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ABSTRACT
Liquid democracy allows members of an electorate to either directly

vote over alternatives, or delegate their voting rights to someone

they trust. Most of the liquid democracy literature and implementa-

tions allow each voter to nominate only one delegate per election.

However, if that delegate abstains, the voting rights assigned to

her are left unused. To minimise the number of unused delegations,

it has been suggested that each voter should declare a personal

ranking over voters she trusts. In this paper, we show that even if

personal rankings over voters are declared, the standard delegation

method of liquid democracy remains problematic. More specifically,

we show that when personal rankings over voters are declared, it

could be undesirable to receive delegated voting rights, which is

contrary to what liquid democracy fundamentally relies on. To solve

this issue, we propose a new method to delegate voting rights in an

election, called breadth-first delegation. Additionally, the proposed
method prioritises assigning voting rights to individuals closely

connected to the voters who delegate.
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1 INTRODUCTION
Liquid democracy is a middle ground between direct and repre-

sentative democracy, as it allows each member of the electorate to

directly vote on a topic, or temporarily choose a representative by

delegating her voting rights to another voter. Therefore individuals

who are either apathetic for an election, or trust the knowledge

of another voter more than their own, can still have an impact on

the election result (through delegating). An individual who casts

a vote for themselves and for others is known as a guru (Christoff

and Grossi [2017]). Liquid democracy has recently started gaining

attention in a few domains which we discuss to show an overview

of the general societal interest. In the political domain, local parties

such as the Pirate Party in Germany, Demoex in Sweden, the Net
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Party in Argentina and Partido de Internet in Spain have been ex-

perimenting with liquid democracy implementations. Additionally,

the local governments of the London Southwark borough and the

Italian cities Turino and San Dona di Piave are working on integrat-

ing liquid democracy for community engagement processes (Boella

et al. [2018]). In the technology domain, the online platform Liq-

uidFeedback uses a liquid democracy system where a user selects

a single guru for different topics (Behrens et al. [2014]; Kling et al.

[2015]). Another prominent online example is GoogleVotes (Hardt

and Lopes [2015]), where each user wishing to delegate can select

a ranking over other voters.

Regardless of the increasing interest in liquid democracy, there

exists outstanding theoretical issues. This work focuses on liquid

democracy systems where each individual wishing to delegate can

select a ranking over other voters. In such systems, given the com-

mon interpretation that delegations of voting rights are multi-step

and transitive
1
, we observe that: searching for a guru follows a

depth-first search in a graph that illustrates all delegation pref-

erences within an electorate, e.g. nodes represent the voters and

directed edges the delegation choices for each voter. For this rea-

son, we name this standard approach of delegating voting rights

as depth-first delegation. Despite its common acceptance, we came

across an important disadvantage even for the majority rule with

binary issues. In particurlar, we show that when depth-first dele-

gation is used, it could be undesirable to receive the voting rights

of someone else. At this point, we emphasize that disincentivising

voters to participate as gurus is in contrast to the ideology of liquid

democracy due to the following. How can a liquid democracy sys-

tem flourish if voters may not be incentivised to receive delegated

votes? Motivated by this, we propose a simple idea solution to this

issue: a new rule for delegating voting rights, called the breadth-
first delegation, which guarantees that casting voters (those who do

not delegate or abstain) weakly prefer to receive delegated voting

rights, i.e. to participate as gurus. For these reasons, we consider

this work of a high societal importance and immediate applications.

We outline this paper as follows: In the introduction we discuss

the latest applied and theoretical developments in liquid democracy

and give the preliminaries of our model. In the next two sections,

we define delegation graphs, delegation rules and two types of par-

ticipation. Afterwards, we formally introduce a new delegation rule

and compare this rule with the standard one. Finally, we conclude

this work with future research goals.

1
We assume the following interpretation for the meaning of transitive delegations of

voting rights: If a voter i delegates to a voter j , then i transfers to j the voting rights

of herself and all the others that had been delegated to i .
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1.1 Related work
There currently exists a lack of theoretical analysis on liquid democ-

racy. However, we summarise the main differences of our work to

the main undertaking so far.

As outlined by Brill ([2018]), one of the main ongoing issues in

liquid democracy is how to handle personal rankings over voters.

