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ABSTRACT

Networked public goods games model scenarios in which self-

interested agents decide whether or how much to invest in an

action that benefits not only themselves, but also their network

neighbors. Examples include vaccination, security investment, and

crime reporting. While every agent’s utility is increasing in their

neighbors’ joint investment, the specific form can vary widely de-

pending on the scenario. A principal, such as a policymaker, may

wish to induce large investment from the agents. Besides direct in-

centives, an important lever here is the network structure itself: by

adding and removing edges, for example, through community meet-

ings, the principal can change the nature of the utility functions,

resulting in different, and perhaps socially preferable, equilibrium

outcomes. We initiate an algorithmic study of targeted network

modifications with the goal of inducing equilibria of a particular

form. We study this question for a variety of equilibrium forms

(induce all agents to invest, at least a given set S , exactly a given

set S , at least k agents), and for a variety of utility functions. While

we show that the problem is NP-complete for a number of these

scenarios, we exhibit a broad array of scenarios in which the prob-

lem can be solved in polynomial time by non-trivial reductions to

(minimum-cost) matching problems.
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1 INTRODUCTION

Groups of individuals often encounter the following type of sce-

nario. Each member of the group can decide whether or how much

effort (or money) to invest for the common good; everyone in the

group (including the individual) profits from all members’ efforts,

but the individual incurs a cost for the investment. Examples of

such scenarios include decisions whether or not to vaccinate, report

crime in a neighborhood, invest in security, chip in on department

committee work, keep one’s yard representable or sidewalk shov-

eled, or purchase a tool that one’s friends or neighbors can share.

These and many other scenarios are modeled by public goods

games [18, 22]. In many applications, including most of the ones

listed above, the benefits of an individual’s effort are not reaped by

all group members, but only by those with whom the individual

interacts. This naturally motivates the definition of networked public
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goods games [3, 4, 9], in which a (given, known) network captures

which individuals will benefit from which other individuals’ efforts.

In networked public goods games, an agent’s utility depends on

(1) her
1
own investment decision, which incurs some cost (in terms

of money, time, effort, or risk), and (2) the aggregate investment by

the agent and her neighbors in the network. (Precise definitions

of all concepts are given in Section 2.) While the agent’s utility

is always non-decreasing in the neighbors’ joint investment, the

specific functional form can vary widely. For example, it may suffice

to have a single friend with a useful tool, but lowering crime rates in

a neighborhood may require broad participation in crime reporting.

For practically all public goods scenarios, the equilibria involve

significant underinvestment. That is, significantly fewer agents

expend effort than would lead to a socially optimal outcome, a

phenomenon closely related to the so-called “Tragedy of the Com-

mons” and the “Bystander Effect.” This kind of underinvestment is

not only predicted by theory, but typically observed in practice as

well. When the equilibrium outcomes are socially undesirable, a

principal, such as a policymaker, may be interested in changing the

parameters of the game so as to induce equilibrium outcomes that

are better aligned with the social interest. A natural and traditional

approach is to change the cost structure, by rewarding investment

(decreasing investment costs) or punishing failure to invest (increas-

ing the cost of non-investment). For many of the scenarios listed

above, monetary fines, other types of penalties, or social pressure

implement such rewards or punishments. Generally, the design of

cost or reward structures and rules of encounter is at the heart of

work in mechanism and market design [21].

In graphical games, such as the networked public goods game,

however, there is an additional important parameter that may be

subject to modification: the network structure itself. For example, to

facilitate crime prevention, the principal may organize community

meetings in particular neighborhoods, increasing the density of the

social network among the community members. The principal may

also add individual links, for example, by introducing individuals

to one another, or weaken relationships (remove links) by adding

hurdles to specific interactions (e.g., if the public goods game rep-

resents strategic interactions in a criminal organization, and law

enforcement chooses which relationships to monitor).

We initiate an algorithmic study of targeted network structure

modifications in networked public goods games with binary actions,

with the goal of inducing pure strategy Nash equilibria (PSNE) with

desirable properties. We will consider a principal who is aiming

for “high investment.” Each edge has a cost for addition/removal,

and to induce a desirable equilibrium of the game, the principal can

1
For clarity, we will always refer to agents using female pronouns, and the principal

using male pronouns.
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add/remove edges from the network, subject to an upper bound on

the total cost.

Naturally, there are different concrete ways of capturing the goal

of “high investment,” and we consider the following four natural

candidate properties which the target equilibrium should satisfy:

(1) all agents invest, (2) exactly a given subset S of agents invest, (3)

at least the agents in a given subset S invest, and (4) at least r agents
invest. We study each of these objectives for games with a variety of

utility functions, ranging from general monotone functions to gen-

eralized sigmoid functions, as well as convex and concave functions.

While we show (in Section 3) that the problem is NP-complete for

several of these scenarios, we exhibit (in Section 4) a broad array of

settings in which it can be solved in polynomial time by non-trivial

reductions to minimum-cost matching problems. The full summary

of our main results is presented in Table 1.

all = S ⊇ S ≥ r

general hard hard hard hard

sigmoid poly poly hard hard

convex poly poly hard hard

concave poly poly hard hard

Table 1: An overview of our results.

For all entries of the table marked “poly,” our algorithms handle

fully general edge cost structures. On the other hand, all of the

hardness proofs apply already in very restrictive cases, allowing

only one of addition and removal, and either allowing unlimited

changes of the allowed type, or simply restricting the total number

of added/removed edges.

RelatedWork: Our work is conceptually connected to three broad

threads in the literature: graphical games, mechanism and market

design, and network design. Graphical models of games capture

various forms of structure in the players’ utility functions which

limit the scope of utility dependence on other players’ actions [24].

An important class of these are graphical games, where a player’s

utility only depends on the actions of her network neighbors [16].

