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ABSTRACT
In epidemiology science, the importance to explore innovative mod-
eling tools for acutely analyzing epidemic diffusion is turning into
a big challenge considering the myriad of real-world aspects to cap-
ture. Typically, equation-based models, such as SIS and SIR, are used
to study the propagation of diseases over a population. Improved
approaches also include human-mobility patterns as network infor-
mation to describe contacts among individuals. However, there still
is the need to incorporate in these models information about differ-
ent types of contagion, geographical information, humans habits,
and environmental properties. In this paper, we propose a novel ap-
proach that takes into account: 1. direct and indirect epidemic conta-
gion pathways to explore the dynamics of the epidemic, 2. the times
of possible contagions, and 3. human-mobility patterns. We com-
bine these three features exploiting time-varying hypergraphs, and
we embed this model into a design-methodology for agent-based
models (ABMs), able to improve the correctness in the epidemic
estimations of classical contact-network approaches. We further
describe a diffusion algorithm suitable for our design-methodology
and adaptable to the peculiarities of any disease spreading policies
and/or models. Finally, we tested our methodology by developing
an ABM, realizing the SIS epidemic compartmental model, for sim-
ulating an epidemic propagation over a population of individuals.
We experimented the model using real user-mobility data from the
location-based social network Foursquare, and we demonstrated the
high-impact of temporal direct and indirect contagion pathways.
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1 INTRODUCTION
With the increasing amount of global human-mobility, designing,
implementing and evaluating public health policies has become
a crucial challenge, notably for epidemiology science. In this re-
search area, most of the well-known adopted models are based on
math equations and have proved their ability to mimic the epidemic
spreading in a population of individuals [15, 17]. However, these
models assume that the population behavior and individual con-
tact types are homogeneous [3]. The aforementioned is a serious
limitation for real-world scenarios, as it reduces the modeling effec-
tiveness in describing different sub-populations behaviors, and/or
urban mobility patterns, geographic information systems (GIS), and
so on [18]. Furthermore, equation-based models do not provide an
easy way to model different types of contacts [12], even though
many epidemic contagion operate in two ways: direct contagion
(person-to-person infection) and indirect contagion (infection via
an intermediary, such as another person, furnishings, clothing).

Agent-based Models (ABMs) are a modeling tool able to eas-
ily incorporate features related to population and society and are
widely adopted in epidemiology. ABMs allow researchers to natu-
rally include human-mobility data to model humans interactions
between the environment and/or other individuals. Typically, many
epidemic ABMs also exploit networks to define possible agents
interactions. Nowadays, online social networks (OSNs) users can
share their real-time location (Foursquare), geo-tagging media post
(Facebook and Instagram), reviewing businesses (Yelp). The grow-
ing popularity of these online platforms and the ubiquitous online
access provide gold data for studying users habits, lifestyle, and
mobility patterns to be included in ABMs.

In this paper, we focus on modeling direct and indirect contacts
by integrating them into a common design-methodology for the
analysis of epidemic spreads over a population of individuals, based
on an ABM that includes OSNs information to describe human-to-
human and human-to-environment interactions. Here, we exploit
OSNs as input to model interactions, but our methodology is suit-
able for any kind of human-mobility data. We consider classical
epidemic models (i.e. equation-based, such as SIR and SIS), inte-
grated into a simulation that mimic agents interaction by exploiting
OSNs data [21]. In our work, we propose an innovative modeling ap-
proach to study the propagation of an epidemic over a set of agents
considering many-to-many relationships by exploiting hypergraphs.
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A hypergraph is a generalization of the graph mathematical model,
where links (edges) represent not only pairwise relationships but
involve an arbitrary group of nodes (hyperedges). Thanks to their
ability to capture more complex scenarios than graphs, hypergraphs
are being increasingly used in many disciplines, like in social sci-
ences [35]. We based our research initiative on an extended version
of the hypergraph structure that includes time information about
contacts among individuals. As for the case of time-varying graphs
(TVG), we named it time-varying hypergraph (TVH) or temporal
hypergraphs. Our approach is thus focused on allowing scientists
to easily model in their ABM models direct and indirect contacts,
by exploiting the design power of TVHs. The major contributions
of this paper are summarized as follows.
• We formally define TVHs. For our literature review, we present

a novel definition of hypergraphs including time information on
hyperedges, and a suitable to model contact-networks.
• We introduce direct and indirect interactions between agents to
study the epidemic spreading through a TVH contact-network.
We assemble these aspects into an ABM design-methodology.
• We propose an epidemic diffusion algorithm on TVHs that con-
siders direct and indirect contagion pathways and enables to
reduce the over-estimation of an epidemic propagation analysis.
• We developed the SIS compartmental equation-model into an
ABM that exploits our methodology to simulate interactions
between agents and locations. We tested and analyzed this model
with real-world data from Foursquare. We further compared the
effect of direct and indirect contacts, and in particular, we showed
the importance of time in diseases diffusion.

