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ABSTRACT
We present a general model for the operation of a cloud comput-

ing server comprised of one or more speed-scalable processors.

Typically, tasks are submitted to such a cloud computing server

in an online fashion, and the server operator has to schedule the

tasks and decides on payments without knowledge about the tasks

arriving in the future. Although very natural, this cloud computing

problem on speed-scalable processors has not been studied from a

mechanism design perspective in the online setting.

We provide a mechanism for this setting, both for a single and

multiprocessor environment, that has several desirable properties:

(1) the induced game admits a subgame perfect equilibrium in pure

strategies and therefore a pure Nash equilibrium, (2) the Price of

Anarchy is constant, (3) the mechanism is budget balanced, i.e., the

sum of the payments of the agents is equal to the total energy costs,

(4) the communication complexity is low, (5) the mechanism is com-

putationally tractable for both the service operator and the agents,

and (6) the agents’ payment is also intuitive and easy to communi-

cate to them. We also provide a second mechanism with a better

Price of Anarchy, which in turn is more involved to implement.

We are able to extend ourmechanisms and results to the Bayesian

setting, where the type of each agent is drawn independently from

some underlying distribution and agents are minimizing their ex-

pected costs. In this setting we also show the same approximation

factor of our mechanism as in the basic online setting in both the

single and the multiprocessor environment.
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1 INTRODUCTION
Data centers hosting cloud services are enormous facilities, that

typically may consume as much energy as 25,000 households [21].

During the last two decades, many such data centers have opened

around the world in order to satisfy the continued growth of the

IT industry, together with the increasing requirements for reliable

data processing, data storage and on-demand computation. This

growing infrastructure results in a growing energy consumption

and environmental impact. In fact, data centers consumed in 2010

between 1% and 1.5% of the total electricity produced globally, and

are estimated to use between 3% and 13% by 2030 [5]. As a result,

energy-efficiency in data centers is a major concern not only from

the operator perspective, but also for society in general.

With energy-efficiency in mind, one advantage of a cloud com-

puting data center is that it allows to optimize many processes in a

centralized manner. Research into this area can therefore have a

crucial impact on the environmental effects of these centers. How-

ever, for this to be the case, one needs to take into account two

important aspects when designing a model for such data centers.

The first one is the online nature of the problem. A cloud computing

service operates and receives tasks continuously, usually with little

knowledge of upcoming future requests. The second important as-

pect is that there are multiple agents, with non-uniform priorities,

requirements and information. The modeling approach should take

into account their incentives in their relation with the cloud service.

Therefore, it is natural to study the problem from a game-theoretic

perspective and to find a mechanism for the processing that results

in an equilibrium
1
with good performance guarantees.

1
An equilibrium is a stable situation in which no agent can be better off by making

another decision, given the choices of the other agents of the system.
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This modeling approach has been followed in previous work.

However, the main objective in mind has been to optimize the per-

formance of the cloud server in terms of the total profit obtained

from the processed tasks [10, 19, 27], and little has been done in

terms of energy efficiency. Arguably, the most important factor

regarding the energy expenditure in the day-to-day operation is

the speed at which tasks are processed. The capability to dynami-

cally adjust the speed of the processor(s) is a typical functionality

implemented by chip manufacturers and is commonly referred to

as dynamic speed scaling. While a higher speed implies a higher

Quality of Service (QoS), it also comes with a higher energy con-

sumption. A balance needs to be struck between these opposing

objectives of performance and energy utilization.

As is common in the literature, we assume the energy consump-

tion per unit of time in a given processor is of the form sα , where
s is the processing speed and α > 1 is a fixed parameter. It turns

out that, in practice, the energy consumption per unit of time is

proportional to roughly the cube of the speed and thus α is usually

assumed to be between 2 and 3 [17, 30]. The total energy consumed

by the processor is the integral of this function over time.

We study the operation of a cloud computing data center, mod-

eled as a system of shared processors with speed scaling capabilities.

Agents of the system arrive in an online manner, each with a job of

a certain workload that needs to be processed by the server. Each

agent communicates information about her job to the service opera-

tor, gets her job returned to her after it is completed, and is charged

a payment for the processing. The service operator is concerned

with the total energy expended, together with the QoS that each

agent perceives, which is modeled as a private cost function that is

non-decreasing in the waiting time. In particular we assume that

the operator wants to minimize the total energy spent plus the sum

of all waiting costs, while guaranteeing that the payments cover the

energy expenditure; we consider that each agent tries to minimize

the sum of her payment and her waiting cost.

We are interested in the problem from the perspective of the ser-

vice operator, who is in charge of implementing some mechanism

to process the jobs. The service operator receives the information

about the job characteristics (scheduling time constraints and work-

load) of each agent and decides on a feasible processing schedule

based on this communication. This schedule specifies for each time

point which job is running on each processor, and at what speed.