Networked public goods games are one important example of graph-

ical games, with utilities only depending on the investment choices

by a player’s network neighbors [3, 10, 17]. Bramoullé and Kran-

ton [3] studied the effects of network structure modification on

a public goods game. Our results, however, are novel in several

respects. First, they assumed that only a single edge is added to

the underlying network and studied how the addition affects wel-

fare. In contrast, we consider addition and deletion of sets of edges,

and focus on the algorithmic aspects of the problem. Moreover,

Bramoullé and Kranton only consider strictly concave utility func-

tions, whereas we study convex, concave, and general sigmoid

utility functions (detailed definitions are in Section 2). Galeotti

et al. [10] also considered the effects of modifying the underlying

network of a public goods game on equilibrium behavior and wel-

fare. However, their analysis is restricted to convex or concave

utilities which are degree symmetric (i.e., if two nodes have the

same degree, they must have the same utility function), involves

incomplete information of players about the network, and does

not consider the associated algorithmic problem. In contrast, we

focus on algorithmic questions and allow heterogeneous utilities.

Yu et al. [29] studied algorithmic aspects of binary public goods

games They showed that in general, checking the existence of a

pure-strategy Nash equilibrim is NP-complete, and also identified

tractable cases based on restrictions of either the utility functions

or the underlying network structure. They proposed a heuristic to

compute approximate equilibria in general games. However, they

did not consider modifying the network structure to induce cer-

tain Nash equilibria. Grossklags et al. [13] studied how economic

agents invest in security through the lens of public goods games.

The value of the public goods is the overall protection level. Each

agent has two options: investing in self-protection, or investing in

self-insurance. The former affects the overall protection level, as

well as the loss incurred by the agent, while the latter only affects

the agent’s own loss. They analyzed the Nash equilibria under five

economic settings, which characterize different threat models.

Mechanism and market design (e.g., [21]) also aim to change the

parameters of a game to induce equilibrium outcomes favored by

a principal. However, the specific ways in which the game’s pa-

rameters are changed are vastly different; key approaches include

the design of market structure, such as matching market mecha-

nisms [14], payments, as in traditional mechanism design [21], or

the structure of information available to the players [7].

Anoter relevant line of research is network design. An interest-

ing subclass is network design with fair cost-sharing [2]. Network

design has also been applied to model security applications. Hota

and Sundaram [15] focused on designing an optimal network topol-

ogy that minimizes the expected fraction of attacked nodes, where

the probability of a node being attacked is a function of its security

investment as well as the investments by its neighbors.

The idea of altering a (social) network in order to induce certain

outcomes is present in a number of recent works, for a variety of

different outcomes. Sheldon et al. [23] aim to modify the network

so as to maximize the spread of cascades, while [6, 12, 27] aim

to alter the spectral gap of the network to make it more or less

connected. Along similar lines, Bredereck and Elkind [5] considered

the converging state of simple information diffusion dynamics,

with a specific focus on how the removal of edges can be used to

manipulate the majority opinion in such outcomes. Similar ideas

arise in a recent line of work (e.g., [19, 25] and the references therein)

studying how the outcome of an election can be manipulated by

altering network structures. In a sense, the converse problem is

studied by Amelkin and Singh [1], who aim to reduce opinion

control by recommending (i.e., adding) links to social network

users. Similar ideas are present in the work of Garimella et al. [11],

who aim to decrease opinion polarization by connecting pairs of

individuals with differing opinions. Sless et al. [26] investigated

the problem of coalition formation through adding links to the

underlying social network. All of these works share the high-level

goal of inducing (socially) preferable equilibrium behavior, but

the specific optimization goals, and with them the algorithmic

approaches, are vastly different.

An analysis of connections between equilibrium outcomes of

games and network structure was carried out by Bramoullé et al. [4].

They found that the smallest eigenvalue λmin of the network’s ad-

jacency matrix is a key quantity for equilibria; recall that spectral

properties also play a role in several of the other related papers
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discussed above. Bramoullé et al. also considered the effects of net-

work structure modification; in particular, they investigated how

the addition of edges affects λmin, which in turn provides a quali-

tative understanding of the effects of edge additions on equilibria.

However, they did not investigate the algorithmic issues involved.

Milchtaich [20] studied equilibrium existence as a function of net-

work topology in weighted network congestion games.

2 MODEL

2.1 Binary Networked Public Goods Game

A binary networked public goods (BNPG) game is characterized by

the following:

(1) A simple, undirected and loop-free graph G = (V ,E) whose
nodes V = {1, 2, . . . ,n} are the agents/players, and whose

edges E = {(i, j ) | i, j ∈ V } represent the interdependencies
among the players’ payoffs.

(2) A binary strategy space {0, 1} for each player i . Choosing
strategy 1 corresponds to investing in a public good, while

choosing 0 captures non-investment. We use xi to denote

the action chosen by player i , and x = (x1,x2, . . . ,xm ) for
the joint pure strategy profile of all players.

(3) For each player i , a non-decreasing utility function Ui (x ).

As is standard in the literature on networked public goods [3],

we assume that each player’s utility depends only on (1) her own

investment (for which she incurs a cost), and (2) the joint investment

of herself and her neighbors in the network, which provides her

with a positive externality. Formally, we capture this as follows.

Let N
(G )
i = {j | (j, i ) ∈ E} be the set of neighbors of i in the graph

G; then, we can define n
(G,x )
i =

∑
j ∈N (G )

i
x j to be the number of

i’s neighbors who invest under x . When G,x are clear from the

context, we will omit them from this notation. We assume that each

player i’s utility function is of the following form:

Ui (x ) = Ui (xi ,n
(x )
i ) = дi (xi + n

(x )
i ) − cixi . (1)

The second term (−cixi ) simply captures the cost that i in-
curs from investing herself. Each дi is a non-negative and non-

decreasing function (a standard assumption in the public goods

games literature), capturing the positive externality that i expe-
riences from her neighbors’ (and her own) investments. In many

scenarios, дi will have additional properties, such as being concave

or convex, and we discuss such properties in Section 2.3. Observe

that each function дi can be represented using O (n) values, so the

entire BNPG game (including the graph structure) can be repre-

sented using O (n2) values.
We are interested in inducing particular pure strategy Nash

Equilibria of the game by modifying the network structure. Pure

strategy Nash Equilibria are defined as follows:

Definition 2.1. In a BNPG game, a pure strategy Nash Equilibrium

(PSNE) is an action profile x ∈ {0, 1}n satisfying Ui (xi ,n
(x )
i ) >

Ui (1−xi ,n
(x )
i ), orUi (xi ,n

(x )
i ) = Ui (1−xi ,n

(x )
i ) and xi = 1, for ev-

ery player i . Thus, we are assuming that each player in equilibrium

always breaks ties in favor of investing.