The paper is organized as follows. In Section 2, we define temporal
hypergraphs both for modeling population mobility patterns and
to explore epidemic dynamics via direct and indirect contacts. Sec-
tion 3 reviews some relevant literature about epidemic analysis. Our
ABM design-methodology and the epidemic diffusion algorithm are
introduced in Section 4. Section 5 presents our experiments of an
ABM that uses the SIS model to propagate infections in an agents
population defined by real OSNs data. Finally, Section 6 details the
conclusion and future works.

2 PRELIMINARIES
Propagation of contagious diseases is a complex dynamic process
that holds abounding human behavior aspects. Thus, to correctly
resemble real diffusion dynamics, modeling tools with a high level
of expressiveness are required. By employing a TVH to describe a
contact network, we are able to minimize the effect of time and the
presence of only direct contacts. Not considering these two features
would mean over-estimating the whole disease propagation as a
link between two agents will exist even though they have been in
the same place but far in time. Many studies have analyzed how the
timing feature of contacts is crucial in epidemics [22]. TVGs [7, 11]
are a variant of the graph model, where a link between two nodes is
valid only for a given time interval. A contact-network can be easily
extended to include the time dimension by using TVG. However, a
TVG is not a definitive solution as the epidemic spreading process
may still be over-estimated for particular diseases. Individuals that
are in the same place at the same time come in contact with each

other and, as a result, there will be a link per each connection. In
this case, the information that ties a group of persons at the same
time in a particular geo-location is lost. To further enrich the TVH
model using important social dynamics, we include this approach
in an ABM simulation.
Agent-based models. An ABM is a class of computational models
that provides a bottom-up design approach to define a complex sys-
tem. As presented by Tracy et al in [27], ABMs are widely adopted
in epidemiology science. Frequently, they are used to integrate
GIS to simulate the spread of an epidemic in a particular envi-
ronment, as a result of individuals interactions generated by their
mobility over a geographical space [18]. ABMs are also suitable for
simulating the interactions of autonomous agents, and they can
describe a complex system at a micro-scale level [8]. By adopting
an ABM in this context, we are able to capture several important as-
pects of the epidemic dynamics, such as real human behaviors and
complex interactions. For instance, we need to simulate both the
indirect-contagion process among agents and environments, and
a direct-contagion process to accurately reproduce the spreading
phenomenon in the transmission of an airborne disease. The dura-
tion of a contact is another crucial aspect in these processes where
persons frequently change their habits according to socials events
and places popularity, as well as for pathogens proprieties that
exhibit different infection times for direct/indirect contacts. Gen-
erally speaking, many social and information contagions may be
cast in the epidemic methapor [23]. Also in these cases, ABMs are a
precious tool to examine influence diffusion and opinion formation
in OSNs [10, 13, 20, 29, 31].
Epidemic compartmental models on networks. Modeling a dis-
ease transmission introduces a trade-off between a high level of
details and computability. As described by Brauer in [5], there are
many mathematical models for studying and analyzing diseases
spreading. Compartmental is a class of models in which the study of
the transmission and population is divided into compartments and
assumptions on the nature and time rate of the spreading between
compartments themselves are made. Popular compartmental mod-
els - appropriate for most diseases transmitted by contact - are SIR
and SIS. In these models, the population is studied by partitioning
it into three classes labeled S(usceptible), I(nfected), and R(ecoverd).
In the SIR model, an individual belongs to one of these possible
classes, corresponding to an individual that is susceptible, infected
or recovered to the disease at a particular time. If the disease confers
no immunity against infection, individuals are not able to move
their status to recovered, and they will come back in the susceptible
class; in such cases, SIS can be adopted. The transmission patterns
of epidemics are defined by the pathogen proprieties, such as its
contagiousness, the length of its infectious period, and its severity;
on the other hand, these patterns are also defined by the network
structure within the population it is affecting, as described by Easley
et al. in [11]. The opportunities for a disease to spread from one
individual to another is given by a contact network, defining the
relationships between agents in an ABM model. A contact network
can be modeled by a graph. Formally, G = (𝑉 , 𝐸), where𝑉 is the set
of individuals and 𝐸 is the set of binary relationships between two
agents, which indicates whether two agents have come in contact
in a particular interval of time.
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Location-based social networks (LBSNs). LSBNs are OSNs in
which a geo-location dimension is added on top of the social struc-
ture. As described by Zheng in [34], a LBSN allows users to share
their locations, add geo-tags to their media, define a geographical
point of interest, and share their trajectory in travel/sports experi-
ence. In this work, we are particularly interested in LBSNs where
users can share their position at a particular time. This kind of
social interaction is named check-in in a place and corresponds to
the event that a user 𝑣 is in a location ℓ at time 𝑡 . For our purposes,
a LBSN is formally defined as a graph structure G = (𝑉 , 𝐸), where
𝑉 is the set of agents and 𝐸 is the set of edges that connects two
agents if they have been somewhere together.

