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ABSTRACT
We investigate adversarial patrolling where the Defender is an au-

tonomous device with a limited energy resource (e.g., a drone).

Every eligible Defender’s policy must prevent draining the en-

ergy resource before arriving to a refill station, and this constraint

substantially complicates the problem of computing an efficient De-

fender’s policy. Furthermore, the existing infinite-horizon models

assume Attackers with unbounded patience willing to wait arbitrar-

ily long for a good attack opportunity. We show this assumption is

inappropriate in the setting with drones because here the expected

waiting time for an optimal attack opportunity can be extremely

large. To overcome this problem, we introduce and justify a new

concept of impatient Attacker, and design a polynomial time algo-
rithm for computing a Defender’s policy achieving protection close

to the optimal value against an impatient Attacker. Since our algo-

rithm can quickly evaluate the protection achievable for various

topologies of refill stations, we can also optimize their displacement.
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1 INTRODUCTION
In general patrolling, a Defender moves among vulnerable targets
and tries to discover ongoing attacks initiated by the Attacker. For
every target v , completing an attack at v takes d(v) time units,

and an ongoing attack at v is discovered by the Defender only if

she visits v in at most d(v) time units since initiating the attack.

A policy for the Defender specifies how she should move among

the targets so that the overall protection is maximized (the policy

can be randomized, i.e., the Defender can “flip a coin” where to go

next). In adversarial patrolling based on Stackelberg solution concept,
it is assumed that the Attacker not only knows the Defender’s

policy, but he can also observe the history of Defender’s moves. Still,

the Attacker cannot predict the way of resolving the Defender’s

randomized choice (the “coin flips”). This model is particularly
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appropriate in situations where the actual Attacker’s capabilities

and the amount of information revealed to him are unknown and

robust policies are required.

In this paper, we investigate adversarial patrolling with robotic

devices equipped with a bounded energy resource (hereafter called

a battery) such as drones. Here, the Defender’s policy must be safe,
i.e., prevent draining the battery before arriving to a refill station.

The “detours” to refill stations may negatively impact the overall

protection, and the first question we study in our work is

What is the impact of battery capacity on achievable protection?

Our answer to this question is based on discovering a somewhat

surprising dichotomy in Attacker’s opportunities. Recall that in

our setting, the Attacker knows the Defender’s policy, observes her

moves, and waits for the right moment (opportunity) to perform

an attack maximizing his expected utility. Since the Defender’s

policy is randomized, the Attacker sees such an opportunity after a

random time, and hence it makes sense to consider the average (ex-
pected) waiting time for an attack opportunity where the expected

Attacker’s utility exceeds a given threshold. Our first main result

(Theorem 2.6) shows that there exists a unique threshold D with

the following properties:

(A) For an arbitrarily large battery capacity c and an arbitrary

safe Defender’s policy, the Attacker will eventually see an attack

opportunity with expected utility at least D, and the average wait-

ing time for this opportunity is linear in c . In other words, no matter

how large the battery capacity is and how cleverly the Defender

moves from target to target, the Attacker can always get the ex-

pected utility at least D if he is willing to wait for time linear in c .
(B) The Defender has a safe policy σ such that the average wait-

ing time for an attack opportunity better thanD grows exponentially
in the battery capacity c . Due to this exponential growth, even a

small increase of battery capacity pushes the expected waiting time

for an attack opportunity better than D to billions of years, which

makes these attack opportunities infeasible.

This result clearly explains the actual impact of battery capacity—

from certain point on, increasing the battery capacity does not
improve the achievable protection, it just “pushes” the expected

waiting time for an attack opportunity better than D to extremely

large values. Hence, the threshold D corresponds to the maximal

expected damage achievable by a realistic impatient1 Attacker who
is not willing to wait exponentially long. The corresponding maxi-

mal level of achievable protection2 is denoted by IVal. Furthermore,

1
Our notion of impatience should not be confused with a different concept of discount-

ing the Attacker’s utility also called “impatience” in [26].

2
Technically, IVal = αmax − D , where αmax is the maximal target importance (see

Section 2). Alternatively, we could define IVal = −D ; this would not change the
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for a given lower bound τ on “infeasible” expected attack time,

the underlying observations of Theorem 2.6 allow to determine a

battery capacity c[τ ] sufficiently large to push the expected waiting

time for an attack opportunity better than D beyond τ . When τ
is small, this can result in lowering the required battery capacity

without compromising the achieved protection.

The previous results immediately motivate the second question

considered in our paper:

Can we compute IVal and the Defender’s policy σ of (B)?

Here, we face fundamental obstacles. The problem of computing an

optimal or ε-optimal safe Defender’s policy is NP-hard
3
. Actually,

this hardness result holds even in the simpler setting without bat-

tery constraints (see Section 2). So, we cannot hope for an efficient

algorithm computing (sub)optimal safe Defender’s policies for all

instances. Instead, we design a policy-improvement algorithmwhich

repeatedly improves a given finite-memory Defender’s policy by a

modified gradient-descent method
4
. This improvement algorithm

runs in polynomial time and can be quickly applied to many (hun-

dreds or even thousands) initial policies chosen randomly or by

some heuristics. By selecting the best of the obtained policies, we

typically obtain a policy achieving reasonable protection. To eval-

uate these policies, we would need to know the actual value of

IVal, which is hard to compute/approximate (see Section 2). There-

fore, we design an algorithm computing an upper bound on IVal.
Although this algorithm needs exponential time in general, it is

sufficiently efficient to provide a good baseline for evaluating the

computed policies.

The experiments presented in Section 4 show that the protection

achieved by the computed policies typically stays close to IVal. Since
our algorithm can quickly evaluate the protection achievable for

various topologies of refill stations, it can also be used to optimize

their displacement. We demonstrate this on a concrete example in

Section 4.