His work discusses possible solutions around this issue without

giving a formalised model, which this paper does. For two election

alternatives where one is the ground truth, Kahng et al. ([2018])

find that: (a) there is no decentralised liquid democracy delegation

rule that is guaranteed to outperform direct democracy and (b)

there is a centralised liquid democracy delegation rule that is guar-

anteed to outperform direct democracy as long as voters are not

completely misinformed or perfectly informed about the ground

truth. In comparison, our model can be used in a wider variety

of elections, as it allows for multiple alternatives and no ground

truth. Additionally our delegation rules can be used in a central or

decentralised manner, thus the negative result (a) does not apply to

our paper. The work of Christoff and Grossi ([2017]) focuses on the

existence of delegation cycles and inconsistencies that can occur

when there are several binary issues to be voted on with a different

guru assigned for each issue. In comparison, we avoid delegation

cycles by stating that a delegation chain (a path from a delegating

voter to their assigned guru) cannot include the same voter more

than once. Furthermore, individual rationality issues between mul-

tiple elections is out of scope for this work. Last, Brill and Talmon

([2018]) introduce a special case of Christoff and Grossi’s model,

which allows a single voter to be assigned several gurus. However,

our model assigns one guru per voter. Therefore Brill and Talmon

([2018]) does allow more fine-grained delegations than our model,

i.e. they allow for different pairs of alternatives to be ranked by

different gurus. But the delegating voter cannot choose a preference

relation over voters for any pair of alternatives, which is what this

paper investigates how to do.

Similar to ourwork, GoogleVotes (Hardt and Lopes [2015]) allows

a user to select a ranking over other voters and uses, what the

authors describe as, a back-track breadth first search to assign a guru

to a voter. We cannot complete a more comprehensive comparison

to GoogleVotes as they have published only a general description of

their system (without a formal model). However, we know that their

delegation rule is different to our proposed breadth-first delegation

rule as in the Tally/Coverage section of their video example (from

minute 32 of Hardt [2014]), their rule assigns guru C to voter F ,
while our rule would assign guru A to voter F .

1.2 Preliminaries
Consider a set of voters V and a set of alternatives or outcomes

A. The set of possible electorates is given by E(V) = 2
V\{∅}, i.e.

non-empty subsets of V . In our model, for every election there are

three sets of electorates V a ,V c ,V d ∈ E(V) such that V i ∩V j = ∅

for i , j ∈ {a, c,d} andV a ∪V c ∪V d = V , where setsV a
,V c

,V d

consist of those who abstain, cast a vote and delegate their voting

rights, respectively.

A preference relation over alternatives for a voter i ∈ V is denoted

by ≻A
i and is a binary relation onA, i.e.: for x ,y ∈ Awith x , y, the

expression x ≻A
i y indicates that voter i strictly prefers alternative

x over alternativey. A preference relation over voters for voter i ∈ V

is denoted by ≻V
i and is a binary relation onV , i.e.: for i,x ,y ∈ V

with
2 i , x ,y and x , y, the expression x ≻V

i y indicates that voter

i strictly prefers to delegate her voting rights to voter x instead of

voter y. For both preference relations, we allow an index to identify

ranking positions e.g. for any i ∈ Vd
, herm-th preferred voter is

denoted by ≻V
i,m .

For a setW , consider a binary relation ≻Wi . Then, ≻Wi is:

(a) complete iff for every pair x ,y ∈W either x ≻Wi y ory ≻Wi x
holds,

(b) antisymmetric iff for every pair x ,y ∈ W , if x ≻Wi y then

y ≻Wi x does not hold, and

(c) transitive iff for all x ,y, z ∈W , if x ≻Wi y and y ≻Wi z, then

x ≻Wi z.

Both preference relations over alternatives and preference relations

over voters are antisymmetric and transitive but not complete (we

do not enforce voters to rank every other member of the electorate

as we consider this an unrealistic scenario for large electorates).

The set of all possible preference relations ≻A
i and ≻V

i , for any

i ∈ V , are denoted by RA
and RV

, respectively. A preference profile
over alternatives is a function PA

: E(V) → 2
RA

, where PA(N )

returns a set of preference relations over alternatives (maximum

one for each voter in N ). For example, given an electorate N =

{i, j,k}, a preference profile PA(N ) could return {(i,≻A
i ), (j,≻A

j )},

meaning that agent i and j have been assigned a preference relation

over alternatives but k has not (as k either delegates or abstains).

Similarly, we define as a preference profile over voters a function

PV
: E(V) → 2

RV

, where PV (N ) returns a set of preference

relations over voters (maximum one for each voter in N ). Given

profiles PA
and PV

, voters are assigned to the V a
, V c

and V d

electorates as follows. If (i,≻A
i ) ∈ PA (N ), we infer that voter i

casts a vote according to ≻A
i and therefore becomes a member

of the casting electorate V c
. If (i,≻A

i ) < PA (N ) and (i,≻V
i ) ∈

PV (N ), then i becomes a member of the delegating electorate V d
.