2.1 Time-Varying Hypergraphs
Hypergraphs. Modeling a LBSN using the graph structure is not
enough expressive to easily simulate direct and indirect contacts
among individuals. Furthermore, a graph does not consider the
time a contact happens, feature proved to be a crucial aspect in
epidemic dynamics. To correctly model an epidemic propagation
in a many-to-many fashion and capturing that individuals, moving
through different locations, form a community in a given time and
space, we adopted hypergraphs. A hypergraph is a mathematical
model that generalizes the well-known graph model. Formally, it
is an ordered pairH = (𝑉 , 𝐸) where 𝑉 is a set of vertices and 𝐸 is
a set of edges. Each edge is a non-empty subset of vertices; that
is, 𝐸 ⊆ 2𝑉 \ {∅}, where 2𝑉 is the power set of 𝑉 . We will refer to
𝑛 = |𝑉 | and𝑚 = |𝐸 | for referring to the size of the vertex set and
the edge set, respectively.
Time-varying hypergraphs. To better mimic an epidemic spread-
ing, we included the time dimension within a contact network.
For this reason, we extended the definition of TVGs, presented by
Casteigts et al. in [7], to hypergraphs. Casteigts et al. define a TVG
considering a set of entities 𝑉 (or vertices), and a set of relation 𝐸

between vertices. They further consider an alphabet 𝐿 that defines
a particular propriety of the relationship between the entities, such
as the intensity of a relation in a social network or a location where
two individuals are placed. Accordingly, 𝐸 is defined as 𝐸 ⊆ 𝑉×𝑉×𝐿.
A TVG model evolves over time; therefore, relationships take place
over a time span T ⊆ T. For our purposes, we considered a simpler
version of the model, and we adapted it to hypergraphs.

Definition 2.1. A TVH is a hypergraphH = (𝑉 , 𝐸 ,T , 𝜌), where
𝜌 : 𝐸 × T → {0, 1} is an existing function, indicating if a given
hyperedge is accessible in a given time span.

For each 𝑡 ∈ T , we refer to the hypergraphH𝑡 = (𝑉 , 𝐸𝑡 ) as the
hypergraph corresponding to a particular time 𝑡 (i.e., 𝐸𝑡 = {𝑒 ∈
𝐸 : 𝜌 (𝑒, 𝑡) = 1}). The set of accessible hyperedges in a time span
𝑡 is

⋃(𝑒 ∈ 𝐸 : 𝜌 (𝑒, 𝑡) = 1). Figure 1 presents an instance of a
TVH (on the left) compared to its corresponding clique-graph or
two-section graph (on the right). It illustrates a trivial TVH made
up by 5 individuals (nodes), 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, and 3 geographical
locations (hyperedges), 𝐸 = {𝑃0, 𝑃1, 𝑃2}. Each hyperedge is labeled
with its corresponding availability time span 𝑡 = [𝑡𝑠 , 𝑡𝑒 ), T =

{[1, 2), [1, 3) , [3, 5), [4, 5)}. As described by Bretto in [6], the two-
section view ofH , denoted with [H]2, is a graph whose vertices are
the vertices ofH , and where two vertices form an edge if they are in
the same hyperedge. It is worth noting that the [H]2 representation

Figure 1: A simple TVHH (left) and its clique representation
G = [H]2 (right). Each hyperedge/edge is labeled with the
corresponding availability time span.

introduces a loss of information in the contact network. For instance,
it is not possible to recognize which is the time span when the
individuals 𝑎 and 𝑏 were both in the venue 𝑃0 or in the venue 𝑃1.

Definition 2.2. A TVH for an epidemic diffusion is a hyper-
graphH = (𝑉 , 𝐸,T , 𝜔), where
• 𝑉 is the set of 𝑛 vertices 𝑎 (users/agents);
• 𝐸 is the set of𝑚 hyperedges ℓ (geo-places or locations);
• T is the lifetime of the system;
• 𝜔 :𝑉 × 𝐸 ×T → {0, 𝑐𝑡𝑣,ℓ } is a function mapping whether a given
vertex 𝑣 has visited the location 𝑒 in a given time span 𝑡 . The
value 𝑐𝑡𝑣,ℓ is the last check-in time of 𝑣 in ℓ .

The 𝜔 function only keeps track of the last check-in time 𝑐𝑡𝑣,ℓ
for a vertex 𝑣 in a given location ℓ during a time span. If 𝑣 has not
checked-in in the same location ℓ or in another location ℓ ′ in a next
time span 𝑡 ′, the value of 𝑐𝑡𝑣,ℓ is still considered a valid check-in
time in the current timestamp 𝑡 . We store the last check-in time 𝑐𝑡𝑣,ℓ
of an vertex 𝑣 in a location ℓ as the weight of 𝑣 in the hyperedge
representing ℓ . This modeling strategy allows us to easily simulate
direct and indirect contagion processes over time: for each time
interval, we can effortlessly know in which place the user is. The
simulation time is split into fixed-width intervals of length Δ. Given
a total sampling timeΦ of a LBSN, the total number of time intervals
considered is |T | =

⌈Φ
Δ

⌉
.

