 𝐷 𝑗 and 𝑒 ∈ 𝐴 𝑗 . Then there exists an

integer 𝑥 in [ 𝑗 − 1] such that 𝑒 ∈ 𝐿𝑥 . This implies that 𝐾𝑥 + 𝑒 ∉ J .

Define 𝐶 := C(𝑒, 𝐾𝑥 ). Since 𝑒 is a bad edge, there exists a strongly

stable matching𝑀 in 𝐺 such that 𝑒 ∈ 𝑀 . Since𝑀 ∈ J , 𝐶 \𝑀 ≠ ∅.
For every edge (𝑎, 𝑝) in 𝐶 \𝑀 , since 𝑑 ∈ 𝐷 𝑗 , 𝑎 ∈ 𝐷 [𝑥], and 𝑥 < 𝑗 ,

we have 𝑎 ≻𝐻 𝑑 .

Assume that there exists an edge 𝑓 = (𝑎, 𝑝) in 𝐶 \𝑀 such that

𝑀 (𝑎) ≠ ∅ and 𝜇𝑀 (𝑎) ≻𝑎 𝑓 . Furthermore, we assume that 𝑎 ∈ 𝐷𝑧
for some integer 𝑧 in [𝑥]. Since 𝑒 ∈ 𝑀 , 𝑓 ≠ 𝑒 holds. Thus, 𝑓 ∈ 𝐾𝑥 .
This implies that 𝑓 ∈ 𝑇𝑧 . Thus, there does not exist an edge 𝑔 in

𝐹𝑧 (𝑎) − 𝑓 such that 𝑔 ≻𝑎 𝑓 . This implies that 𝜇𝑀 (𝑎) ∉ 𝐹𝑧 (𝑎). Thus,
𝜇𝑀 (𝑎) ∉ 𝑇𝑧 . This implies that 𝜇𝑀 (𝑎) is a bad edge in 𝐸. Since 𝑎 ∈ 𝐷𝑧
and 𝑧 ≤ 𝑥 < 𝑗 , this contradicts the minimality of 𝑗 .

Assume that one of 𝑀 (𝑎) = ∅ and 𝜇𝑀 (𝑎) ⊁𝑎 𝑓 holds for every
edge 𝑓 = (𝑎, 𝑝) in𝐶 \𝑀 . The assumption in this section implies that

𝑓 ≿𝑎 𝜇𝑀 (𝑎) for every edge 𝑓 = (𝑎, 𝑝) in𝐶 \𝑀 such that𝑀 (𝑎) ≠ ∅.
If there exists an edge 𝑓 = (𝑎, 𝑝) in 𝐶 \ 𝑀 such that 𝑀 + 𝑓 ∈ J ,

then 𝑎 weakly prefers 𝑓 on𝑀 and 𝐻 strongly prefers 𝑓 on𝑀 . This

contradicts the fact that 𝑀 is strongly stable. Thus, 𝑀 + 𝑓 ∉ J
holds for every edge 𝑓 in 𝐶 \ 𝑀 . For each edge 𝑓 in 𝐶 \ 𝑀 , we

define 𝐶𝑓 := C(𝑓 , 𝑀). Since𝑀 is strongly stable, 𝑏 ≿𝐻 𝑎 for every

edge 𝑓 = (𝑎, 𝑝) in 𝐶 \𝑀 and every edge (𝑏, 𝑞) in 𝐶𝑓 − 𝑓 . For every
edge 𝑓 = (𝑎, 𝑝) in 𝐶 \𝑀 , since 𝑎 ≻𝐻 𝑑 , 𝑒 ∉ 𝐶𝑓 holds. Thus, since
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𝑓 ∈ 𝐶 ∩𝐶𝑓 for every edge 𝑓 in𝐶 \𝑀 , Lemma 2.3 implies that there

exists a circuit 𝐶 ′
of N such that 𝐶 ′ ⊆ (𝐶 ∪𝐶∗) \ (𝐶 \𝑀), where

we define 𝐶∗
:=

⋃
𝑓 ∈𝐶\𝑀 𝐶𝑓 . Since 𝐶𝑓 − 𝑓 ⊆ 𝑀 for every edge 𝑓

in 𝐶 \𝑀 , 𝐶 ′ ⊆ 𝑀 . However, this contradicts the fact that𝑀 ∈ J .