A given BNPG game may have multiple equilibria. We will be

interested in modifying the graph G to ensure that at least one

element of a given set X is a PSNE. For notational convenience,

we interpret X both as a set of strategy vectors x ∈ {0, 1}n and as

the subset of investing players S (x ) := {i | xi = 1}, whichever is

notationally more convenient. We are interested in the following

classes of PSNE:

all: Every player invests, i.e., X = {{1, 2, . . . ,n}}.
= S : Exactly a given set S of players invests (and the other

players do not), i.e., X = {S }. All players investing is the

special case S = {1, . . . ,n}.
⊇ S : At least the set S of players invests; other players may

also invest. Here, X = {T | T ⊇ S }.
≥ r : At least r players invest. Here, X = {T | |T | ≥ r }.

In general, even without the ability to modify G, deciding if a

BNPG has an equilibrium in X is NP-hard. This can be seen most

directly with the following example (see also Section 3.2 of [3]):

Each cost is ci = 1, and each дi (z) = 2 if z ≥ 1, and дi (0) = 0. Then,

the PSNE are exactly the strategy profiles x in which independent

sets of G invest. Therefore, if X is the set of all profiles in which

at least r players invest (for given r ), the problem of deciding if

the game has a PSNE in X is equivalent to the Independent Set

problem.

2.2 Network Modifications

The main modeling contribution of our work is to assume that

a principal can modify the network G (subject to a budget) with

the goal of inducing equilibria from a class X. Formally, an input

graph G ′ = (V ,E ′) on the agents is given. Each node pair (i, j )
has an associated cost γ(i, j ) = γ(j,i ) ≥ 0. When (i, j ) ∈ E ′, this is
the cost for removing the edge (i, j ) from G ′, while for (i, j ) < E ′,
it is the cost for adding the edge (i, j ) to G ′. When the principal

produces a graph G = (V ,E), the cost of doing so is

∑
e ∈E△E′ γe =∑

e ∈E\E′ γe +
∑
e ∈E′\E γe . The principal is given a budget B not to

be exceeded. The goal is to solve the following problem:

Definition 2.2 (Network Design for BNPG). Given a BNPG in-

stance, edge costs γe , desired PSNE class X, and budget B, find
an edge set E with

∑
e ∈E△E′ γe ≤ B such that the BNPG game on

(V ,E) has at least one PSNE in X.

The general costs γ(i, j ) admit many natural special cases: by

setting γ(i, j ) = ∞ for (i, j ) ∈ E ′ (or for (i, j ) < E ′), we can prohibit

the removal (or addition) of edges. By settingγ(i, j ) = 0, we can allow

unlimited removal (or addition) of edges. And by setting γ(i, j ) = 1,

we can simply restrict the number of edges removed/added.

2.3 Utility Functions and Induced Degrees

In the fully general version of the model, theдi can be arbitrary non-
decreasing functions. We will show that at this level of generality,

the Network Design problem is NP-hard for all four classes of PSNE

we consider (Theorem 3.2). Inmost scenarios,дi will have additional
properties. Among the most common of these are:

Concavity When дi is concave, the returns for additional in-
vestments of neighbors are diminishing. The incentive struc-

tures in binary best-shot games [10] can be captured by con-

cave дi .
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Convexity When дi is convex, the returns for additional in-
vestments of neighbors are increasing.

Sigmoid For many natural scenarios, such as the adoption

of innovations [30], the дi are neither concave nor convex
on their entire domain. Instead, дi begins convex, with in-

creasing returns to more investors, but eventually reaches

saturation and diminishing returns.

We call such a function дi a (generalized) sigmoid function
2

if there exists some ẑ such that дi (z) is convex on {z | z ≤ ẑ}
and concave on {z | z ≥ ẑ}. Note that sigmoid functions

subsume both concave functions (with ẑ = −∞) and convex

functions (with ẑ = ∞).

The first useful observation is that we can capture all the relevant

information about an agent i’s utility function using the set of

numbers of investing neighbors that would make i invest. We call

such sets investment degree sets, and denote them by Di . When

дi is convex/concave/sigmoid, the investment degree sets have

particularly nice forms, captured by the following lemma:

Lemma 2.3. For every non-decreasing functionдi : [0,n−1]→ R+
and cost ci , there exists a unique set Di ⊆ {0, 1, . . . ,n − 1} such that

xi = 1 is a best response to ni if and only if ni ∈ Di . Furthermore,

(1) When дi is concave, Di is a downward-closed interval.

(2) When дi is convex, Di is an upward-closed interval.

(3) When дi is sigmoid, Di is an interval.

Conversely, for every set Di ⊆ {0, 1, . . . ,n − 1}, there exists a non-
decreasing function дi : [0,n − 1]→ R+ and cost ci such that xi = 1

is a best response to ni if and only if ni ∈ Di . Furthermore,

(1) When Di is a downward-closed interval, there exists such a дi
which is concave.

(2) When Di is an upward-closed interval, there exists such a дi
which is convex.

(3) When Di is an interval, there exists such a дi which is sigmoid.