3 RELATEDWORK
A review of epidemic processes in complex networks is given by
Satorass et al. [23]. After the analysis of the fundamental results in
classical epidemic modeling and the characterization of complex
networks, they discuss different methodologies to understand the
dynamics of contagion processes in the case of heterogeneous con-
nectivity patterns. In particular, they highlight the importance of
unveiling the interplay between epidemic processes and real-world
networks, whose structure is inherently dynamic, heavy-tailed and
community-based. In this context, taking into account the time
dimension is fundamental when studying contacts among individ-
uals [16, 26, 28] and immunization strategies [19, 24].

Accurately modeling interactions between persons and environ-
ments and keeping into account not only their contact network but
also the locations they have visited is another key-point towards
the understanding of epidemic dynamics. Jindal et al. [18] study
the evolution of mosquito-borne diseases through a generalized
agent-based model that integrates both geographic information and
census data to account for the spatial movement of infections, and
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climate data to capture the temporal nature of an epidemic. Singh
et al. [25] address the problem of modeling realist agent behaviors
for informing public health policies by developing a methodology
to create and calibrate and agent decision making problem for a
multi-agent simulation using survey data. Pathogen transmission
can involve direct and/or indirect pathways, as illustrated by Cortez
et al. in [9]. They describe how the transmission pathway can result
in quantitatively different epidemiological dynamics and to what
extent those differences can be used to identify the transmission
pathway from population-level time series.

Many works model the contact network as a graph and run the
SIS epidemic model on it. For instance, Peng et al [30] study the SIS
epidemic model with vaccination in a dynamical contact network of
moving individuals. Others exploit hypergraphs as a more accurate
structure to model contact networks. Bodò et al. [4] highlight how
a real model of an epidemic outbreak has to take into account two
factors: community structure and infection pressure. First, a person
may visit different places during the day - home, workplace, etc.
Even though it is known that the community structure has a strong
impact on the spread of the epidemic, it is important to consider
that the community itself is built up from smaller units. This idea
is translated into practice using different contagion probabilities
according to the place. Second, the probability that a susceptible
individual becomes infected in a unit is not proportional to the
number of infected individuals. To both model the community
structure and the non-linear dependence of the infection pressure,
they developed the theory of epidemic propagation on hypergraphs,
where each node is an individual and each hyperedge is a unit.
Furthermore, they discuss how a graph is not a well-suited structure
to capture this kind of relationship. They show that using a non-
linear function to model the infection pressure is crucial to do not
over-estimate the epidemic propagation.

We developed our epidemic model starting from the model pro-
posed by Bodò et al. [4], but we enhanced and generalized it by
including direct and indirect contacts exploiting TVHs (that ex-
tend the notion of temporal networks) and combining them into a
design-methodology for ABM.

4 EPIDEMIC DYNAMICS
4.1 An Agent-based Modeling Approach
An ABM is able to catch many aspects of human behaviors by
modeling individuals nature, and by including environments prop-
erties according to assumptions given by several disciplines, such
as psychology, social and natural science. Our work is based on the
intuition of exploiting TVH to simulate different kinds of interac-
tions between agents (direct contact) and environments (indirect
contact). By using our approach, the user can thus design an ABM
capable of handle both the time contacts happen and the infections
transmitted through the environment. As the spread of an epidemic
in a population is governed by social and structural dynamics, com-
bining a TVH vision of interactions into an ABM allows facing both
aspects in a single design-methodology. At each simulation step,
the researcher is naturally aware of who has been in contact with
whom, and consequently the probability the epidemic will spread
towards different locations. This approach also permits to model
health interventions at different scales. An example is answering

whether is better vaccinating people or carrying out health policies
in specific locations.

4.2 The Design-Methodology
We based the idea of our ABM design-methodology on the assump-
tion that an epidemic process is governed by humans interactions,
and that it is regularized by two spreading policies: direct and indi-
rect contagions (or contacts) between individuals and environments.
A direct contact implies a pairwise interaction between two indi-
viduals in the same community or location. On the other hand, an
indirect contagion embodies the interchanges that may happen
between agents and locations. These two types of contacts are a
natural consequence of the daily activities and commuting routes
of each person. For instance, when an agent moves from its home to
its workplace, it may be either infected by touching some furniture
or simply breathing contaminated air (indirect interaction), or by a
face to face talk with another agent (direct interaction).