In the rest of this proof, we consider the case in which 𝑒 ∈ 𝐹 𝑗 for
every bad edge 𝑒 = (𝑑, ℎ) in 𝐸 such that 𝑑 ∈ 𝐷 𝑗 .

First, we assume that there exists a bad edge 𝑒 = (𝑑,ℎ) in 𝐸 such

that 𝑑 ∈ 𝐷 𝑗 and 𝑒 ∈ 𝐹 𝑗 \𝑌𝑗,1. Let𝑀 be a strongly stable matching in

𝐺 such that 𝑒 ∈ 𝑀 . The definition of𝑌𝑗,1 implies that there exists an

edge 𝑓 in 𝐹 𝑗 (𝑑) −𝑒 such that 𝑓 ≻𝑑 𝑒 . Notice that since 𝑓 ≠ 𝑒 , 𝑓 ∉ 𝑀 .

Define𝑀𝑗−1 as the set of edges (𝑎, 𝑝) in𝑀 such that 𝑎 ∈ 𝐷 [ 𝑗 − 1].
Since 𝑓 ∈ 𝐹 𝑗 ,𝐾𝑗−1+ 𝑓 ∈ J . Lemma 5.1 implies that𝐾𝑗−1 is a base of
N|𝑃 𝑗−1. Furthermore, the minimality of 𝑗 implies that𝑀𝑗−1 ⊆ 𝑃 𝑗−1.
Since 𝑀𝑗−1 ∈ J , (I2) implies that there exists a base 𝐵 of N|𝑃 𝑗−1
such that𝑀𝑗−1 ⊆ 𝐵. Then Lemma 2.5 implies that 𝐵 + 𝑓 ∈ J . Thus,

(I1) implies that 𝑀𝑗−1 + 𝑓 ∈ J . This implies that if 𝑀 + 𝑓 ∉ J ,

then there exists an edge (𝑎, 𝑝) in D(𝑓 , 𝑀) such that 𝑑 ≿𝐻 𝑎, i.e., 𝐻

weakly prefers 𝑓 on𝑀 . This contradicts the fact that𝑀 is strongly

stable.

Next, we assume that 𝑒 ∈ 𝑌𝑗,1 holds for every bad edge 𝑒 = (𝑑, ℎ)
in 𝐸 such that 𝑑 ∈ 𝐷 𝑗 . Assume that 𝑇𝑗 = 𝑌𝑗,𝛽 for some positive

integer 𝛽 . The definition of Algorithm 4 implies that 𝛽 ≥ 2. Let 𝛾

be the minimum integer in [𝛽 − 1] such that there exists a bad edge

𝑒 = (𝑑, ℎ) in 𝑌𝑗,𝛾 \ 𝑌𝑗,𝛾+1. Let 𝑀 be a strongly stable matching in

𝐺 such that 𝑒 ∈ 𝑀 . Define𝑀𝑗 as the set of edges (𝑎, 𝑝) in𝑀 such

that 𝑎 ∈ 𝐷 [ 𝑗]. Then the minimality of 𝛾 and the assumption of this

paragraph imply that 𝑀𝑗 ⊆ 𝑃 𝑗−1 ∪ 𝑌𝑗,𝛾 . Since 𝑒 is in 𝑌𝑗,𝛾 \ 𝑌𝑗,𝛾+1,
there exists an edge 𝑓 in 𝐹 𝑗 (𝑑) \ 𝑌𝑗,𝛾 such that 𝑓 ∼𝑑 𝑒 and {𝑓 } is
an independent set of N/(𝑃 𝑗−1 ∪ 𝑌𝑗,𝛾 ). Notice that since 𝑒 ∈ 𝑌𝑗,𝛾 ,
𝑓 ≠ 𝑒 . Since𝑀𝑗 ∈ J , there exists a base 𝐵 of N| (𝑃 𝑗−1 ∪ 𝑌𝑗,𝛾 ) such
that 𝑀𝑗 ⊆ 𝐵. Then Lemma 2.5 implies that 𝐵 + 𝑓 ∈ J . Thus, (I1)

implies that𝑀𝑗 + 𝑓 ∈ J . This implies that if𝑀 + 𝑓 ∉ J , then there

exists an edge (𝑎, 𝑝) in D(𝑓 , 𝑀) such that 𝑑 ≻𝐻 𝑎. This implies

that 𝐻 strongly prefers 𝑓 on 𝑀 . Since 𝜇𝑀 (𝑑) = 𝑒 and 𝑓 ∼𝑑 𝑒 , this
contradicts the fact that𝑀 is strongly stable. □

Lemma 5.4. If ℓ ≤ 𝑘 , then for every strongly stable matching𝑀 in
𝐺 , every integer 𝑖 in [ℓ],𝑀 ∩𝑇𝑖 is a base of N𝑖 .