Related work. Successful applications of drones stimulated in-

tensive research in this area. The limitations implied by bounded

battery capacity have been considered for various problems related

to optimal trajectory planning for one or more drones, e.g., plan-

ning an optimal trajectory for visiting all targets under the battery

constraint [13, 22], non-adversarial patrolling with battery-limited

agents [24], an energy-bounded delivery by a drone [20], or the

coverage problem for one or more vacuum cleaners with limited

batteries [19, 23]. To the best of our knowledge, the problem of

adversarial patrolling with drones has not yet been considered in

previous works.

In security games, most of the existing works study either the

problem of computing an optimal static allocation of available

resources to the targets, or the problem of computing an optimal

movement strategy for a mobile Defender. Security games with

static allocation have been studied in, e.g., [12, 14, 16, 21, 25, 27,

presented results, but negative numerical values of IVal would have less intuitive

meaning from the Defender’s point of view. We refer to Section 2 for a more detailed

discussion.

3
The NP hardness result for ε -optimal policy holds for ε ≤ 1/2n, where n is the

number of targets. The details are given at the end of Section 2.

4
Our policy-improvement algorithm is based on combining the ideas behind the proof

of Theorem 2.6 with the policy-improvement algorithm recently proposed in [17] for

patrolling problems without battery constraints.

28]. In patrolling games (where the Defenders are mobile), the

focus was primarily on finding locally optimal strategies for robotic

patrolling units either on restricted graphs such as circles [1, 2],

or arbitrary graphs with weighted preference on the targets [3,

5]. Alternatively, the work focused on some novel aspects of the

problem, such as variants with discounted rewards [26], moving

targets [8, 11], multiple patrolling units [6], or movement of the

Attacker on the graph [5], reaction to alarms [7, 10], and handling

sequential attacks [18]. None of these results considers Defender(s)

with a bounded energy resource.

Let us note that the previous works on adversarial patrolling

with infinite horizon do not explicitly consider the amount of time

the Attacker can wait for a good attack opportunity. In fact, it is

mostly assumed that the Attacker’s “patience” is unbounded, i.e.,

the Attacker is willing to wait arbitrarily long (in the context of

patrolling without battery constraints, the expected waiting time

for a good attack opportunity is low, and hence this simplifying

assumption is harmless). One remarkable exception is [26], where

later attacks are penalized by a discounting factor. This models the

Attacker’s preference to attack soon, even if the expected waiting

time for an optimal attack opportunity is small. To some extent,

this idea is orthogonal to our concept (after disregarding the attack

opportunities with exponentially long waiting time, the Attacker

may still consider earlier attacks as more valuable).

As we already noted, when patrolling with drones, the expected

waiting time for the best attack opportunity (better than the thresh-

old D introduced above) can be very large, and considering Attack-

ers with unbounded patience leads to unrealistic and misleading
results, as it is demonstrated by Examples 1 and 2 in Section 2.

Most of the existing algorithms solve the adversarial patrolling

games using mathematical programming, e.g., [1, 3, 4, 9]. In our

algorithm, we employ the polynomial-time procedure for regu-

lar strategy synthesis of [17] based on gradient descent. Recently,

other learning approaches were applied to solving security games.

One remarkable example is [15] where finite-horizon games are

considered.

2 A FORMAL MODEL FOR PATROLLING
WITH DRONES

In this section, we formalize the problem of patrolling with drones.

Our model is similar to the standard model of patrolling games

without battery constraints (see, e.g., [1, 4, 17]). Our notion of

Defender’s policy reflects the safety requirement, i.e., the battery

must never be drained completely, and the Defender may use a

different moving strategy for every battery capacity. The notion

of Attacker’s strategy is standard. The real difference is the way

of evaluating the protection achieved by a given Defender’s policy.

Here, we need to find a robust way of disregarding Attacker’s

strategies with extremely long expected attack time, which leads

to the notion of impatient Attacker and the value IVal justified by

Theorem 2.6.

2.1 Patrolling graphs
The targets and refill locations are modeled as vertices in a directed

graph, where the edges correspond to admissible moves of the

drone. Some targets may also serve as refill locations. Although the
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drone can move freely in principle, there can be restrictions such

as no-fly zones or physical obstructions. Hence, the graph may not

be fully connected in general. To every edge v → u, we assign the

number of time units needed to reach u from v . Although the edge

relation is mostly symmetric, there may be exceptions due to traffic

regulations, wind, etc., so we keep the graph directed. We assume

that the amount of energy consumed by the drone when flying

along an edge is proportional to the flying time. To each target v ,
we assign the amount of time units d(v) needed to complete an

attack atv . Since targets may have different importance, each target

v is also assigned a non-negative number α(v), where higher value
means higher importance.

Definition 2.1. A patrolling graph is a tuple G =

(V ,T ,R,→, t ,d,α), where

• V is a non-empty set of vertices.
• T ⊆ V and R ⊆ V are non-empty sets of targets and refill
locations, respectively, such thatT ∪R = V . We do not require
T ∩ R = ∅, i.e., some targets can also serve as refill locations.

• → ⊆ V ×V is the set of edges.
• t is a function assigning to every edge the number of time

units needed to traverse the edge.

• d is a function assigning to every target the number of time

units needed to complete an attack at the target.

• α is a function assigning to every target a non-negative

number specifying its importance.

2.2 Defender’s policy
A history of G is a finite sequence h = v1, . . . ,vn of vertices pre-

viously visited by the Defender (i.e., n ≥ 0 and vi → vi+1 for all
i < n; note that the empty sequence of vertices, denoted by ε , is
also a history). The set of all histories is denoted byH . A walk in

G is an infinite sequence of verticesw such that every finite prefix

ofw is a history of G.
A moving strategy for G is a function γ : H → ∆(V ) where

∆(V ) is the set of all probability distributions onV . We require that

the distribution γ (v1, . . . ,vn ) assigns a positive probability only to

immediate successors of vn . In the special case when n = 0, i.e.,

v1, . . . ,vn is the empty history ε , we have that γ (ε) is an initial
distribution over V .