In this work, we propose a diffusion algorithm whose spreading
process is designed in a discrete-events fashion. We exploit the TVH
structure to discover whether direct and/or indirect interactions
may happen. The time Φ is divided into discrete time intervals:
during each interval - corresponding to a simulation step - agents
are simulated according to their scheduling policy. Then, our diffu-
sion algorithm is performed. Specifically, time is discretized using a
given value Δ, corresponding to the sampling time-span length of
the TVH. In the case of a LBSN, this process is translated in a given
number of independent agents moving during the time over a set
of geographical location 𝐿. At each time interval 𝑡 , each user may
freely move in another location. As a consequence, the epidemic
has the chance of spreading from one location to another. Simulta-
neously, the outbreak may still spread across agents located in the
same place at a particular interval of time. When an agent moves to
a location ℓ𝑖 , it may thus be infected by direct or indirect contacts.
While direct contaminations require the co-presence of agents, in-
direct contacts happen between agents and the environment and
the co-presence is not required.
Formal definitions. In the following, we provide a formal defini-
tion of the concepts adopted throughout the rest of the paper.
• Φ is the time-span of the LBSN data sampling.
• T is the set of time intervals describing the evolution of the
relationships between agents and geo-locations.
• Δ is a real value (minutes, hours or days) corresponding to the
time discretization parameter. It further refers to the time-span
when indirect contagions may happen.
• 𝛿 is real - small - value (milliseconds, seconds orminutes) defining
when direct infections may take place. A direct contagion is
established if two agents arrive in the same location within a
time difference less than 𝛿 .
• 𝑡 is the current simulation time interval 𝑡 ∈ T .
• H = (𝑉 , 𝐸,T , 𝜔) is the TVH representing the LBSN (see def. 2.2).
• Γ𝑡 and N𝑡 define the neighborhood functions of an agent 𝑎 ∈ 𝑉
in a given simulation time 𝑡 . Specifically,

Γ𝑡 (𝑎) = {ℓ ∈ 𝐸 : 𝜔 (𝑎, ℓ, 𝑡) = 1},

is the set of locations visited by 𝑎 during the interval 𝑡 .
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N𝑡 (𝑎) is the set of neighbors of 𝑎 during the simulation time 𝑡 ,
which corresponds to the agents that visited at least one of the
locations visited by 𝑎. Formally,

N𝑡 (𝑎) =
⋃

ℓ∈Γ𝑡 (𝑎)
𝑉𝑡 (ℓ),

where 𝑉𝑡 (ℓ) denotes the set of agents that visited the location ℓ

during the interval 𝑡 .
• Υ(𝑎, ℓ) is a time function which provides the last check-in time of

the agent 𝑎 in the venue ℓ . In other words, it returns the weight
of 𝑎 in ℓ in the hypergraphH .
• T𝑡 (𝑎) and T𝑡 (ℓ) denote the infection state of an agent or a loca-
tion at a given time 𝑡 , respectively.
• X𝑡 (𝑎, 𝑏) is a direct contact function. Given two agents 𝑎 and 𝑏,
it returns 1 if they have a direct contact in the time span 𝑡 , 0
otherwise. Formally,

X𝑡 (𝑎, 𝑏) =
{
1, if ∃ℓ ∈ Γ𝑡 (𝑎) ∩ Γ𝑡 (𝑏) AND |Υ(𝑎, ℓ) − Υ(𝑏, ℓ) | < 𝛿

0, otherwise.

In the following, wewill remove the subscript 𝑡 when the simulation
time is clear from the context.
The diffusion algorithm. We considered the simulation proceed-
ing in |T | discrete steps. At each simulation step 𝑖 , every agent
independently runs its step function and updates its internal state,
which will be effective in the next simulation phase 𝑖 + 1. It is worth
noting that computing whether a direct contact takes place in a
fixed time interval 𝑡 ∈ T , information from the previous (𝑡 − 1) and
next (𝑡 + 1) intervals is required as well. Figure 2 details a snapshot
of an example hypergraph for a a time interval 𝑖 (about 3 hours),
containing 11 agents, and 4 locations (hyperedges). In this example,
dotted lines represent direct relationships. Hyperedges (drawn with
an oval shape) define indirect contacts. To easily compute direct
contagions, we stored the last check-in time of an agent as the
weight of that agent in the hyperedge corresponding to the location
it checked-in (see Section 2). During each time step, our diffusion
process proceeds in three contagious phases.
1. Agent-to-Environment. The first phase simulates the environment

infectiveness. For all non contaminated locations, (i.e., ℓ ∈ 𝐸 :
𝑇 (ℓ) = 0), we compute the number of infected agents that have
visited that location:

𝐼𝑒 (ℓ) =
∑

𝑎∈𝑉 (ℓ)
T(𝑎).

This value is then used to update the contagiousness level of ℓ
as expressed by the following:

T(ℓ) =
{
1, infected according to the value𝑓 𝑒 (𝐼𝑒 (ℓ))
0, not infected,

where 𝑓 𝑒 () is a non-linear function, typically adopted to govern
the behavior of the epidemic outbreak over the hyperedges [4].
In our experiments (see Section 5.2), we considered the following
regularization function:

𝑓 𝑒 (𝑥) =
{
𝑥, if 0 ≤ 𝑥 ≤ 𝑐

𝑐, if 𝑥 > 𝑐,

where 𝑐 is a constant value given as parameter.