Proof. Let𝑀 be a strongly stable matching in𝐺 . We prove this

lemma by induction on 𝑖 . The assumption in this section, for every

integer 𝑡 in [ℓ], every doctor 𝑑 in 𝐷𝑡 , and every pair of edges 𝑒, 𝑓

in 𝑇𝑡 (𝑑), we have 𝑒 ∼𝑑 𝑓 .
First, we consider the case of 𝑖 = 1. Assume that𝑀 ∩𝑇1 is not a

base ofN1 = N|𝑇1. Since𝑀∩𝑇1 ∈ J , there exists an edge 𝑒 = (𝑑, ℎ)
in 𝑇1 \ 𝑀 such that (𝑀 ∩ 𝑇1) + 𝑒 ∈ J . Since 𝑒 ∈ 𝑇1, 𝑑 ∈ 𝐷1. If

𝑀 (𝑑) ≠ ∅, then since Lemma 5.3 implies that 𝜇𝑀 (𝑑) ∈ 𝑇1, we have
𝑒 ∼𝑑 𝜇𝑀 (𝑑). Assume that 𝑀 + 𝑒 ∉ J . Then C(𝑒,𝑀) ⊈ 𝑇1. This
implies that there exists an edge 𝑓 = (𝑎, 𝑝) inD(𝑒,𝑀) \𝑇1. If 𝑎 ∈ 𝐷1,

then Lemma 5.3 implies that 𝑓 ∈ 𝑇1. This contradicts the fact that
𝑓 ∉ 𝑇1. Thus, 𝑎 ∈ 𝐷 \ 𝐷 [1]. This implies that 𝐻 strongly prefers 𝑒

on𝑀 . This contradicts the fact that𝑀 is strongly stable.

Next, we assume that we are given an integer 𝑗 such that 2 ≤ 𝑗 ≤
ℓ , and this lemma holds when 𝑖 = 𝑥 for every integer 𝑥 in [ 𝑗 − 1].
Then we prove that this lemma holds when 𝑖 = 𝑗 . In this case,

Lemma 2.5 implies that𝑀 ∩ 𝑃 𝑗−1 is a base of N|𝑃 𝑗−1. Furthermore,

since𝑀 ∈ J holds, (I1) implies that𝑀 ∩ 𝑃 𝑗 is an independent set

of N|𝑃 𝑗 . Assume that 𝑀 ∩ 𝑇𝑗 is not a base of N𝑗 = (N|𝑃 𝑗 )/𝑃 𝑗−1.
Then Lemma 2.5 implies that 𝑀 ∩ 𝑃 𝑗 is not a base of N|𝑃 𝑗 . Thus,
there exists an edge 𝑒 = (𝑑,ℎ) in 𝑃 𝑗 \𝑀 such that (𝑀 ∩𝑃 𝑗 ) +𝑒 ∈ J .

Since𝑀 ∩ 𝑃 𝑗−1 is a base of N|𝑃 𝑗−1, 𝑒 ∈ 𝑇𝑗 . Notice that since 𝑒 ∈ 𝑇𝑗 ,
𝑑 ∈ 𝐷 𝑗 . If𝑀 (𝑑) ≠ ∅, then since Lemma 5.3 implies that 𝜇𝑀 (𝑑) ∈ 𝑇𝑗 ,
we have 𝑒 ∼𝑑 𝜇𝑀 (𝑑). Assume that𝑀 + 𝑒 ∉ J . Then C(𝑒,𝑀) ⊈ 𝑃 𝑗 .
This implies that there exists an edge 𝑓 = (𝑎, 𝑝) in D(𝑒,𝑀) \ 𝑃 𝑗 . If
𝑎 ∈ 𝐷 [ 𝑗], then Lemma 5.3 implies that 𝑓 ∈ 𝑃 𝑗 . This contradicts the
fact that 𝑓 ∉ 𝑃 𝑗 . Thus, 𝑎 ∈ 𝐷 \ 𝐷 [ 𝑗], and 𝐻 strongly prefers 𝑒 on

𝑀 . This contradicts the fact that𝑀 is strongly stable. □

Lemma 5.5. If Algorithm 3 outputs null, then there does not exist
a strongly stable matching in 𝐺 .