Proof. We write ∆дi (z) = дi (z + 1) − дi (z) for the discrete

derivative. By definition of best responses (recall our tie breaking

rule), a player i invests if and only if Ui (1,ni ) ≥ Ui (0,ni ), which is

equivalent to

∆дi (ni ) ≥ ci . (2)

Thus, letting Di = {z | ∆дi (z) ≥ ci }, we obtain that xi = 1 is

the best response to z iff z ∈ Di , proving the first claim. We now

consider the three special cases:

(1) When дi is concave, ∆дi is non-increasing. Therefore, when-
ever ∆дi (z) ≥ ci , we also have ∆дi (z− 1) ≥ ci , meaning that

Di is downward closed.

(2) When дi is convex, ∆дi is non-decreasing. The rest of the
argument is exactly as for the concave case.

(3) When дi is sigmoid, ∆дi is non-decreasing on [0, ẑ] and non-
increasing on [ẑ,n − 1], with the maximum attained at ẑ.
Therefore, Di is an interval.

2
There are several definitions for the term sigmoid function, requiring various nor-

malizations, smoothness properties, or even specific functional forms (e.g., logistic).

Here, we use the term in the very broad sense.

For the converse, given a set Di , define a discrete derivative of

∆дi (z) = 2 if z ∈ Di , and ∆дi (z) = 0 if z < Di . Normalizing with

дi (0) = 0, and setting ci = 1, player i will invest iff z ∈ Di . If Di is

an interval, then дi will start out as the constant 0, have slope 2 over
the interval, and then become flat at the end of the interval. Thus, дi
is a sigmoid. If the interval is downward-closed, then the function

is concave; if it is upward-closed, the function is convex. □

The characterization of Lemma 2.3 makes precise our intuition

behind considering concave/convex дi . It shows that when дi is
concave, then the fewer neighbors invest, the more i is prone to
invest. On the other hand, when дi is convex, then the more neigh-

bors invest, the more i is prone to invest. The primary benefit of

Lemma 2.3 is that the Network Design problem can now be con-

sidered solely in terms of Di and induced numbers of investing

neighbors, rather than utility functions, simplifying the arguments

below.

Definition 2.4 (Network Design for Degree Sets (NDDS)). The prob-

lem NDDS (P,X) is defined as follows: Given a graphG ′ = (V ,E ′),
investment degree sets Di for all players i consistent with a func-

tion property P (such as convexity, concavity, sigmoid, or general),

edge costs γe , desired PSNE class X, and budget B, find an edge

set E with

∑
e ∈E△E′ γe ≤ B such that there exists a set I ∈ X of

investing players with

|N
(G )
i ∩ I | ∈ Di for all i ∈ I ,

|N
(G )
i ∩ I | < Di for all i < I .

Here, G = (V ,E) is the modified graph.

Because the investment degree sets Di can be efficiently con-

structed from theдi and ci and vice versa, an algorithmic solution or

a hardness result for the NDDS (P,X) problem immediately yields

the same result for the corresponding Network Design problem

from Definition 2.2, and vice versa.

3 HARDNESS RESULTS

In this section, we prove the hardness results from Table 1. Hard-

ness arises in different ways for different cases, and we treat them

separately. For all versions, the problem is obviously in NP: a set I
of investing agents forms a polynomial-sized witness, and it is easy

to verify that (1) for each agent in I , investing is a best response,

and (2) I ∈ X.

NDDS (convex/concave, ≥ r ). When the goal is to get at least

r agents to invest, NP-hardness follows from the discussion in

Section 2.1. Even when all edge costs γ(i, j ) = ∞, i.e., the principal
cannot add or remove any edges, it is NP-hard to decide whether

the BNPG has an equilibrium in which at least r agents invest.

NDDS (concave, ⊇ S ). When the goal is to get a superset of a

given set S of agents to invest, it is NP-hard to decide whether a

suitable equilibrium exists. Since concave functions are a special

case of sigmoid functions, this result implies the hardness result

for sigmoid functions as well.

Theorem 3.1. NDDS (concave, ⊇ S ) is NP-hard.

Proof. The reduction is from Independent Set. Given a graph

H = (VH ,EH ) and an integer k , the problem is to decide if H
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contains an independent set of size (at least) k , i.e., a set T ⊆ VH
such that no pair in T is connected by an edge. For the reduction,

we add two nodes u, û. u has an edge to û as well as to all nodes in

VH ; no other edges are added to EH . The degree sets are Dv = 0 for

all v ∈ VH ∪ {û}, Du = {0, 1, . . . ,k }, and S = {û}. We set all edge

addition/removal costs to∞.

If H has an independent set T of size at least k (without loss of

generality, T is inclusion-wise maximal), then setting I = T ∪ {û}
gives us a superset of S . No v ∈ I has a neighbor in I , so all of them
invest. Each v ∈ VH \ I has at least one neighbor in I , so none of

them invest. Finally, u has at least k + 1 neighbors in I , so u does

not invest.

Conversely, if a superset I ⊇ S = {û} invests, then u < I . There-
fore, u must have at least k + 1 neighbors in I ; in particular, u has

at least k neighbors in VH . Because all of those neighbors are in I ,
their degrees within I must be 0, so they must form an independent

set of size at least k . This completes the proof of NP-hardness. □

NDDS (general, all). For fully general functions дi , we show that

even the “easiest” goal — getting all agents to invest — is NP-hard.

This immediately implies NP-hardness of the other cases (getting

exactly or at least a subset S or at least r agents to invest), since

their special cases S = V or r = n are hard.

Theorem 3.2. NDDS (general, all) is NP-hard.

Proof. We prove NP-hardness by a reduction from the Vertex

Cover (VC) problem. In an instance of VC, we are given a graph

H = (VH ,EH ) and a positive integer k , and asked if H has a vertex

cover of size at most k , i.e., a subset S ⊆ VH of at most k nodes such

that each edge e ∈ EH has at least one endpoint in S . From H ,k , we
construct an instance of NDDS (general, all), consisting of a graph

G ′ = (V ,E ′), investment degree sets Di for each node i ∈ V , costs

γ(i, j ) for edge addition/removal, and a budget B.
The set of nodes V consists of VH , one vertex ue for each edge

e ∈ EH , and one additional vertexw . The edges E ′ are as follows:

• w is connected to all nodes in VH .