Figure 2: An example of temporal direct/indirect contagion
(contacts) modeled with a hypergraph.

2. Agent-to-Agent. The second phase simulates the direct propaga-
tion process. For all non infected agents (i.e., 𝑎 ∈ 𝑉 : 𝑇 (𝑎) = 0),
the total number of infected neighbors is computed. Formally,

𝐼𝑑 (𝑎) =
∑

𝑏∈N(𝑎)
T(𝑏)X(𝑎, 𝑏) .

This value is then used to update the infection state of 𝑎, as

T(𝑎) =
{
1, infected according to the value 𝐼𝑑 (𝑎)
0, not infected.

3. Environment-to-Agent. The third and last phase simulate the
indirect propagation process. For all non infected agents, (i.e.,
𝑎 ∈ 𝑉 : 𝑇 (𝑎) = 0), we compute the number of infected locations
visited. Formally,

𝐼 𝑖 (𝑎) =
∑

ℓ∈Γ (𝑎)
T(ℓ).

This value is then used to update the infection state of 𝑎, as

T(𝑎) =
{
1, infected according to the value 𝐼 𝑖 (𝑎)
0, not infected.

It worth highlighting that the discussed diffusion algorithm can be
easily extended by implementing additional phases (before or after
the algorithm execution) describing supplementary agent behaviors.
Therefore, the algorithm is suitable for other typologies of ABMs.

5 EXPERIMENTS AND ANALYSIS
To evaluate the proposed approach and to what extent the described
design-methodology is capable of resembling the epidemic spread-
ing, we developed an ABM simulation running the SIS model over
a population of individuals. In particular, we tested the model ex-
pressiveness in distinguishing the epidemic diffusion via direct and
indirect contagion pathways (see Section 5.2). We further analyzed
the effect of time when modeling contacts by varying the values of
Δ and 𝛿 . This experiment allowed us to explore the dynamic of the
epidemic by increasing/decreasing the amount of direct/indirect
contacts (see Section 5.3). We experimented our model using real-
data from the social network Foursquare.
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Figure 3: Time difference distribution of check-ins within
the same place in 7 days andΔ = 4hours. Foursquare dataset.

5.1 The Foursquare Data set
In the ABM model we developed, each agent moves between geo-
locations over time and comes in contact, via direct or indirect
pathways, with other agents and with different environments (geo-
locations). To model individuals (agents) mobility patterns, we used
the Foursquare social network data [33] originated from the city
of Tokyo and crawled from 12 April 2012 to 16 February 2013.
The dataset contains 573, 703 check-ins, of 2, 293 users and 61, 858
locations (such as restaurants, plaza, cinema, sports and so on).

To estimate the value of the parameter 𝛿 , i.e., the time window
within which a direct contagion may occur, we examined the time
difference of check-ins happening in the same place over a period
7 days. We fixed Δ = 4 hours and analyzed the most crowded week
in the 10 months available (7− 14, May, 2012). Figure 3 presents the
distribution of the time difference evaluated pairwise over check-
ins within the same time interval. As shown, the data contain some
time windows where no check-ins are available (meaning that the
epidemic has no-probability to propagate). Generally, the majority
of the intervals exhibit the same trend with a median value of about
1 hour. Having estimated 𝛿 = 1 hour, we inspected the number of
direct contacts within each place using this value. Figure 4 shows
the distribution of direct contacts per location within each time
interval. Direct contacts are evenly distributed over the whole week,
with a median value of about 1, 750. Finally, we considered the dis-
tribution of indirect contacts. Figure 5 reveals how many different
places users have visited within each time interval. The plot shows
that users tend to visit (or, at least, checking-in) just one venue or a
very small number of them. Several outliers visit nearly 20 venues,
but no more than 30. As described in several work [2, 14, 32], this
may represent a typical kind of power-law behavior, where few
users post a lot while the majority posts few actions.

5.2 Experiment Formulation
In a typical SIS model, the infection and recovery states are ruled
by a Poisson process. Thus, either a susceptible individual or lo-
cation becomes (directly or indirectly) infected with a probability
1−𝑒−𝛽∗ 𝑓 (𝑛) . Here, 𝛽∗ denotes the infection rate per-contact (consid-
ering either direct or indirect contacts), 𝑛 is the number of infected
entities (either individuals or locations), and 𝑓 () is a non-linear
function used to bound the infection pressure for large value of
𝑛, as described in Section 3. Similarly, a contaminated individual
(location) recovers with probability 1 − 𝑒−𝛾∗ , where 𝛾∗ denotes

Figure 4: Number of direct contacts for each person in 7 days,
Δ = 4 hours, and 𝛿 = 1 hour. Foursquare dataset.

Figure 5: Number of indirect contacts for each person in 7
days, and Δ = 4 hours. Foursquare dataset.

the recovery rate for agents (environments). We embedded the de-
scribed SIS variant inside our diffusion algorithm. The parameters
in input to our model are listed in Table 1. To govern the epidemic
propagation via direct and indirect pathways, we used three values
for 𝛽 and two values for 𝛾 . The constant 𝑐 bounds the number of
considered contacts when evaluating 𝑓 ().