If (i,≻A
i ) < PA (N ) and (i,≻V

i ) < PV (N ), i becomes a member of

the abstaining electorate V a
.

Given an electorate N , adding or removing a preference relation

over alternatives (or over voters) from a preference profile over

alternatives PA (N ) (or over voters PV (N )), is denoted as follows.

For a tuple (i,≻A
i ) ∈ PA (N ), a voter j ∈ V \ N and j’s assigned

preference relation over alternatives ≻A
j ∈ RA

:

PA
−i (N ) := PA (N ) \ {(i,≻A

i )},

PA

+(j,≻A
j )
(N ) := PA (N ) ∪ {(j,≻A

j )}.

Similarly, for a tuple (i,≻V
i ) ∈ PV (N ), a voter j ∈ V \ N and j’s

assigned preference relation over voters ≻V
j ∈ RV

:

PV
−i (N ) := PV (N ) \ {(i,≻V

i )},

PV

+(j,≻V
j )
(N ) := PV (N ) ∪ {(j,≻V

j )}.

2
A voter cannot include herself in her preference relation over voters.
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To simplify the above cases notation, we will sometimes be using

PA , PV , PA
−i , P

A
+j , P

V
−i and P

V
+j , accordingly.

2 DELEGATION GRAPH AND DELEGATION
RULES

To model all possible delegation choices between voters, we use a

weighted directed graph defined as follows.

Definition 1. A delegation graph is a weighted directed graph
G = (V,E,w), where

• V is the set of nodes representing the agents registered as
voters;

• E is the set of directed edges representing delegations between
voters; and

• w is the weight functionw : E 7→ N that assigns a value to an
edge (i, j).

To decide which values the weight functionw has assigned to the

outgoing edges of each vertex, we introduce the following function

д that generates a delegation graph. Recall that we allow an index

to identify ranking positions of trustees e.g. for any i ∈ Vd
, her

m-th preferred voter is denoted by ≻V
i,m .

Definition 2. Define as д the delegation graph function which
takes as input a preference profile over voters PV and returns the re-
lated delegation graphG = (V,E,w) for which the following property
holds.

Property 1. For every i, j ∈ V and i , j , if there exists (i,≻V
i ) ∈

PV with ≻V
i,x= j, then there exists (i, j) ∈ E such that

w((i, j)) = x .

We evaluate a delegation graph through the following.

Definition 3. A delegation rule function d takes as input a
preference profile over alternatives PA together with a delegation
graph G , and returns another preference profile over alternatives P̂A

that resolves delegations as follows,
• if (i,≻A

i ) ∈ P̂A , then i casts her vote,

• if (i,≻A
j ) ∈ P̂A for a voter j , i , then j becomes i’s final

delegate, i.e. her guru,

• if (i,≻A
k ) < P̂A for every k ∈ V , then i abstains.

For each voter i ∈ V , a delegation rule analyses the subtree of

the delegation graph rooted at node i and decides whether i casts,
delegates or abstains. If voter i is found to delegate, the chosen

delegation rule function will traverse i’s subtree to find i’s guru.
To get the outcome of an election, we use a voting rule function

f . In our model, f takes as input the modified preference profile

over alternatives P̂A
(which incorporates delegations) and returns

a single winner or a ranking over alternatives (depending on the

voting rule used). In Section 5, we show that the output of the

voting rule depends on the chosen delegation rule, meaning that

we could get different election results when only the delegation

rule function is different, i.e.

f (d(PA ,д(PV ))) , f (d ′(PA ,д(PV ))),

when d , d ′.

3 CAST AND GURU PARTICIPATION
The key property that we investigate is participation. The partici-

pation property holds if a voter, by joining an electorate, is at least

as satisfied as before joining. This property has been defined only

in the context of vote casting (Fishburn and Brams [1983]; Moulin

[1988]). Due to the addition of delegations in our model, we es-

tablish two separate definitions of participation to reflect this new

functionality
3
.

For both of the following definitions, note that for an electorate

N ∈ E(V), the set of all preference profiles over alternatives is

given by PA,N
, while the set of all preference profiles over dele-

gates is given by PV,N
.

A voting rule f satisfies the cast participation property when

every voter i ∈ V weakly prefers joining any possible voting

electorateV c
compared to abstaining and regardless of who is in the

delegating electorate V d
. For the next two definitions, we add the

notation ⪰i of weakly preferring as in these two cases the resulting

outcomes might be identical. For non-identical outcomes, a voter i
has a strict preference (as indicated in the model preliminaries).