• There is an edge between v and ue if and only if v is an

endpoint of e in H .

Let dH (v ) be the degree ofv in H . We define the investment degree

sets for the agents as follows:

• For every v ∈ VH , we let Dv = {0,dH (v ) + 1}.
• For every ue , we let Due = {1, 2}.

• Dw = {0, 1, . . . ,k }.

Finally, we set the costs γe = 0 for e ∈ E ′, and γ(i, j ) = ∞ for (i, j ) <
E ′. The budget is B = 1 (or really any non-negative number). Thus,

the principal can remove as many edges as he wants, but cannot

add any edges. This completes the reduction, which obviously runs

in polynomial time.

First, assume that H has a vertex cover of size at most k . We

show that there is a way to remove edges from E ′ such that each

player i’s degree ends up in Di . Let S be the vertex cover of H . Let

E ⊆ E ′ be the set of all edges not incident onVH \S . Then,w is only

incident on edges whose other endpoint is in S , so it has degree at

most k . Each nodev ∈ VH \S has all its edges removed, so its degree

is 0. Each node v ∈ S is connected to dH (v ) nodes corresponding
to the dH (v ) edges incident on v in H , plus its one edge to w , so

its degree is dH (v ) + 1. Finally, because S is a vertex cover, each

node ue is incident on at least one node v ∈ S , so its degree is 1 or

2. Thus, we have shown that each node i ∈ V has degree in Di .

For the converse direction, assume that there is a set E ⊆ E ′ of
edges such that in G = (V ,E), each node i has degree in Di . Let

S = {v ∈ VH | (w,v ) ∈ E} be the set of vertices whose edge to w
is kept. Because the degree ofw is in Dw , we get that |S | ≤ k . For
each node v ∈ VH \ S , at least the edge to w was removed, so its

degree cannot be dH (v ) + 1. Therefore, its degree must be 0, so E
cannot contain any edges incident on any v ∈ VH \ S . For each
nodev ∈ S , at least the edge tow was retained, so its degree cannot

be 0. Therefore, its degree must be dH (v ) + 1, so E must contain

all edges incident on all v ∈ S . Finally, because each node ue has

degree in {1, 2} in (V ,E), each must have a neighbor in S . In other

words, each edge e ∈ EH has at least one endpoint in S . This proves
that S is a vertex cover of H . □

NDDS (convex, ⊇ S ). Finally, we show that NDDS (convex, ⊇ S )
is NP-hard. In contrast with the proof of Theorem 3.2, the hardness

result for convex functions has to use edge costs other than 0 and

∞. The reason is that for convex sets, higher degrees are always

preferable. Consequently, a principal will never remove edges (even

if they are free to remove). On the other hand, if edge additions

are free, the principal’s optimal strategy is clearly to make G the

complete graph. Either this will induce all nodes in S to invest, or

no graph G will.

Theorem 3.3. The problem NDDS (convex, ⊇ S ) is NP-hard, even
when γ(i, j ) = 1 for all (i, j ) < E ′, and γe = 0 for all e ∈ E ′.

Proof. We prove NP-hardness by a reduction from thek-Cliqe

problem. In an instance of k-Cliqe, we are given a graph H =
(VH ,EH ) and a positive integer k , and asked if H has a clique of

size at least k , i.e., a subset S ⊆ VH of at least k nodes such that

(u,v ) ∈ E for all u,v ∈ S,u , v . From H ,k , we construct an

instance of NDDS (convex, ⊇ S ), consisting of a graphG ′ = (V ,E ′),
investment degree sets Di for each node i ∈ V , costs γ(i, j ) for edge
addition/removal, and a budget B.

The graph G ′ consists of H , with a node-disjoint clique on nk
nodes added.We call the set of new nodesV ′, andwriteV = V ′∪VH .

Thus, the new graph has nk + n nodes. The investment degree of

every node i is Di = {nk +k −1, . . . ,nk +n}. The cost of adding any
non-existing edge (i, j ) is γ(i, j ) = 1, and the cost for removing any

existing edge e is γe = 0. The budget is B = nk2. Notice that the Di
by Lemma 2.3 indeed correspond to convex functions дi . Finally,
the goal is to get a superset of V ′ to invest.

First, assume that H has a clique S of k nodes. Let E consist of all

edges ofG ′, plus a complete bipartite graph betweenV ′ and S . This
added bipartite graph contains kn · k = k2n edges, so it satisfies the

budget constraint. It is now immediate that each node inV ′∪S has

degree at least nk + k − 1. The nodes inVH \ S have degree at most

n − 1. As a result, setting I = V ′ ∪ S satisfies Definition 2.4.

Conversely, let E be a set of edges with |E \E ′ | ≤ nk2, and I ⊆ V ′

a set of vertices such that in the graph (V ,E), each node v ∈ I has
at least nk + k − 1 neighbors in I , and each node v < I has at most

nk + k − 2 neighbors in I . First, because each node v ∈ V ′ started
out with degree nk − 1 and has at least nk + k − 1 neighbors in I ,
E \ E ′ must contain at least k incident edges for each such v . And
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because E ′ already contained a clique on V ′, these edges must be

between V ′ and VH , so none of them are incident on two nodes

of V ′. Therefore, E \ E ′ contains exactly k incident edges on each

v ∈ V ′.
Let S be the set of neighbors of V ′ in VH . First, |S | ≥ k , because

each node v ∈ V ′ is adjacent to k nodes in VH . Next, we claim that

I = V ′ ∪ S . First, all nodes in S must be in I . The reason is that each

v ∈ V ′ has degree exactly nk +k − 1, so if even one of its neighbors

were not in I , it couldn’t have the required nk + k − 1 neighbors
in I . Second, no node in VH \ S can be in I , because its degree is at
most n − 1 < nk + k − 1.