Listing 1 shows the pseudo-code of the ABM simulation process,
which exploits TVHs to consider both direct and indirect contagions
between agents and locations (see Section 4.2) when running the
SIS model. At line 1, a random number generator is created. Then,
the algorithm proceeds for a number of steps equal to the number of
intervals in T . In each step, the algorithm computes the hypergraph
corresponding to the current time 𝑡 using the function 𝜉 (line 3).
Right after, it runs the three epidemic diffusion phases. In the first
phase, Agent-to-Environment (lines 4 − 10), the infection status
of every location is updated. In the second phase, Agent-to-Agent
(lines 11 − 14), the epidemic is propagated through the network
using direct contacts and updating the infection status of the agents.
Finally, in the last phase, Environment-to-Agent (lines 15 − 21), the
epidemic is propagated using indirect contacts, and the infection
state of the agents is updated again. It is worth noticing that the
recovery process is computed only a single time for both agents
and locations.

5.3 Direct vs Indirect Contagions
According to our design-methodology and the previously described
SIS model, we developed an epidemic diffusion ABM model exploit-
ing the Julia language and the SimpleHypergraph.jl [1] library. We
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Parameter Description

𝛽𝑑 Probability that an agent 𝑎𝑖 is infected by another
agent 𝑎 𝑗 via a direct-contact in Agent-to-Agent

𝛽𝑖 Probability that an agent 𝑎 is infected via an indirect-
contact due to a location ℓ in Environment-to-Agent

𝛽𝑒 Probability that a location ℓ is infected by an agent in
Agent-to-Environment

𝛾𝑎 Probability that an agent 𝑎 spontaneously recovers
𝛾𝑒 Probability that a location ℓ is sanitized
𝑐 Number of contact in Agent-to-Environment

Table 1: Diffusion algorithm parameters.

tested to what extent our proposed model is able to distinguish the
epidemic spreading according to the direct and indirect contagion
pathways. In this experiment, we run our ABM simulation accord-
ing to two different parameters configuration of the SIS model. In
the first configuration (Low), we used 𝛽𝑑 = 0.2, 𝛽𝑖 = 0.1, 𝛽𝑒 = 0.06,
𝛾𝑒 = 0.06, 𝛾𝑎 = 0.1, and 𝑐 = 5. In the second configuration, (High),
we used 𝛽𝑑 = 0.8, 𝛽𝑖 = 0.4, 𝛽𝑒 = 0.26, 𝛾𝑒 = 0.06, 𝛾𝑎 = 0.1, and 𝑐 = 5.
Basically, we selected the value 𝛽𝑑 and computed 𝛽𝑖 =

𝛽𝑑
2 , and

𝛽𝑒 =
𝛽𝑑
4 . We chose the value of 𝛾 according to typical values of the

SIS model. We performed three kinds of experiments by varying the
parameter setting of the two configurations to exploit either direct
contacts, indirect contacts, or both. To have reliable results, we
run each experiment 10 times and we present their average values.
According to previous work [4], we set 𝑐 = 5. We fixed the value of
Δ = 4 hours and 𝛿 = 1 minutes, selecting these values according
to a realistic spreading policy for airborne disease transmission.
This setting suggests that indirect contacts may still happen if the
pathogen is deposited in the environment 4 hours before the indi-
rect contact, and direct contact can happen if two persons stay in
the same time of one minute. In each test, we initiated the state of
80% of the agents to susceptible and the remaining 20% to infected.
We used the most crowded month of the Foursquare data set.

Figure 6 illustrates how the number of infected agents evolves
according to the SIS spreading policies defined above. The first
interesting result regards the percentage of infected nodes using
both direct and indirect contacts. In both parameter configurations
(low and high), this value is not statistically different from the se-
ries obtained considering only indirect contagion pathways. This
finding suggests that indirect contacts have much more importance
in spreading the epidemic and, consequently, they should be in-
vestigated when studying epidemic diffusion processes that do not
necessarily involve a direct contact between two agents. To further
support this argument, we have to consider what happens when
examining only direct contacts. In both parameter configurations,
the epidemic diffusion will drop out, and eventually, all nodes will
be susceptible again. This result highlights how the epidemic dy-
namic - for this study - is extremely governed by the temporal
network evolution, and, even more, that the spreading opportunity
is strongly related to how human-mobility patterns are modeled.