Definition 4. The Cast Participation property holds for a voting
rule f iff:

f (d(PA ,д(PV ))) ⪰A
i f (d(PA

−i ,д(P
V ))),

for every possible disjoint casting and delegating electoratesV c ,V d ∈

E(V), where i ∈ V c , and every possible preference profile for these
electorates PA ∈ PA,V c

and PV ∈ PV,V d
.

For any casting and delegating electorates V c
and V d

, a voting

rule f satisfies the guru participation property when any voter

i ∈ V c
weakly benefits from receiving additional voting rights of

any voter j ∈ V .

Definition 5. The Guru Participation property holds for a voting
rule f iff:

f (d(PA ,д(PV ))) ⪰A
i f (d(PA ,д(PV

−j ))), (1)

for every possible disjoint casting and delegating electoratesV c ,V d ∈

E(V), where i ∈ V c , j ∈ V d , and every possible profile PA ∈ PA,V c

and PV ∈ PV,V d
that assign j’s vote to guru i , i.e.

(j,≻A
i ) ∈ d(PA ,д(PV )).

Let F be the set of all voting rules. It is known that only a subset

F̄ ⊂ F satisfy (cast) participation: for example, Fishburn and Brams

([1983]) show that single transferable vote does not satisfy (cast)

participation, while Moulin ([1988]) shows there is no Condorcet-

consistent voting rule satisfying this property given 25 or more

voters.

We are interested in exploring guru participation for voting

rules in the subset F̄ and this paper focuses on the majority rule

with binary issues. Our results build on Observation 1, which we

intuitively describe as follows. First, recall that if a voting rule

satisfies cast participation, then any voter weakly prefers casting a

vote instead of abstaining. When delegations of votes are allowed in

3
There could be other interesting participation properties for liquid democracy, such

as incentivising deviation from delegating to casting. But this is out of the paper’s

scope, as we focus on finding delegation rules that weakly benefit casting voters who

become gurus.
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the election and there is only one guru who gains an additional vote,

then this guru weakly prefers receiving this additional vote (and

therefore casting it, since cast participation is satisfied). Therefore

guru participation is satisfied. Formally, we write the above as

follows (see preliminaries for full form notation and definitions of

the profiles used).

Observation 1. Let f ∈ F̄ be the majority rule. Consider voters
i, j ∈ V , a profile P̂A returned by d(PA ,д(PV )) and a profile P̂

′A

returned by d(PA ,д(PV
+j )), where i has been assigned as j’s guru, i.e.

(j,≻V
i ) ∈ P̂

′A . Then guru i weakly benefits after j delegates if for

every k ∈ V :

(a) k’s vote is assigned to guru l ∈ V by both returned preference
profiles, i.e. (k,≻V

l ) ∈ P̂A ∩ P̂
′A , or

(b) k’s vote is assigned to guru i after j joins the delegating elec-
torate, i.e. (k,≻A

i ) ∈ P̂
′A .

4 INTRODUCING BREADTH-FIRST
DELEGATION

Recall that liquid democracy allows for multi-step delegations.

Therefore, the guru of any i ∈ V d
could be any voter j ∈ V c

who is in the sub tree of the delegation graph with root i . Further-
more, the assigned guru j may not be included in i’s preference

relation ≻V
i , i.e. it could be that � x such that ≻V

i,x= j. In this case,

there is at least one intermediate delegator between voter i and the

assigned guru j. To find who exactly are intermediate delegators,

we introduce the delegation chains as follows.

A delegation chain for a voter i ∈ V d
starts with i , then lists the

intermediate voters in V d
who have further delegated i’s voting

rights and ends with i’s assigned guru j ∈ V c
. These chains (see

Definition 6) must satisfy the following conditions: (a) no voter

occurs more than once in the chain (to avoid infinite delegation

cycles that could otherwise occur) and (b) each member of the

chain must be linked to the next member through an edge in the

delegation graph, which is generated from the given preference

profile over voters.

Definition 6. Given profiles PA and PV , a voter i ∈ V d and her
guru j ∈ V c , we define a delegation chain for i to be an ordered tuple
Ci = ⟨i, . . . , j⟩ such that:

(a) for an integer x ∈ [1, |Ci |], notation Ci,x indicates the voter
at the x-th position in Ci ,

(b) for every pair of integers x ,y ∈ [1, |Ci |] with x , y,

Ci,x , Ci,y ,

(c) for every integer z ∈ [1, |Ci | − 1], there exists an edge

(Ci,z ,Ci,z+1) ∈ E ∈ д(PV ),

(d) for every integer z ∈ [1, |Ci | − 1], the voter positioned at Ci,z
belongs in the V d electorate , and

(e) the voter positioned at Ci, |Ci | belongs in the V c electorate.