For every nodev ∈ S , let k (v ) be the number of neighbors ofv in

S ∪V ′ in the graphG = (V ,E). Because S ⊆ I , we can lower-bound

k (v ) ≥ nk+k−1. On the other hand,

∑
v ∈S kv ≤ |S | · ( |S | −1)+nk

2
,

and because the minimum kv is at most the average, we get that

nk+k−1 ≤ minv ∈S kv ≤ ( |S |−1)+ nk
2

|S | . Rearranging this inequality

gives us that |S |(nk + k − |S |) ≤ nk2. The left-hand side is a strictly

concave function of |S |, and therefore attains its minimum at one

of its endpoints |S | ∈ {k,n}. At |S | = k , the inequality holds with

equality, while at |S | = n, it is violated. Therefore, |S | = k is the

only feasible solution of the inequality. Because each v ∈ S only

has nk neighbors in V ′, and none of its neighbors in VH \ S are in

I , each v ∈ S must have k − 1 neighbors in S . In other words, S is a

clique of size k in H . □

4 TRACTABLE CASES

In this section, we give polynomial-time algorithms for the cor-

responding cases in Table 1. At the core of our algorithms lies a

construction for the NDDS (sigmoid,all ) problem, which is based

on a reduction to the Minimum-Cost Perfect Matching problem.

This reduction is a significant generalization of Tutte’s reduction

for finding a subgraph with a given degree sequence. The Perfect

Matching problem is polynomial-time solvable by utilizing the

Blossom Algorithm proposed by Edmonds [8]. The remaining cases

are either special cases of NDDS (sigmoid,all ), or can be reduced

to NDDS (sigmoid,all ) fairly directly.

4.1 Tractability of NDDS (sigmoid,all )
Consider an instance of NDDS (sigmoid,all ), consisting of a graph

G ′ = (V ,E ′), investment degree sets Di , costs γ(i, j ) for edge addi-
tion/removal, and a budget B. The principal wants to modify G ′ to
G = (V ,E) (at total cost at most B), such that all agents invest in a

PSNE of the corresponding game. We construct an instance of the

weighted perfect matching problem on a graph H = (VH ,EH ) and
show that the principal has a graph modification of cost at most B
available iff G has a perfect matching of total cost at most B. Our
construction generalizes Tutte [28]. We begin by describing Tutte’s

construction, and then present our generalization.

Tutte’s reduction applies to the special case when edges can

only be removed, and furthermore, each investment degree set

Dv = {dv } is a singleton, called the desired degree of v . Each node

v must have exactly ∆dv := dG′ (v ) − dv of its edges removed. To

encode this, Tutte’s construction adds a node set X−v of ∆dv nodes

x−v, j , j = 1, . . . ,∆dv . Furthermore, it adds two nodes y−e,v , y
−
e,u for

every edge e = (u,v ). These two nodes are connected to each other,

and to all nodes in their respective sets X−v , X
−
u . It is clear that

the construction takes polynomial time. Any perfect matching has

to match all of the nodes in each X−v , capturing exactly the edges

incident on v to be deleted. Because for each edge e = (u,v ), both
y−e,v and y−e,u must be matched, either they are matched to each

other (encoding that the edge is not deleted), or they must both be

matched with nodes from the corresponding X−v and X−u sets. It is

now straightforward that the new graph has a perfect matching

iff the desired degree sequence can be obtained by edge removals.

Edge removal costs can be assigned to the edges between X−v and

the y−e,v .
Because the addition of edges corresponds to the removal of

edges in the complement graph, a practically identical construction

can be used directly if the goal is only to add, rather than remove

edges. However, in NDDS (sigmoid,all ), the principal can both add

and remove edges. Furthermore, the investment degree sets Di can

be intervals containingmultiple values. This necessitates significant

extensions to Tutte’s construction.

We now describe our generalized construction, where a graph

H = (VH ,EH ) is constructed from G ′. For every agent i ∈ V , the
degree inG ′ isdG′ (i ), and the degree set isDi = {Li , . . . ,Ri }, where
Li (resp., Ri ) is the minimum (resp., maximum) ofDi . If any setDi is

empty, then the instance clearly has no solution, and this is easy to

diagnose. From now on, we assume that Di , ∅ for all i . At the core
of the construction is the union of the Tutte construction for both

additions and removals of edges. Thus, for each edge e = (i, i ′) ∈ E ′

(a candidate for removal), we add two nodes y−e,i and y
−
e,i′ with an

edge between them; similarly for each node pair e ′ = (i, i ′) < E ′ (a
candidate for addition), we add two nodes y+e ′,i and y

+
e ′,i′ with an

edge between them.

Next, we describe the node gadget for a node i . An illustrative

example is shown in Figure 1.We add a setX+i ofmin(Ri ,n−dG′ (i )−
1) nodes x+i, j (blue nodes in Figure 1), corresponding to additions

of edges, and a set X−i of min(n − Li − 1,dG′ (i )) nodes x
−
i, j (green

nodes in Figure 1), corresponding to edge removals. These are hard

upper bounds on the number of possible edge additions/removals:

for |X+i |, the first term arises because even if all existing edges

were deleted, no more than Ri new edges can be safely added;

the second term is because there are only n − dG′ (i ) − 1 potential
edges for addition. The justification is similar for |X−i |. As in Tutte’s

construction, we add an edge between each node x+i, j and eachy
+
e ′,i .

Similarly, we add an edge between each node x−i, j and each y−e,i .

Finally, we add a complete bipartite graph between X−i and X+i .
As in Tutte’s construction, including an edge between x+i, j and

y+e ′,i in a matching corresponds to adding the edge e ′ (increasing

the degree of i), and including the edge (x−i, j ,y
−
e,i ) corresponds to

removing the edge e , decreasing the degree of i . Because no other

edges are incident on y+e ′,i , y
−
e,i , for any edge e = (i, i ′), either

y−e,i is matched with y−e,i′ , or both are matched with nodes from

X−i (resp., X−i′ ); similarly for the y+e,i nodes. The complete bipartite

graph between X−i and X+i allows us to encode that adding one

fewer edge and removing one fewer edge has the same effect on i’s
degree as adding and removing one more edge.