Every moving strategy γ determines the probability space over

the walks in the standard way
5
. We use Pγ

to denote the associated

probability measure. Let c ∈ N be a battery capacity. For every his-

tory v1, . . . ,vn of G, let b1, . . . ,bn be the corresponding sequence

of battery snapshots defined inductively as follows:

• b1 = c (initially, the battery is fully charged).

• If vi ∈ R, then bi+1 = c − t(vi ,vi+1); otherwise, bi+1 =
bi − t(vi ,vi+1).

The second item in the above definition says that traversing an edge

v → u takes t(v,u) units of energy (this reflects our assumption

that the amount of consumed energy is proportional to the time

needed to traverse the edge). When a refill location is visited, the

5
More precisely, the probability space is (walk, F, Pγ ), where walk is the set of

all walks, F is the (Borel) σ -algebra generated by all basic cylinders, i.e., all sets
walk(h), where h is a history, consisting of all walks starting with h. The prob-

ability measure Pγ
is the unique probability measure satisfying Pγ (walk(h)) =∏k−1

i=1 γ (v1, . . . , vi )(vi+1), where h = v1, . . . , vk .

battery is refilled to its full capacity. Without restrictions, we may

assume that a refill takes zero time, because the time needed to

perform a refill (i.e., replace the battery with a fully charged one)

can be added to the time needed to traverse the edges.

A moving strategy γ is c-eligible if for every history v1, . . . ,vn
such that Pγ (v1, . . . ,vn ) > 0 we have that the corresponding se-

quence b1, . . . ,bn of battery snapshots contains only non-negative

numbers. We use ℓG to denote the least c ∈ N such that there exists

a c-eligible moving strategy for G . Note that ℓG is easy to compute

by employing standard graph algorithms.

Definition 2.2. Let G be a patrolling graph. A Defender’s policy
is a function σ assigning to every c ≥ ℓG a c-eligible moving

strategy σc .

2.3 Modeling the Attacker
In the existing adversarial patrolling models, the Attacker knows

the Defender’s policy and can observe Defender’s moves. Further-

more, the Attacker can attack at most once during a play. This is

no restriction, because defending a set of targets against multiple

attacks is essentially the same optimization problem
6
.

In our setting, the time is spent by flying along edges, not by

staying in vertices. In the worst case, the Attacker can determine the

next edge taken by the drone immediately after the drone leaves the

currently visited vertex. Hence, the Attacker’s decision is based not

only on the sequence of vertices visited by the drone so far, but also

on the edge taken next. Clearly, the Attacker cannot gain anything

by delaying his attack until the drone arrives to the next vertex, i.e.,

we can safely assume an attack is initiated at the moment when the

drone leaves the currently visited vertex. Furthermore, we assume

the Attacker knows the battery capacity.

Definition 2.3. Let G be a patrolling graph. An observation is a

finite sequence o = v1, . . . ,vn ,vn→u, where v1, . . . ,vn is a non-

empty history and vn→u is an edge. The set of all observations is

denoted by Ω.
An Attacker’s strategy for a patrolling graph G is a function π

assigning to every battery capacity c a function

πc : Ω → {wait, attackz | z ∈ T }.

We require that if πc (v1, . . . ,vn ,vn→u) = attackz for some z ∈ T ,
then πc (v1, . . . ,vi ,vi→vi+1) = wait for all 1 ≤ i < n (i.e., the

Attacker can attack at most once).

2.4 Evaluating a Defender’s policy
For the rest of this paragraph, we fix a patrolling graph G . Observe
that for every Attacker’s strategy π , every walkw in G, and every

battery capacity c , the Attacker either attacks some vertex along

w or not. In the first case, we say that his attack time is equal to

the total time elapsed since initiating the walk until performing

the attack; in the latter case, we say that his attack time is infinite.

Recall that every Defender’s policy determines a probability space

over the walks, and then the attack time becomes a random variable

6
Even if the Attacker can perform another attack after completing the previous one,

the best the Defender can do is to follow an optimal policy constructed for the single

attack scenario. This is no longer true when the Defender has to spend some time

responding the discovered attack [18].
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with clearly defined mean (the expected value). A formal definition

of attack time follows.

Definition 2.4. Let π be an Attacker’s strategy. The π attack time
for a battery capacity c ≥ ℓG and a walkw = v1,v2, . . . is defined

by Timeπc (w) =
∑k
i=2 t(vi−1 → vi ). Here, k is the least index s.t.

πc (v1, . . . ,vk ,vk→vk+1) = attackz for some z ∈ T . If there is no
such k , we put Timeπc (w) = ∞.

Let π be an Attacker’s strategy. We say that a target z is penetrated
along a Defender’s walkw for a battery capacity c ≥ ℓG if

• Timeπc (w) = k < ∞,

• πc (v1, . . . ,vk ,vk→vk+1) = attackz ,
• the target z is not among the verticesvk+1, . . . ,vk+m , where

m ≥ 0 is the largest index such that

m∑
i=1

t(vk+i−1 → vk+i ) ≤ d(z) .

Given a Defender’s policy σ and an Attacker’s strategy π , the prob-
ability of all walksw such that the target z is penetrated alongw
for c is denoted by Pσc ,πc (penetratez ).