Observe that the variable x in the expression Ci,x also indicates

how deep the voter Ci,x is in the delegation graph subtree rooted

with vertex i . Thus sometimes we refer to x as the depth of Ci,x in

Ci . The functionw takes as input a delegation chain and returns a

list of the weights assigned to each edge among voters in Ci , that
is,

w(Ci ) = [w(Ci )1, . . . ,w(Ci )x , . . . ,w(Ci )n−1],

wherew(Ci )x is the weight of edge (Ci,x ,Ci,x+1) and n = |Ci |.
Delegation chains can be used as a tool to find a guru for a voter

i ∈ V d
. The standard interpretation of liquid democracy delegations

prioritises all possible delegation chains involving i and i’s most

preferred voter ≻V
i,1 before all possible delegation chains involving i

and i’s second preferred voter ≻V
i,2 and so on. Note that this priority

rule hold for the deeper levels of the delegation graph subtree rooted

at i . In other words, we observe that the standard way to select i’
guru is to choose the first casting voter found through a depth first

search in i’s subtree, which motivates the next definition.

A depth-first delegation rule dD assigns guru j to i iff: (a) there is
a delegation chain Ci that can be formed from i to j, and (b) there
is no other delegation chain C ′

i leading to a different guru k that

has a smaller weight at the earliest depth after the root, compared

to Ci .

Definition 7. For i, j,k ∈ V , a depth-first delegation rule dD

returns a profile P̂A with (i,≻A
j ) ∈ P̂A iff (a) and (b) hold:

(a) ∃ delegation chain Ci with Ci, |Ci | = j,

(b) � any delegation chain C ′
i such that:

b1. C
′
i, |C ′

i |
= k for k , j,

b2. ∗ ∃y:w(C ′
i )y < w(Ci )y , and

∗ w(C ′
i )x ≤ w(Ci )x for all 0 < x < y.

Example 4.1. Consider the delegation graph in Figure 1 (a). There
are two delegation chains

4
available for voter p ∈ V: Cp = ⟨p, r ⟩

and C ′
p = ⟨p,q, s⟩ with weights w(Cp ) = [2] and w(C ′

p ) = [1, 2],

respectively. The dD rule returns profile P̂A
that assigns s as the

guru of p, i.e. (p,≻A
s ) ∈ P̂A

, due to inequality w(C ′
p )1 < w(Cp )1.

Note that C ′
p satisfies Definition 7.

In Example 4.1, p’s voting right is assigned to guru s , but why
should s (who is the second preference of q) outrank agent p’s
explicit second preference r? This question gains even more impor-

tance the longer the depth-first delegation chain is. Given this issue,

we define a novel delegation rule that prioritises a voter’s explicit

preferences as follows. A breadth-first delegation rule dB assigns

guru j to i iff: (a) there is a delegation chain Ci that can be formed

from i to j; and (b) there is no other delegation chain C ′
i leading to

a different guru k with: either a shorter length or, an equal length

and a smaller weight at the earliest depth after the root, compared

to Ci .

Definition 8. For i, j,k ∈ V , a breadth-first delegation rule dB

returns a profile P̂A with (i,≻A
j ) ∈ P̂A iff (a) and (b) hold:

(a) ∃ delegation chain Ci with Ci, |Ci | = j,

4
Recall that ⟨p, q, t ⟩ does not satisfy the delegation chain definition as t < V c

.
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(a) (b)

Figure 1: (a) A delegation graph with electorates V a =

{t}, V c = {s, r } and V d = {p,q}, meaning that t abstains,
s, r cast, and p,q delegate. The preference relations over
alternatives are: “No" ≻A

s “Yes" and “Yes" ≻A
r “No". (b)A

delegation graph with electoratesV a = {},V c = {s, r } and
V d = {p,q, t}. The preference relations over alternatives
remain the same. The only difference to (a) is that voter t
decides to delegate with a preference relation over voters
p ⪰V

t r .

(b) � any delegation chain C ′
i such that C ′

i, |Ci |
= k , for k , j,

and

b1. |C
′
i | < |Ci |, or

b2. ∗ |C ′
i | = |Ci | and

∗ ∃y:w(C ′
i )y < w(Ci )y and

∗ w(C ′
i )x ≤ w(Ci )x for all 0 < x < y.