5.4 Modeling the Effect of Time
The epidemic diffusion process and its impact on the population are
strictly related to the pathogens life cycle, and their survival time in

Algorithm 1 Epidemic Diffusion Simulation
1: 𝑟 ⊲ a random number generator ∈ [0, 1].
2: for 𝑡 ∈ T do
3: H ← 𝜉 (𝑡 )
4: for ℓ ∈ 𝐸 do ⊲ Agent-to-Environment.
5: if T𝑡 (ℓ) == 0 then
6: if 𝑟𝑛𝑒𝑥𝑡 < 1 − 𝑒−𝛽𝑒 𝑓 𝑒 (𝐼𝑒 (ℓ ) ) then
7: T𝑡+1 (ℓ) = 1
8: else if 𝑟𝑛𝑒𝑥𝑡 < 1 − 𝑒−𝛾𝑒 then
9: T𝑡+1 (ℓ) = 0
10: for 𝑎 ∈ 𝑉 do ⊲ Agent-to-Agent.
11: if T𝑡 (𝑎) == 0 then
12: if 𝑟𝑛𝑒𝑥𝑡 < 1 − 𝑒−𝛽𝑑 𝐼𝑑 (ℓ ) then
13: T𝑡+1 (𝑎) = 1
14: for 𝑎 ∈ 𝑉 do ⊲ Environment-to-Agent.
15: if T𝑡 (𝑎) == 0 then
16: if 𝑟𝑛𝑒𝑥𝑡 < 1 − 𝑒−𝛽𝑖 𝐼 𝑖 (ℓ ) then
17: T𝑡+1 (𝑎) = 1
18: else if 𝑟𝑛𝑒𝑥𝑡 < 1 − 𝑒−𝛾𝑎 then
19: T𝑡+1 (𝑎) = 0

the environment. In this experiment, we investigated how different
modeling of time intervals - within which a direct (𝛿) or indirect (Δ)
contagion may happen - impact on the epidemic spreading in the
network. It is worth noting that a smaller value of 𝛿 corresponds to
higher accuracy in computing direct contacts. Similarly, a smaller
value of Δ correlates to higher accuracy in computing indirect
contacts. We ranged the value of 𝛿 from 1 to 60 minutes, while the
value of Δ from 4 to 24 hours. We configured the model infection
parameters as in the previous experiment (described in Section 5.3),
applying the same two SIS configurations (Low and High) and
starting the simulation with a 20% of infected agents. As before, we
used the most crowded month of the Foursquare data set.

Figure 7 details how the percentage of infected nodes change
according to the different time intervals used to model contacts. The
top-left corner of the image shows the most accurate configuration
(𝛿 = 1 minute and Δ = 4 hours), the bottom right corner the less
accurate. As highlighted in the figure, direct contact pathways
become more relevant for the epidemic diffusion as the value of 𝛿
increments. However, initializing 𝛿 with a value too large would

Figure 6: Direct vs Indirect contacts within a period of 7 days,
setting Δ = 4 hours, and 𝛿 = 1 minute.
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Figure 7: Epidemic evolution over 1 month, varying the length of Δ (vertically) and of 𝛿 (horizontally).

mean computing too many direct contacts comparing to a real-life
system, and, therefore, over-estimating the epidemic propagation.
In practice, the contact network would be modeled as a graph rather
than a hypergraph. On the other hand, increasing the value of Δ
implies computing too many indirect contacts, and assuming a long
pathogens life. Determining the proper values of 𝛿 and Δ according
to given disease properties has fundamental importance to correctly
estimate the epidemic propagation using our design-methodology.

6 CONCLUSION AND FUTUREWORKS
In this work, we proposed a new approach to model an epidemic
propagation by adopting TVHs to design an ABM simulation able
to exploit direct and indirect contacts between individuals and en-
vironments. We introduced the new notion of TVH to describe
a complex population, where individuals move through different
locations over time, and where the TVH structure defines inter-
actions between agents and environments evolving over time in
an ABM simulation. We suggested a design-methodology which
integrates the idea of infection spreading via direct and indirect
contacts within an epidemic ABM. We also presented a diffusion
algorithm suitable for our methodology, which allows us to reduce
over-estimation in the epidemic dynamics. Furthermore, we devel-
oped - in Julia language - an epidemic ABM on top of our design-
methodology, and we used real-world data from the Foursquare
social network to model agents mobility patterns over a set of ge-
ographical locations. We performed several tests to validate the

methodology ability to both distinguishing epidemics spreading
via direct and indirect contagion, and estimating the impact of
time when modeling agent-to-agent and agent-to-environment in-
teractions. We proved that we could improve the accuracy of the
epidemic diffusion estimation by exploiting TVHs. Additionally,
we demonstrated the crucial importance of correctly model the
time interval of contagion to compute direct and indirect epidemic
diffusion pathways. The major limitation of our approach lies in
the intrinsic complexity of dealing with hypergraphs, as ad-hoc al-
gorithms and more computational resources are needed to execute
and validate ABM simulations.

We are currently working towards the development of immu-
nization and vaccination (for agents), and sanitization (for environ-
ments) strategies considering direct and indirect contacts. Future
work will focus on developing other classical compartmental mod-
els using our framework, and experimenting with the epidemic
ABM model on other real-world data, such as a more accurate mo-
bility pattern data as the users mobility trajectory in the Microsoft
GeoLife data 1.

1http://bit.ly/geolife
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