The expected Attacker’s utility for c is defined by

EUA(σc ,πc ) =
∑
z∈T

Pσc ,πc (penetratez ) · α(z)

Intuitively, EUA(σc ,πc ) is the expected importance of a success-

fully penetrated target. Observe that EUA(σc ,πc ) ranges from 0 to

αmax, where αmax = maxt ∈T α(t). We can also see EUA(σc ,πc ) as
the amount “stolen” by the Attacker. The corresponding expected
Defender’s utility for the battery capacity c defined by

EUD (σc ,πc ) = αmax − EUA(σc ,πc )

then corresponds to the amount “protected” by σ against π for the

battery capacity c .
Note that the Attacker and the Defender have completely an-

tagonistic objectives, i.e., their rationality would remain the same

if we defined EUD (σc ,πc ) as −EUA(σc ,πc ). However, our present
definition of EUD (σc ,πc ) allows for simple and intuitive interpre-

tation of the corresponding numerical value, and therefore we see

this alternative as more convenient.

For reasonable Defender’s policies, EUD (σc ,πc ) increases with
increasing c . Hence, the value of σ against π , defined by

ValG (σ ,π ) = sup

c
EUD (σc ,πc )

corresponds to the limit protection achieved by σ against π (for

a sufficiently large battery capacity). Furthermore, we define the

value of σ against an arbitrary Attacker’s strategy by

ValG (σ ) = inf

π
ValG (σ ,π ),

and the value of G by ValG = supσ ValG (σ ) .
Note thatValG corresponds to themaximal protection achievable

for a given patrolling graph G against an Attacker with unbounded
patience willing to postpone his attack arbitrarily long. Now we

give two simple examples demonstrating that considering Attackers

with unbounded patience is unrealistic and using ValG as a bound

on achievable protection ismisleading. Intuitively, this is because an
optimal attack may correspond to the situation when the remaining

energy in the battery drops to some critical level, and the Defender

v1 v2

v3v4

u1

u2 u3

r

Figure 1: Patrolling graphs of Examples 1 and 2.

has to prioritize reaching a refill location over the patrolling task.

As we shall see, a Defender’s policy can be constructed so that the

expected waiting time for such a situation is extremely high, and the

protection achieved before arriving to this situation is substantially

higher than ValG . On the other hand, the Defender cannot postpone
visiting a refill location for more than c time units where c is the
battery capacity due to the safety restriction. If visiting a refill

location requires a specific detour, than executing this detour may

provide a good attack opportunity with low expected waiting time.

This gives a preliminary intuition behind the dichotomy in attack

opportunities formalized in Theorem 2.6.

Example 1. Consider the patrolling graph of Fig. 1 (left) with four

targets v1,v2,v3,v4, where v1 is also a refill location. Traversing

each edge takes 1 minute and 1 energy unit. All targets are equally

important and their importance is equal to 1. The Attacker needs 3

minutes to complete his attack at each target.

If the battery had infinite capacity, an optimal policy for protect-

ing the targets moves the drone uniformly, i.e., with probability

1/2 to each neighbor target. Thus, every attack, initiated at any mo-

ment, is discovered with probability at least 1/2, which is the best

achievable protection. Here, the Attacker does not gain anything

by postponing his attack.

Now suppose the battery has a finite capacity of 120 energy units

(two hours flight time), and the battery is fully refilled whenever

v1 is visited. Suppose the drone uses the same policy as above, but

whenever the amount of remaining energy units drops to 1, the

drone moves to v1 for a refill (note that thanks to even battery

capacity and starting in v1, the energy level is never 1 in v3). With

probability one, the drone eventually visits v3 with only 2 units

of energy in the battery. Hence, the Attacker can wait until this

happens, and attack v3 as soon as the drone leaves v3. This attack
succeeds with probability one, because the drone moves to v2 or v4
in the next step, and then inevitably to v1 to refill the battery. So,
the achieved protection is zero if we assume the Attacker is willing

to wait for a good opportunity arbitrarily long (this argument can

be generalized to an arbitrary policy, i.e., ValG = 0). However,

the expected waiting time for such an opportunity is at least 2
59

minutes, i.e., at least 10
12

years (the estimated age of the universe

is about 13 billion years). Hence, it is fair to say that the considered

policy achieves the value 1/2 against a “realistic” Attacker who is

not willing to wait so long. □

The next example illustrates that “detours” to refill locations

may indeed decrease the achievable protection (even against an

“impatient” Attacker who is not willig to postpone his attack for too

long) strictly below the level achievable for infinite battery capacity.

Example 2. Consider three targets u1,u2,u3 and one refill location
r in the middle (Fig. 1 (right)). The drone needs one minute to move

from vertex to vertex, consuming one unit of energy. Completing
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an attack at u1,u2,u3 takes 3 minutes, and the importance of all

targets is equal to 1.

If the battery capacity was infinite, the drone could simply fly

around u1,u2,u3 in a circle, discovering every attack in time with

probability 1. Now consider a battery with capacity 120 energy

units, and let σ be a policy for the drone walking around the circle

u1,u2,u3, but whenever u1 is visited, the drone moves to r with

probability 0.3. (Note that u1 is the only entry point to r .) From r ,
the drone selects among u1,u2,u3 uniformly at random, and then

continues walking around the circle u1,u2,u3 in the way described

above. If the amount of remaining energy drops below 4 at u1, the
drone goes to r immediately. If the Attacker’s patience is unbounded,

this policy achieves zero protection, but the expected waiting time

for an optimal attack opportunity (the Attacker needs to wait until

the drone drains the battery to a low level) is about 3 years. As

long as the amount of remaining energy stays above 4 units, the

best opportunity available to the Attacker is to wait until the drone

decides to move fromu1 to r and attack, e.g.,u1 at this moment. This

attack is discovered with probability 2/3, and the Attacker needs

to wait about 10 minutes on average for this opportunity. Hence, σ
achieves the protection 2/3 against an “impatient” Attacker, which

is optimal in the sense explained below. □

Nowwe show how to formalize the protection achievable against

an “impatient” Attacker.