Example 4.2. Consider the delegation graph in Figure 1 (a). There
are two delegation chains available for voter p ∈ V: Cp = ⟨p, r ⟩
and C ′

p = ⟨p,q, s⟩ with weights w(Cp ) = [2] and w(C ′
p ) = [1, 2],

respectively. The dB rule returns profile P̂A
that assigns r as the

guru of p, i.e. (p,≻A
r ) ∈ P̂A

, due to inequality |Cp | < |C ′
p |. Note

that Cp satisfies Definition 8.

5 DEPTH-FIRST VERSUS BREADTH-FIRST
DELEGATION

Through the next two examples, we show that different delegation

rules can have different properties. More specifically, we present

an instance where the depth-first delegation rule cannot guarantee

guru participation, while the breadth-first delegation rule does.

Example 5.1. Consider the delegation graph in Figure 1(a) and all

possible delegation chains available to each voter inV d
:Cp = ⟨p, r ⟩,

C ′
p = ⟨p,q, s⟩ and Cq = ⟨q, s⟩.

Using rule dD , voter p is assigned guru s through chain C ′
p (see

Example 4.1), while voter q is also assigned guru s through chain

Cq . Therefore d
D
returns the preference profile over alternatives

{(p,≻A
s ), (q,≻A

s ), (s,≻A
s ), (r ,≻A

r )}.

delegation graph delegation rule Yes No

Figure 1 (a) dD 1 3

Figure 1 (b) dD 3 2

Figure 1 (a) dB 2 2

Figure 1 (b) dB 3 2

Table 1: Election results for Figure 1 when using either the
depth-first or the breadth-first delegation rule.

Using rule dB instead, voter p is assigned guru r through Cp (see

Example 4.2), whileq’s guru remains the same. ThereforedB returns

another preference profile over alternatives:

{(p,≻A
r ), (q,≻A

s ), (s,≻A
s ), (r ,≻A

r )}.

In the next example we focus on the case where the previously

abstaining voter t decides to delegate and show that the election

result is inversed only when dD is used (see Table 1).

Example 5.2. Consider the delegation graph in Figure 1(b) and

all possible delegation chains available to each voter in V d
with

their respective edge weights:

delegation chain edge weights

Cp = ⟨p, r ⟩ w(Cp ) = [2],

C ′
p = ⟨p,q, s⟩ w(C ′

p ) = [1, 2],

C ′′
p = ⟨p,q, t , r ⟩ w(C ′′

p ) = [1, 1, 2],

Cq = ⟨q, s⟩ w(Cq ) = [2],

C ′
q = ⟨q, t , r ⟩ w(C ′

q ) = [1, 2],

C ′′
q = ⟨q, t ,p, r ⟩ w(C ′′

q ) = [1, 1, 2],

Ct = ⟨t , r ⟩ w(Ct ) = [2],

C ′
t = ⟨t ,p, r ⟩ w(C ′

t ) = [1, 2],

C ′′
t = ⟨t ,p,q, s⟩ w(C ′′

t ) = [1, 1, 2].

Using rule dD , observe that voter p is assigned guru r through
the chain C ′′

p due to w(C ′′
p )1 < w(Cp )1, w(C ′′

p )1 = w(C ′
p )1 and

w(C ′′
p )2 < w(C ′

p )2. Voter q is also assigned guru r through chainC
′′
q

since w(C ′′
q )1 < w(Cq )1, w(C ′′

q )1 = w(C ′
q )1 and w(C ′′

q )2 < w(C ′
q )2.

Last, voter t is assigned guru s through chainC ′′
t becausew(C ′′

t )1 <

w(Ct )1, w(C ′′
t )1 = w(C ′

t )1 and w(C ′′
t )2 < w(C ′

t )2. Therefore rule

dD returns the preference profile over alternatives

{(p,≻A
r ), (q,≻A

r ), (s,≻A
s ), (r ,≻A

r ), (t ,≻A
s )}.

Using rule dB instead, voter p is assigned guru r through the chain

Cp due to inequalities |Cp | < |C ′
p | < |C ′′

p |. Voter q is assigned guru

s through Cq due to |Cq | < |C ′
q | < |C ′′

q | and voter t is assigned

guru r through Ct because of |Ct | < |C ′
t | < |C ′′

t |. Therefore, rule

dB returns the profile over alternatives

{(p,≻A
r ), (q,≻A

s ), (s,≻A
s ), (r ,≻A

r ), (t ,≻A
r )}.