We now expand the gadget to encode the set Di . The intuition

for the generalized gadget is the following: if k+i nodes in X+i are

matched with nodes y+e ′,i , and k
−
i nodes in X−i are matched with
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Figure 1: Example to illustrate our generalized construction. Left: An example graph where dG′ (i ) = 2, Di ={4, 5, 6}, and n = 10;

Right: the subgraph H (i ) associated with i.

nodes y−e,i , then the new degree of i is dG′ (i ) +k
+
i −k

−
i . We want to

force this number to be in Di = [Li ,Ri ] for every perfect matching.

If we let
ˆk+i = |X

+
i | − k

+
i and

ˆk−i = |X
−
i | − k

−
i be the number of

nodes in X+i , X
−
i that are matched differently (i.e., not with y+e ′,i ,

y−e,i ), then the necessary/sufficient condition can be expressed as

ˆk−i −
ˆk+i ∈ [Li − (dG′ (i ) + |X

+
i | − |X

−
i |),Ri − (dG′ (i ) + |X

+
i | − |X

−
i |)].

Furthermore, notice that our gadget will only need to work if at

least one of
ˆk−i ,

ˆk+i is 0, since the complete bipartite graph between

X−i , X
+
i can always be used to ensure this condition.

Let σi = dG′ (i ) + |X
+
i | − |X

−
i |. A case distinction on the possible

cases of the minimum in the definitions of |X+i |, |X
−
i | shows that

we always have Li ≤ σi ≤ Ri . Therefore, Li − σi ≤ 0 ≤ Ri − σi .
We generate two more node sets Z+i , Z

−
i . Z

+
i consists of σi − Li

nodes z+i, j , and Z
−
i consists of Ri −σi nodes z

−
i, j . There is a complete

bipartite graph between Z+i and X+i , as well as between Z
−
i and X−i .

In addition, there is a complete graph on the union of all of the Z+i
and Z−i , for all i . If the total number of nodes in the construction is

odd, then we add one more node ẑ and connect it to all nodes in all

of the Z+i and Z−i . The z
+
i, j , z

−
i, j are there to match any otherwise

unmatched nodes x+i, j , x
−
i, j . Whichever ones of them are not needed

can be matched with each other and with ẑ.
Finally, for every edge e = (i, i ′) ∈ G ′, we assign a cost of γe/2

to the edges (x−i, j ,y
−
e,i ) and (x−i′, j ,y

−
e,i′ ) (for all j); similarly, for

every edge e ′ = (i, i ′) < G ′, we assign a cost of γe ′/2 to the edges

(x+i, j ,y
+
e ′,i ) and (x+i′, j ,y

+
e ′,i′ ) (for all j). All other edges have cost 0.

The cost bound for the perfect matching is the given budget B. The
correctness of this reduction is captured by the following theorem:

Theorem 4.1. The graph H has a perfect matching of total cost

at most B if and only if there is an edge modification E of the input

graph G ′ such that in (V ,E), the degrees of all nodes i are in their

respective investment sets Di .

Proof. First, we assume that there is an edge set E ⊆ V × V
such that

∑
e ∈E′△E γe ≤ B, and in the graphG = (V ,E), every node

i has degree dG (i ) ∈ Di . We define a perfect matchingM in H .

For edges e = (i, i ′) ∈ E ∩ E ′, the matching includes the edge

(y−e,i ,y
−
e,i′ ); similarly, for edges e ′ = (i, i ′) < E, e ′ < E ′, it contains

the edge (y+e ′,i ,y
+
e ′,i′ ).

Now focus on one node i . Let k+i , k
−
i be the numbers of edges that

were added to (resp., removed from) i , i.e., the numbers of edges

incident on i in E\E ′ and E ′\E. Let e ′
1
, . . . , e ′k+i

be an enumeration of

the added edges (in arbitrary order), and e1, . . . , ek−i
an enumeration

of the removed edges in arbitrary order. For each e ′j , the matching

M includes the edge (x+i, j ,y
+
e ′j ,i

); similarly, for each ej ,M includes

the edge (x−i, j ,y
−
ej ,i ). Doing this for all i ensures that all nodes

y+e ′,i , y
−
e,i are matched, and the total cost of all edges is exactly∑

e ∈E′△E γe ≤ B. This cost will not change by the inclusion of later

edges, since they all have cost 0.

Next, letmi := min( |X+i | − k
+
i , |X

−
i | − k

−
i ). Notice thatmi ≥ 0,

because our definition of |X+i |, |X
−
i | ensured that no edge set E with

dG (i ) ∈ Di could add/remove more than |X+i | (resp., |X
−
i |) edges.

We next add a perfect matching ofmi edges (x
+
i,k+i +j

,x−i,k−i +j
) for

j = 1, . . . ,mi . At this point, at least one of the sets X+i , X
−
i is

completely matched. For the remaining description, assume that

X−i is fully matched — the other case is symmetric. Now, there are

|X+i | − k
+
i −mi ≤ |X

+
i | − |X

−
i | + (k−i − k

+
i )

= (σi − dG′ (i )) + (k−i − k
+
i )

= σi − dG (i )

unmatched nodes in X+i . Because dG (i ) ∈ Di , it must satisfy

dG (i ) ≥ Li ; therefore, because Z
+
i contains σi − Li ≥ σi − dG (i )

nodes, it has enough nodes to perfectly match the remaining nodes

of X+i — we add such a perfect matching. Finally, we add a perfect

matching on the unmatched nodes of all Z+i , Z
−
i (and ẑ) — this
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is possible, because H contains a complete graph on these nodes,

the total number of nodes in H is even, and the number of nodes

matched so far is (by definition of a matching) even. Thus, we have

shown that H contains a perfect matching of the desired cost.

For the converse direction, we assume that H contains a perfect

matchingM of cost at most B. Define edge sets E+ = {e ′ = (i, j ) <
E ′ | (y+e,i ,y

+
e,i′ ) < M } and E− = {e = (i, j ) ∈ E ′ | (y−e,i ,y

−
e,i′ ) < M }.