Definition 2.5. LetG be a patrolling graph, σ a Defender’s policy,

and π an Attacker’s strategy. Furthermore, for every c ≥ ℓG , let

Eσc [Timeπc ] be the expected attack time of π against σ for c . 7

The expected attack time of π against σ is polynomial if there is
n ∈ N such that Eσc [Timeπc ] is O(cn ). The expected attack time of

π against σ is linear if this holds for n = 1.

Clearly, the battery constraint is relevant only if the Attacker

is willing to wait longer than the drone’s flight time. This means

that strategies with linear attack time are certainly eligible for an

“impatient” Attacker. It is equally clear that strategies with non-
polynomial (e.g., exponential) expected attack time are not eligible
for an “impatient” Attacker. However, it is not so clear how to clas-

sify Attacker’s strategies with expected waiting time bounded by

a low degree polynomial (quadratic, cubic, etc.). Should we also

see them as eligible? Fortunately, there is no need to resolve this

question. The next theorem shows that the maximal level of protec-

tion achievable by the Defender against Attacker’s strategies with

O(cn ) expected attack time, where n ≥ 1 is a fixed constant, is inde-
pendent of n. In other words, Attacker’s strategies with polynomial

expected attack time cannot do more harm than strategies with

linear expected attack time. The basic intuition behind this result

has already been indicated before Example 1—the Defender cannot

prevent visiting a refill location in at most c time units, and the

associated “detours” provide good opportunities for the (impatient)

Attacker with linear expected attack time. There may still exist bet-

ter attack opportunities, but these are linked to draining the battery

below some critical level which can be avoided by the Defender for

a very long time (exponential in c). A precise formulation is given

in our next theorem.

7
Our algorithms can easily be adapted also to the setting when the amount of energy

consumed along v → u is not proportional to the associated flying time.

Theorem 2.6. There exists a unique value IValG and a parame-
terized Defender’s policy σκ satisfying the following:

A. For every ε > 0, there is a sufficiently small κ > 0 such that
Val(σκ ,π ) ≥ IValG − ε for every Attacker’s strategy π with
polynomial expected attack time.

B. For every U > IValG and every Defender’s policy σ , there
exists an Attacker’s strategy π with linear expected attack
time such that Val(σ ,π ) ≤ U .

Part A. of Theorem 2.6 says that the Defender can achieve protec-

tion arbitrarily close to IVal against an Attacker who is not willing

to wait exponentially long (technically, we take into account only

strategies with polynomial expected attack time). According to B.,

the Defender cannot achieve a protection P strictly better than IVal,
because forU = (P+ IVal)/2, the Attacker has a strategy with linear
expected attack time such that the achieved protection is at most

U , i.e., strictly smaller than P .
The policy σκ is “parameterized” by κ in the sense that certain

probability distributions used by σκ depend on the concrete value

of κ (as we shall see, κ corresponds to the probability of scheduling

a “detour” to a refill location). Intuitively, the value IVal and the pol-
icy σκ are obtained by first considering optimal moving strategies

(without battery constraints) in certain extensions of G, and select-

ing the graph where the associated optimal strategy γ achieves

the best protection. IVal is then defined as the value of γ , and the

policy σκ is obtained by modifying γ . For the sake of clarity, in the

following proof we disregard the case when the importance of some

targets is so low that an optimal moving strategy can avoid visiting

them completely (we indicate the place where this assumption is

needed, and sketch the required technical adjustment).

A proof of Theorem 2.6. For every edgev → r ofG , wherev ∈ T
and r ∈ R, we define a game graph Gv→r obtained from G by

adding a fresh non-target vertex v̂ and an edge v̂→r such that

t(v̂→r ) = t(v→r ).
Let γ be a moving strategy in Gv→r initiated in v̂ , i.e., γ (ε) se-

lects v̂ with probability 1. For every history h = v1, . . . ,vn , let
γ↓h be a moving strategy initiated in vn such that for every his-

tory u1, . . . ,um initiated in vn we have that γ↓h(u1, . . . ,um ) =

γ (v1, . . . ,vn ,u2, . . . ,um ). That is, γ↓h behaves like γ after perform-

ing h. Furthermore, for every z ∈ T , let ϱz be a function assigning

attackz to every “one-step” observation of the form t , t→u. That is,
ϱz says “attack z immediately”.

A λ-opportunity against γ (in Gv→r ) is a history h = v1, . . . ,vn
initiated in v̂ such that Pγ (h) > 0 and there exists z ∈ T satisfying

Pγ ↓h,ϱz (penetratez ) · α(z) ≥ λ. Let Λγ [v→r ] be the supremum of

all λ’s such that there exists a λ-opportunity against γ . We define

Λ[v→r ] := inf{Λγ [v→r ] | γ is initiated in v̂} .

From now on, we assume that the edgev→r has been chosen so that
Λ[v→r ] isminimal. We put IValG := αmax−Λ[v→r ]. Furthermore,

letγ be an optimalmoving strategy forGv→r satisfyingΛγ [v→r ] =
Λ[v→r ]. The policy σκ is obtained from γ in two steps.

(1) We modify γ into γκ behaving identically as γ but when-

ever v is visited
8
, γκ selects the edge v → r with probability κ

8
Here we use our assumption that no target (incl. v ) can be “systematically bypassed”

by γ because of its low importance. Without this assumption, we need to use a

combination of optimal moving strategies for several Gv→r instead of γ , and then
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(the probabilities of selecting the other edges are adjusted). When

the edge v → r is performed, γκ restarts simulating γ . This con-
struction ensures that for every ε > 0, there is κ > 0 such that

Λγ κ [v→r ] ≤ Λ[v→r ] + ε/2.
(2) The moving strategy γκ is “folded” into another moving

strategy γ̂κ as follows. First, γ̂κ executes γκ until some vertex

u is revisited and the behavior of γκ in the two occurrences of

u is “ε/Γ-similar” in the next dmax steps, where Γ is a suitable

constant depending only on G. Technically, this means that the

probabilities of visiting every vertex in precisely k steps (where

k ≤ dmax) from the two occurrences of u differ at most by ε/Γ. By
the pigeonhole principle, such a pair of vertices must occur along

every infinite path. After encountering such a pair, the strategy γ̂κ

“folds back” and restarts to simulate γk from the first occurrence of
u. One can show that by choosing a sufficiently large Γ, we obtain
Λγ̂ κ [v→r ] ≤ Λ[v→r ] + ε . Moreover, γ̂κ is a regular9 strategy [17].