Examples 5.1 and 5.2 show that guru participation may not hold

for depth-first delegation when a cycle exists in the delegation

graph. Due to this cycle, when t joins the election, both r and s
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receive new delegated voting rights, thus Observation 1 does not

occur
5
. We summarise the above for the majority rule f ∈ F̄ .

Theorem 5.3. Given the majority rule f ∈ F̄ , guru participation
is not guaranteed to hold when using the depth-first delegation rule
dD .

Proof. Consider the preference profile over alternatives and the

preference profile over voters of Figure 1(b),

PA = {(r ,≻A
r ), (s,≻A

s )}

PV = {(p,≻V
p ), (q,≻V

q ), (t ,≻V
t )},

where the preferences over alternatives for r and s are: “Yes” ≻A
r

“No", “No"≻A
s “Yes” and the preferences over voters for p,q, t are:

q ≻V
p r , t ≻V

q s and p ≻V
t r . We prove this theorem using Exam-

ples 5.1 and 5.2. In Example 5.1, where voter t abstains, rule dD

returns profile

dD (PA ,д(PV
−t )) =

{(p,≻A
s ), (q,≻A

s ), (s,≻A
s ), (r ,≻A

r )},

which gives three votes (via s) for alternative “No" and one vote

(via r ) for alternative “Yes" (see also Table 1). From Example 5.2

where voter t delegates, rule dD returns profile

dD (PA ,д(PV )) =

{(p,≻A
r ), (q,≻A

r ), (s,≻A
s ), (r ,≻A

r ), (t ,≻A
s )},

which gives three votes for “Yes" and two votes for “No". Ob-

serve that the election result changes from “No" to “Yes" despite

the fact that t votes for “No" through her guru s , i.e. (t ,≻A
s ) ∈

dD (PA ,д(PV )). Note that due to the preference “No"≻A
s “Yes”, we

get

f (dD (PA ,д(PV ))) ≺A
s f (dD (PA ,д(PV

−t ))), (2)

where f is a voting rule satisfying cast participation. However,

the preference expressed by (2) implies that guru s becomes worst

off after t delegates to her, which violates the definition of guru

participation (1), proving this theorem. □

We highlight that if a delegation graph has no cycle then guru

participation is guaranteed to hold for the depth-first delegation

rule, which show through Lemma 5.4 and Theorem 5.5.

Lemma 5.4. When using depth-first delegation rule dD , if there is
no cycle in the delegation graph then Observation 1 holds.

Proof. Assume there exists a delegation graph with no cycles

where Observation 1 does not hold. We show that the only case

where Observation 1 does not hold is when a cycle exists.

Recall that (by Observation 1) guru participation is guaranteed

to hold if whenever a voter j joins the delegating electorate, there

exists only one voter, say i , in the casting electorate who increases

the number of times she becomes a guru. Consider a voter k who

changes her assigned guru to another voter l after j joins the del-
egating electorate, where l , i and k , j. This means that, apart

5
Observation 1 states how guru participation can be satisfied when a voting rule

satisfying cast participation is used: when a voter joins the delegating electorate, if

only one voter increase the number of times assigned as a guru, then this voter is

weakly better off.

from i , voter l also increases the times she becomes a guru. Next we

describe that, when dD is used, this case can only arise through the

following circumstance. Let guru i be assigned to voter j through
delegation chain Cj = ⟨j, . . . , i⟩ and guru l be assigned to voter k
through delegation chain Ck = ⟨k, ..., j, ..., l⟩. Chain Ck must pass

through j because all chains without j are available before j dele-
gates. Note that even if both chains pass through voter j, they end

at different gurus. For dD , this only occurs if there exists a voter h
with h , i, j, l , such that

Cj = ⟨j, . . . ,h, . . . , i⟩ and (3)

Ck = ⟨k, . . . ,h, . . . , j, . . . , l⟩. (4)

The reason for the above is that k’s delegation goes through h to

reach j, but then the preferred delegation from j passes through h
(see chain Cj ). As k’s delegation already includes h before j, and
an intermediator voter cannot be repeated (definition 3), k uses

another route to guru l (through a less preferred option of j). From
(3) and (4), observe that there exists a cycle in the graph, i.e. the

cycle ⟨h, ..., j, ...,h⟩, which contradicts our assumption and proves

the lemma. □

Theorem 5.5. Given the majority rule f ∈ F̄ and a delegation
graph with no cycles, guru participation is guaranteed to hold when
using the depth-first delegation rule dD .