Proof. Notice that in this case, ℓ ≤ 𝑘 . Assume that there exists

a strongly stable matching𝑀 in 𝐺 .

First, we assume that Algorithm 3 outputs null in Step 8. There

exists a doctor 𝑑 in 𝐷ℓ such that 𝐹ℓ (𝑑) ≠ ∅ and 𝑇ℓ (𝑑) = ∅. Let 𝑒 be
an edge in 𝐹ℓ (𝑑). Since Lemma 5.3 implies that𝑀 (𝑑) = ∅,𝑑 strongly
prefers 𝑒 on𝑀 . Since𝑀 is strongly stable,𝑀 + 𝑒 ∉ J . Define𝑀ℓ−1
as the set of edges (𝑎, 𝑝) in𝑀 such that 𝑎 ∈ 𝐷 [ℓ − 1]. Lemmas 2.5,

5.3, and 5.4 imply that𝑀ℓ−1 (i.e.,𝑀 ∩ 𝑃ℓ−1) is a base of N|𝑃ℓ−1. In
addition, since 𝑒 ∈ 𝐹ℓ , 𝐾ℓ−1 + 𝑒 ∈ J . Thus, Lemmas 2.5 and 5.1

imply that {𝑒} is an independent set of N/𝑃ℓ−1. Thus, Lemma 2.5

implies that 𝑀ℓ−1 + 𝑒 ∈ J . This implies that there exists an edge

(𝑎, 𝑝) in D(𝑒,𝑀) such that 𝑎 ∈ 𝐷 \𝐷 [ℓ −1]. Thus,𝐻 weakly prefers

𝑒 on𝑀 . This contradict the fact that𝑀 is strongly stable.

Next, we assume that Algorithm 3 outputs null in Step 11. Then

since Lemma 5.4 implies that 𝑀 ∩ 𝑇ℓ is a base of Nℓ , |𝑀 ∩ 𝑇ℓ | =
rNℓ

(𝑇ℓ ). Furthermore, since 𝑇ℓ ⊆ 𝐹ℓ , |𝑀 ∩𝑇ℓ | ≤ |{𝑑 ∈ 𝐷ℓ |𝐹ℓ (𝑑) ≠
∅}|. Thus, |{𝑑 ∈ 𝐷ℓ |𝐹ℓ (𝑑) ≠ ∅}| ≥ rNℓ

(𝑇ℓ ). However, this contra-
dicts the definition of Step 10.

Lastly, we assume that Algorithm 3 outputs null in Step 15. Then
since Lemma 5.4 implies that 𝑀 ∩𝑇ℓ is a common independent set

of U(𝑇ℓ ) and Nℓ , |𝑀 ∩𝑇ℓ | ≤ |𝐼ℓ |. Notice that Lemma 5.3 implies that

|𝑀 ∩𝑇ℓ | = |{𝑑 ∈ 𝐷ℓ | 𝑀 (𝑑) ≠ ∅}|. Thus, the definition of Step 14

implies that there exists a doctor 𝑑 in 𝐷ℓ such that 𝐹ℓ (𝑑) ≠ ∅ and

𝑀 (𝑑) = ∅. The rest of the proof of this case is the same as the proof

of the first case. This completes the proof. □

The following theorem follows from Lemmas 5.2 and 5.5.

Theorem 5.6. Assume that there do not exist a doctor 𝑑 in 𝐷 and
a pair of edges 𝑒, 𝑓 in 𝐸 (𝑑) such that 𝑒 ∥𝑑 𝑓 . Then Algorithm 3 can
solve Strongly Stable Matching.

6 CONCLUSION
It would be interesting to consider whether the results in this paper

can be extended to the many-to-many case [20]. Furthermore, it

would be interesting to consider strategic issues in our problems.
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