For every vertex v , let ι(v) be the critical energy level defined as

the least ℓ such that for every edge v→u there exists a path from u
to r of length at most ℓ − t(v→u). The policy σκ is obtained from

the moving strategy γ̂κ as follows: For every c , the strategy σκc
behaves like γ̂κ until the battery is drained to a critical level where

σκc strives to reach r along the shortest path. After refilling the

battery, the simulation of γ̂κ is restarted.

Since Λγ̂ κ [v→r ] ≤ Λ[v→r ] + ε and σκ behaves identically as

γ̂κ [v→r ] until reaching a critical energy level, every Attacker’s

strategy π such that Val(σκ ,π ) < IValG − ε must “wait” until the

remaining energy drops to a critical level with probability bounded

away from zero (for every battery capacity). Since the expected

time for reaching a critical battery level is clearly exponential in c ,
the expected attack time of π is also exponential in c , which proves

Theorem 2.6.A.

Theorem 2.6.B is obtained by showing the expected waiting time

for an optimal attack opportunity against γ̂κ [v→r ] is linear in c .
Here we use the regularity of γ̂κ [v→r ]. □

Example 3. For the patrolling graphs of Examples 1 and 2, we

have that ValG = 0. If we further assume that the importance of all

targets is 1, then IValG is equal to 1/2 and 2/3, respectively. Also

observe that if the battery capacity is increased from 120 units to

180 units in Example 2 (i.e., 3 hours flight time instead of 2 hours),

then the lower bound on the expected waiting time for an attack

opportunity better than 2/3 increases from 3 years to 3750 years

(this demonstrates the exponential growth of the expected waiting

time for an attack opportunity better than IVal). □

The next example shows that IVal is not necessarily achievable,

even if the battery capacity is arbitrarily large.

Example 4. Consider a graph of Fig. 2 where d(vi ) = 3 and α(vi ) =
1 for all i ∈ {1, 2, 3}. We have that IValG = 1/2, because for every

ε > 0, we can construct a policy σ ε such that σ εc selects the edge

v2 → r with probability 2ε and the edges v2 → v1 or v2 → v3
with probability 1/2 − ε (for every c). Note σ ε achieves protection
1/2 − ε .

modify this strategy by including “detours” to refill locations. The idea is the same as

for γ and γ κ , but the construction is more technical.

9
A regular strategy uses finitely many memory elements to collect information about

the history, and the decision taken by the strategy depends only on this finite informa-

tion. We refer to [17] for details.

v1 v2 v3

r

Figure 2: A patrolling graph G.

Now suppose there exist σ and c such that for every Attacker’s

strategy π with polynomial expected attack time we have that

EUD (σc ,πc ) = 1/2. During the first c moves, the drone must in-

evitably visit v1 or v3 in situation when σc selects the edge v2 → r
with some positive probability in the next step. This means that

either v2 → v1 or v2 → v3 is selected with probability strictly

smaller than 1/2 in the next step. The Attacker can recognize this

opportunity (he knows σc and observes the drone). So, he can per-

form an attack succeeding with probability strictly larger than 1/2

(during the first c moves of the drone), which is a contradiction. □

Finally, note that deciding whether IVal = 1 is NP-hard due

to a trivial reduction of the Hamiltonian cycle problem. A given

graph with n vertices can be seen as a patrolling graph with n
targets where all targets are also refill locations and d(v) = n,
α(v) = 1 for every vertex v . Traversing every edge takes 1 unit of

time. Then, IValG = 1 iff there exists a Hamiltonian cycle in the

graph. Furthermore, if IVal , 1, then IVal ≤ 1 − 1/n, and hence it

is NP-hard to distinguish whether IVal = 1 or IVal ≤ 1 − 1/n.

3 EFFICIENT POLICY SYNTHESIS
In this section, we design a polynomial-time algorithm computing

a regular
10

Defender’s policy against an impatient Attacker for

a given patrolling graph G = (V ,T ,R,→, t ,d,α). The algorithm

basically “mimics” the construction of IVal and σκ described in the

proof of Theorem 2.6. We start by introducing two useful notions.

• For every Defender’s policy σ , let IVal(σ ) = infπ Val(σ ,π )
where π ranges over all Attacker’s strategies with polyno-

mial expected attack time. Hence, IVal(σ ) is the protection
achieved by σ against an impatient Attacker.

• For every τ ∈ N, let c[σ ,τ ] be the least capacity such that the
expected time accumulated along a λ-opportunity against

σc[σ ,τ ], where λ > αmax − IVal(σ ), is at least τ .
The algorithm inputs

G = (V ,T ,R,→, t ,d,α), ε > 0, τ ∈ N

and outputs

Vmin, Vmax, (σ , IVal(σ )), cmax

where Vmin and Vmax are lower and upper bounds on IValG , σ is a

policy such that IVal(σ ) ≥ Vmin − ε , and cmax is an upper bound on

c[σ ,τ ].