Proof. We prove this using Lemma 5.4 and Observation 1. □

We have previously shown that depth-first delegation does not

guarantee guru participation when the delegation graph contains

cycles. The next theorem states that breadth-first delegation always

guarantees guru participation. To show this, we first introduce the

following observation and lemma.

Observation 2. Consider two voters j and k in a delegating elec-
torate. Using the breadth-first delegation rule dB , if k is assigned guru
l through a delegation chain Ck with j < Ck , then k is assigned guru
l even when j abstains.

The above observation occurs because ruledB has usedCk ahead

of any possible delegation chain that includes j. Therefore chain
Ck will still be used by dB when j is in the abstaining electorate

and no possible delegation chain that includes j can be formed.

Lemma 5.6. Consider two voters j and k in a delegating electorate.
Using the breadth-first delegation rule dB , if voter k is assigned her
guru through a delegation chain Ck with j ∈ Ck , then k is assigned
the same guru as j.

Proof. Assume that, usingdB , voter j is assigned guru i through
delegation chain Cj = ⟨j . . . , i⟩ and k is assigned a different guru l
through a delegation chain that includes j, i.e.

Ck = ⟨k, . . . , j, . . . , l⟩.

Then either (a) or (b) occurs:

(a) rule dB should use chain C ′
j = ⟨j, . . . , l⟩, which contradicts

the assumption that Cj is used,

(b) there exists a shared intermediate voter e such that

Cj = ⟨j, . . . , e,д, . . . , i⟩ and

Ck = ⟨k, . . . , f , j, . . . , l⟩,
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where e ∈ ⟨k, . . . , f ⟩. Recall that dB prioritises shorter

length delegation chains (see definition 8). We show that

voter k has a shorter delegation chain available that does

not include j , i.e. there exists aC ′
k such that |C ′

k | < |Ck | and

j < C ′
k . Let C

′
k = ⟨k, . . . , e,д, . . . , i⟩. According to dB , the

delegation chain used to assign j’s guru, ⟨j . . . , e,д, . . . , i⟩,
is shorter or equal in length to any other alternative, thus

|⟨j, . . . , e,д, . . . , i⟩| ≤ |⟨j, . . . , l⟩|. Observe that

|⟨д, . . . , i⟩| < |⟨j, . . . , e,д, . . . , i⟩| ≤ |⟨j, . . . , l⟩| ⇒

|⟨k, . . . , e⟩| + |⟨д, . . . , i⟩| < |⟨k, . . . , e⟩| + |⟨j, . . . , l⟩|.

Since e ∈ ⟨k, . . . , f ⟩, we can rewrite the previous as

|⟨k, ..., e⟩| + |⟨д, ..., i⟩| < |⟨k, ..., f ⟩| + |⟨j, ..., l⟩|.

Therefore, ruledB should useC ′
k to assignk’s guru. However,

since j < C ′
k , the assumption is contradicted.

The contradictions of both (a) and (b) prove this lemma. □

Theorem 5.7. Given the majority rule f ∈ F̄ , guru participation
is guaranteed to hold when using the breadth-first delegation rule dB .

Proof. By Observation 2, given voters j and k in the delegating

electorate, if a voter k does not delegate through j , then k’s assigned
guru (if any) is the same even if j abstained. By Lemma 5.6, if a

voter k delegates through j, then the guru of k is the same as the

guru of j . Combining the above cases, we show that (regardless of k
delegating through j or not), whenever a voter j joins the delegating
electorate and is assigned to a guru i , then i is the only casting voter
who increases the number of times she becomes a guru. Since also

f ∈ F̄ , then Observation 1 holds, meaning that the breadth-first

delegation rule dB is guaranteed to satisfy guru participation. □

6 CONCLUSION AND FUTUREWORK
In this paper, we discuss the depth-first and the breadth-first dele-

gation rule proving that only the latter has the desirable property

that every guru weakly prefers receiving delegated voting rights

under the majority rule with two alternatives. The immediate future

questions that arise are to investigate what holds for more than two

alternatives in this model or for other voting rules that satisfy cast

participation such as approval voting (Felsenthal [2010]). However,

there could be delegation rules that satisfy other interesting prop-

erties which improve the concept of liquid democracy. Towards

this path, we note that one of the main issues that current liquid

democracy implementations suffer from, is that large parts of an

electorate might end up being represented by only a small subset

of gurus (Kling et al. [2015]). Since the breadth-first delegation rule

favours keeping delegated voting rights close to their origin, could

this issue be resolved by using this rule? Other interesting future

directions are investigating guru participation with voting rules

that do not satisfy cast participation, relaxing the assumption of

strict personal rankings over voters, and analysing other types of

participation.
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