That is, E+ consists of the edges for which addition was encoded

in the Tutte reduction part, and E− of the edges for which removal

was encoded in the Tutte reduction part. Let E = E ′ ∪ E+ \ E−.
BecauseM is a perfect matching, it must include edges of the form

(x+i, j ,y
+
e ′,i ), (x

+
i′, j ,y

+
e ′,i′ ) for all edges e

′ = (i, i ′) ∈ E+, and edges

of the form (x−i, j ,y
−
e,i ), (x

−
i′, j ,y

−
e,i′ ) for all edges e = (i, i ′) ∈ E−. In

particular, the total cost of E△E ′ is exactly B.
It remains to show that in the graph G = (V ,E), each node

i has degree dG (i ) ∈ Di . Let k
+
i be the number of edges in E+

incident on i , and k−i the number of edges in E− incident on i . Then,
because the y+e ′,i for e

′ ∈ E+ are not matched to y+e ′,i′ , they must

be matched to some x+i, j ; similarly, the y−e,i for e ∈ E
−
are matched

to some x−i, j . In particular, this means that k+i ≤ |X
+
i |,k

−
i ≤ |X

−
i |.

Furthermore, becauseX+i andX−i are completely matched, and they

can only be matched with each other and y+e ′,i and Z
+
i (y−e,i , or Z

−
i ,

respectively), we infer that ( |X+i | −k
+
i ) − ( |X

−
i | −k

−
i ) ≤ σi −Li and

( |X−i | − k
−
i ) − ( |X+i | − k

+
i ) ≤ Ri − σi . Substituting the definition of

σi , these inequalities rearrange to Li ≤ dG′ (i ) + k
+
i − k

−
i = dG (i )

and Ri ≥ dG′ (i ) + k+i − k−i = dG (i ). Thus, we have shown that

dG (i ) ∈ [Li ,Ri ], so the degree constraint for i is met. Since this

holds for all i , the proof is complete. □

The reduction clearly runs in polynomial time (and is in fact

fairly straightforward), and the Minimum-Cost Perfect Matching

problem is known to be solvable in polynomial time [8]. Thus, we

obtain a polynomial-time algorithm for the NDDS (sigmoid,all )
problem, as claimed. Because convex and concave functions are

special cases of sigmoid functions, NDDS (convex/concave,all ) are
also polynomial-time solvable.

4.2 Tractability of NDDS (sigmoid,= S )
Finally, we leverage the algorithm from Section 4.1 for the more

general problem NDDS (sigmoid,= S ).
Consider a hypothetical solution G = (V ,E). Then, for every

node i < S , we must have |N
(G )
i ∩ S | < Di . Edges between node

pairs i, i ′ < S do not matter. Similarly, because exactly the nodes of

S are supposed to invest, for the purpose of investment decisions

of nodes i ∈ S , edges to nodes not in S do not matter. Thus, as a

first step, an algorithm can add/remove edges between S and V \ S

of minimum total cost to ensure that |N
(G )
i ∩ S | < Di for all i < S .

This can be accomplished easily node by node: when considering

node i , either the principal will add Ri + 1−dG′ (i ) edges or remove

dG′ (i ) − (Li − 1) edges. In both cases, the minimum-cost edges

incident on i will be chosen. If these additions/removals exceed

the budget B, then no solution is possible. Otherwise, they will be

performed, and the budget updated to the remaining budget.

After the removal of these edges, the agents inV \S are irrelevant;
the sole goal is to alter the edges within S at minimum cost to

meet the degree constraints. This is an instance of the problem

NDDS (sigmoid,all ) on the induced graph G ′[S], which can be

solved using the algorithm from Section 4.1. Thus, we have proved

the following theorem:

Theorem 4.2. The problem NDDS (sigmoid,= S ) is polynomial-

time solvable.

Again, since convex and concave functions are special cases of

sigmoid functions, the tractability of NDDS (convex/concave,= S )
follows from Theorem 4.2.

5 CONCLUSION

The problem of modifying elements of a game structure to achieve

desired outcomes has a long history and interest in both economics

and computing, with mechanism design the classic variation. In

mechanism design, a key design parameter is the payment scheme

for the players. The somewhat more recent literature on market

design is often focused on settings where payments are infeasible,

and aims to design market structure, such as the rules of the match-

ing markets. An even more recent thread considers the problem

of designing signals that modify information available to the play-

ers, thereby inducing particular desirable outcomes. We suggest

considering a fourth element of the game in settings where strate-

gic dependencies among players are mediated by a network: the

design of the network structure. Such design decisions are com-

monly inherently constrained by an already existing network, and

we specifically consider the simplest and most natural design ac-

tion: adding and removing links. Additionally, to elucidate both

the process and the associated algorithmic mechanics, we further

delve deeply into a study of network design for networked pub-

lic goods games, with the goal of inducing desired pure strategy

equilibrium outcomes. The significance of our work is thus both in

proposing a novel framework for designing the rules of encounter

specific to networked game theoretic scenarios, and elucidating the

algorithmic complexity of this problem in the particular context of

networked public goods games.

Our work provides an initial step, but leaves open a number of

research questions. First, our focus on adding and removing edges

with an additive addition/removal cost clearly limits the scope of

applicability. In general, one would encounter numerous compli-

cations. For example, if the means for adding edges is through the

design of events, then the cost would be incurred for adding a col-

lection of edges (i.e., organizing an event), rather than adding each

edge independently. Indeed, one could consider a broad space of

reasonable cost functions that generalize additivity, such as sub-

modular costs. Second, the problem of inducing equilibria through

network modifications is interesting far more broadly than just

networked public goods games. For example, such network design

issues arise in congestion games. Third, we only considered the

issue of inducing pure strategy Nash equilibria. It is, of course, nat-

ural to study other equilibrium concepts, such as mixed-strategy

equilibria and correlated equilibria.
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