Computing Vmin. For every v → r , our algorithm starts by

computing a moving strategy γ for Gv→r initiated in v̂ such that

Λγ [v→r ] is as low as possible. Here we use a slightly adjusted

version of the polynomial-time algorithm presented in [17]. Then,

10
A moving strategy may generally depend on the whole history h of Defender’s

moves. A regular moving strategy uses finitely many memory elements to collect some

information about h and the decision depends just on the current memory state. We

refer to [17] for details.
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the algorithm identifies the edge v → r and the associated moving

strategy γ such that Λγ [v→r ] is minimal and sets

Vmin := αmax − Λγ [v→r ]

Computing the policy σ . The policy σ is obtained by modify-

ing γ in the following way. First, the algorithm checks whether

γ always selects the edge v → r with some positive probability

whenever visiting v . In this case, there is no need to perform the

modification of γ into γκ described in item (1) in the proof of The-

orem 2.6. Otherwise, the algorithm computes a sufficiently small κ
such that IVal(γκ ) stays ε-close to Vmin and performs the modifica-

tion (note that IVal(γκ ) is a monotone function of κ, so we can use

binary search to find an admissible value of κ). Since γ is regular,

the “folding” described in item (2) in the proof of Theorem 2.6 is

unnecessary (whenever a given u is visited, there are only finitely

many possibilities how γ may behave). Then, the policy σ is ob-

tained from γ (or γκ ) by changing its behaviour when draining the

battery to a critical level (see the proof of Theorem 2.6).

Computing Vmax. Using the results of [17], the algorithm com-

putes an upper bound on αmax − Λ[v→r ] (for every v→r ) and sets

Vmax to the maximum of these upper bounds.

Computing cmax. We design an algorithm computing, for a given

battery capacity c ∈ N, a lower bound bc on the expected waiting

time for a λ-opportunity where λ > αmax − IVal(σ ). Since bc is a

monotone function of c , we can use binary search to find the least

ĉ such that bĉ ≥ τ . Since ĉ ≥ c[σ ,τ ], we set cmax := ĉ .
The way of computing the bound bc is technical, and here we

present just the main underlying idea. For simplicity, assume that

the policy σ computed above uses just one memory element (i.e., σ
is positional), there is only one refill location r , and traversing every
edge in the game graph takes one time unit

11
. Let ι be a (minimal)

battery capacity such that the drone can still safely arrive to a refill

location after performing one edge in an arbitrary vertex (i.e., σ is

not forced to go for a refill as long as the battery level is kept above ι).
Let X be a random variable assigning to every walk the return time

to r . Furthermore, let c ′ = c − ι and p = P[X > c ′] denote the

probability that the battery gets drained to the critical level before

refilling in r . Then, the expected waiting time for a λ-opportunity
where λ > αmax − IVal(σ ) is at least E[X | X ≤ c ′] · 1/p (the factors

correspond to the expected time between consecutive refillings and

the expected number of refillings before the battery gets drained,

respectively). Let P denote the transition matrix of σ with an addi-

tional absorbing vertex r ′ and each transition to r redirected to r ′.

If c ′ is small enough, we compute P , P2, P3, . . . , Pc
′

. Then, we have

p = 1 − (Pc
′

)r r ′ and also

E[X | X ≤ c ′] =
1

P[X ≤ c ′]
·

c ′∑
i=1

i · P[X = i]

where P[X ≤ c ′] = 1 − p and P[X = i] = (P i )r r ′ − (P i−1)r r ′ . The
running time of this procedure is linear in c ′; if this is infeasible,
we instead compute a 2-approximation of the above as follows: Let

k ∈ N be the largest such that 2
k ≤ c ′. By repeated squaring, we

11
If these assumptions are not satisfied, we perform preliminary adjustments. In

particular, a finite-memory policy is fully specified by its behaviour in pairs of the

form (v,m), where v is a vertex andm a memory element, so it can be encoded by a

“transition matrix” where the rows/columns are indexed by these pairs.

compute P , P2, P4, P8, . . . , P2
k
and using the binary representation

of c ′, we multiply the corresponding matrices to get Pc
′

. Then, we

have that

∑c ′
i=1 i · P[X = i] is at least

P[X=1] +
©«
k−1∑
j=0

2
j · P[2j < X ≤ 2

j+1]
ª®¬ + 2k · P[2k < X ≤ c ′]

where P[X = 1] = Pr r ′ , P[2
j < X ≤ 2

j+1] = (P2
j+1

)r r ′ − (P2
j
)r r ′ ,

and similarly for the last probability.

Notes. Our policy synthesis algorithm can apply an arbitrary
procedure for solving adversarial patrolling (without battery con-

straints) to Gv→r , as long as this procedure produces a regular

moving strategy. We employed the procedure of [17] because it is

guaranteed to terminate quickly and produces efficient strategies.

Nevertheless, our approach to solving adversarial patrolling with

drones can immediately utilize any progress in solving adversarial

patrolling without battery constraints.

In [26], Attacker’s impatience is modeled by discounting the

Attacker’s utility. According to Theorem 2.6, for a sufficiently large

c there is a suitable discount factor δ such that the Stackelberg

value in the discounted model is close to IVal. However, it is not
clear how to compute such a δ without running our algorithm.

4 EXPERIMENTS
In this section, we present the outcomes of our algorithms for non-

trivial instances of the patrolling problem. All experiments reported

in this section were run on the same machine equipped with an

Intel Core i7-4810MQ CPU and 16 GB of RAM.

4.1 Experiment 1
We consider a patrolling graph whose structure is shown in Fig. 3.

There are 17 targets in 6 zonesZ1, . . . ,Z6. Local flights are forbidden
in each zone (i.e., a drone cannot fly between targets within the

same zone). All flights among targets in different zones must stay

within designated corridors connecting these zones indicated by

double lines. For example, it is possible to fly freely between the

targets of Z5 and Z6 in both directions, but there is no corridor for

flying directly from Z1 to Z5. A flight along every corridor takes

one minute. The corridors are narrow so we assume the Attacker

can only determine the next zone visited by the drone (but not a

concrete target in this zone) when the drone leaves the currently

visited zone. The corresponding patrolling graphmodels this feature

by adding auxiliary vertices and edges. Each target has importance

either 100, 70, 65, or 60. For example, Z3 contains three targets of
importance 75, 65, and 60. Completing an attack at each target takes

6.5 minutes. There is only one refill location r in a separate zone R.
We aim at solving four patrolling problems P100, P70, P65, and

P60, where the task of Pi is to protect precisely the targets of im-

portance at least i (hence, the Pi ’s model different priority levels).

All zones containing only the targets whose importance is strictly

smaller than i become forbidden zones in Pi , i.e., the drone is not
allowed to fly through them. In particular, in P60 we aim at protect-

ing all targets, and in P100 we aim to protect only the four targets

of importance 100 contained in Z2, Z4, Z5, and Z6. The table of

Fig. 3 shows the values of the regular policies σ [j] computed by our
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rR

70 65

100 65 60

100 65 60

100 65 60 60

70 65 60

100 65

Z1 Z2 Z3

Z4 Z5 Z6

P100 P70 P65 P60

IVal(σ [1]) 55.5 58.8 44.9 43.2

IVal(σ [2]) 61.7 65 49.2 45.6

IVal(σ [3]) 99 65 49.2 45.6

Vmax 100 74.3 53.2 48.5

Figure 3: Patrolling 17 targets in 6 zones.

algorithm, where j indicates the number of internal memory ele-

ments of the regular strategy σ [j]. In particular, σ [1] is a positional
strategy obliged to perform the same decision when revisiting the

same vertex. The row Vmax shows the upper bound on IVal.
Note that for P100, three memory elements are sufficient to

achieve an almost optimal strategy (IVal(σ [3]) is very close toVmax).

Intuitively, this is because an efficient strategy inevitably needs to

perform a different decision in Z5 depending on which zone the

drone came from (there are three possibilities). Increasing j above
3 does not lead to any improvement in the achieved protection.

In all cases, we set τ to ten years and ε = 1. The obtained

bounds on c[σ ,τ ] indicate that seven-hour flight time is suffi-

cient to push the expected waiting time for a λ-opportunity where

λ > αmax − IVal(σ [i]) beyond 10 years (for all i’s).

4.2 Experiment 2
In our second experiment, we consider a parameterized patrolling

graph and evaluate our algorithm for increasing values of the pa-

rameter. For every n ≥ 4, let Gn be a patrolling graph with n
vertices, where n−1 vertices are targets arranged in a circle so that

the distance between two neighboring targets is the same and equal

to 1. Furthermore, there is one refill location in the middle. The

graph is fully connected, and the distance between each pair of

vertices is the Euclid distance. For every target v , the importance

α(v) is chosen randomly in the interval ⟨500, 1000⟩, and d(v) is
chosen randomly in the interval ⟨n, 2ϱ+n−1) where ϱ is the radius

of the circle (the choice of d(v) prevents the existence of “trivial”
optimal policies). The drone can move along an edge of length x in

x minutes, and one energy unit corresponds to 1 minute flight time.

The outcomes of our algorithm for Gn , where n ∈ {4, . . . , 30},

ε = 1, and τ = 5 256 000 (10 years) are shown in Table 1. In all

cases, IVal(σ ) = Vmin (cf. the previous section). We also report the

protection Val∞ achieved by a policy computed for infinite battery
capacity by the algorithm of [17]. The last column gives an upper

bound on σc[σ ,τ ] translated into the required flight time in hours

(recall that one unit of energy corresponds to one minute flight

time). That is, the last column is an upper bound on the flight

time needed to push the expected waiting time for a λ-opportunity

n IVal(σ ) = Vmin Vmax Val∞ Flight time (hrs)

4 617.313 618.849 826.274 1.250

5 603.670 606.143 765.675 1.967

6 838.174 842.061 985.541 3.483

7 813.657 818.493 943.325 4.233

8 886.528 890.754 981.047 7.067

10 887.344 890.029 962.008 11.300

12 926.070 928.321 989.464 15.817

15 921.639 — 973.265 24.083

20 954.532 — 990.765 43.233

25 961.775 — 993.186 61.117

30 938.818 — 962.954 88.767

Table 1: Experimental results for Gn , ε=1, and τ=10 years.

v1

v2

v3

v4

v5

v6

r1

r2

r3

d(vi ) r1 r2 r3

3
1

6
0 0

6
5

6

5

6
1

6.5
5

6
1 1

Figure 4: Computing an optimal position for a refill location.

where λ > αmax − IVal(σ ) beyond 10 years. For n = 30, this flight

time is almost 4 days, which is still achievable by advanced UAVs

used in security applications. Since the procedure for computing

Vmax is exponential, we succeeded to produce the value only for

n ≤ 12 (limiting computation time to 2 hours).

4.3 Experiment 3
Here we show that our algorithm can also be used to identify an

optimal position for a refill location. Consider the patrolling graph

of Fig. 4. There are 6 targets v1, . . . ,v6 arranged regularly around a
circle with radius 1. The graph is fully connected, and the distance is

the Euclid distance. Furthermore, there are three eligible positions

for a refill location r1, r2, r3, where the distance of r2 from the center

is 2/3. The table of Fig. 4 shows IVal(σ ) for the regular policy σ
computed by our algorithm when the only refill location is either

r1, r2, or r3, and the attack length at every vi is set either to 3, 6, or

6.5. Note that none of the considered refill locations is optimal for

all attack lengths.

5 FUTUREWORK
A natural continuation of our work is considering scenarios with

multiple Defenders/Attackers. A straightforward idea is to assign a

subset of targets to each Defender and compute a tuple of policies

using our algorithm. However, security applications may impose

additional restrictions on robustness, resilience, etc., making the

problem challenging.
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