After the server operator runs the schedule he computes, he

returns each job upon completion, and receives a payment from

each agent. The amount to be paid is also to be determined by

the service operator based on the mechanism he implements. We

consider the agents to be strategic, so they submit their job’s char-

acteristics under the goal of minimizing their personal cost which

is their payment and waiting cost. Therefore, we assume that the

outcome of a given mechanism is the equilibrium that results of

the interaction between the agents and the server. The quality of

this outcome is measured as the sum of the energy cost and the

waiting costs of all agents, also referred to as the social cost of the

equilibrium. The goal is to ensure that this is not too far off from

the optimum.
2
Thus, we search for a mechanism that results in

2
We consider the optimum to be the feasible schedule that minimizes the social cost.

a low Price of Anarchy (PoA) (introduced by Koutsoupias and Pa-

padimitriou in 1999 [25]), which is the worst case ratio between the

social costs of any equilibrium and the social cost of the optimum.

Recently, Antoniadis and Cristi [7] studied the version of the

problem in which agents arrive simultaneously in the system. They

presented the modAVR mechanism, which guarantees a constant

PoA of O(α2α−2) for a shared speed scalable processor with the

same social cost function as ours. We extend their results to the

online setting and to multiple processors. Our mechanism attributes

the costs in a different way in the online setting and in order to

deal with the multiprocessor setting we introduce novel techniques.

Moreover, we extend all the results to the Bayesian case. Due to

space constraints, some proofs are deferred to the full version.

1.1 Our Contribution
We present a general model of the operation of a cloud computing

server in Section 2, where we allow for agents to have arbitrary non-

decreasing waiting cost functions and online arrivals, and where

the server is comprised of multiple speed-scalable processors. Even

though our model does not capture every single aspect in the op-

eration of a real-world cloud server, it does capture the essential

features: energy efficiency versus performance trade-off, multiplic-

ity of incentives and online decision making. Thus, we have a clean

mathematical formulation that allows us to study the problem from

a theoretical point of view.

We provide a mechanism that has several desirable properties.

(1) The induced game has a subgame perfect equilibrium in

pure strategies and therefore a pure Nash equilibrium
3
, i.e., a

strategy profile in which every agent chooses a pure strategy

(as opposed to a randomized strategy) that has the lowest

costs given the pure strategies of the other agents.

(2) We prove that the PoA is constant for any fixed value of α .
Hence, the total costs are not far off from the social optimum.

(3) The mechanism is budget balanced, that is to say, the sum of

the payments of the agents is equal to the total energy costs.

(4) The communication complexity is low, as agents need not

declare their full private waiting cost function but only the

starting time, completion time and workload of their job.

(5) The mechanism is computationally tractable for both the

service operator and the agents: when an agent arrives, she

can efficiently compute her optimal strategy and the operator

can efficiently compute the processing schedule and the

payment of the agent.

(6) The payment of the agents is also intuitive and easy to ex-

plain to them.

Our mechanism is called IncrAVRSW and it combines the In-

cremental cost-sharing protocol [29] with the AVR (average rate)

algorithm [33] for scheduling jobs. The index SW is an abbreviation

for Single Window and indicates that agents can declare only a

single time interval in which their job needs to be processed.

We additionally present another multi windowmechanism called

IncrAVRMW, which differs from the single window variant in that

the agents can now submit a union of (disjoint) time intervals

3
In the offline setting, Antoniadis and Cristi [7] only showed that under the modAVR

mixed Nash equlibria are guaranteed to exist, and furthermore it is not clear whether

computing an equilibrium is computationally tractable.
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in their strategy. The Price of Anarchy we prove for this more

general mechanism is better, but the single window variant has the

desirable properties 4 and 5 above regarding its simplicity, both in

computation and in communication.

The energy cost of the solution found by AVR is bounded by

2
α−1αα times the energy costs of the optimal schedule. In our

online setting, where agents do not only pay for the energy costs

but also have their private cost function measuring their perceived

QoS, we manage to find the same PoA for IncrAVRMW (cf. Theorem

3.5). On the other hand, our simpler mechanism IncrAVRSW only

loses the same constant factor another time (cf. Theorem 3.6).

Furthermore, we extend the results to the case with multiple pro-

cessors. In this case, we present a simple greedy algorithm to match

jobs with processors, whose energy consumption is bounded by a

factor of 2
2α

times the energy consumption of the AVR algorithm

in the single window multiprocessor setting or that of the optimum

schedule in the multi window multiprocessor setting. Thus, we can

show that the mechanism induced by the greedy algorithm has a

PoA bounded by 2
3α−1αα in the multi window case and by roughly

2
4α−2α2α

in the single window case (cf. Theorems 4.3 and 4.4). We

defer a more complicated algorithm for the multiprocessor case

that achieves a PoA improved by a factor 2
2α

to the full version.

Finally, we extend our mechanisms and results to the Bayesian

setting, where the type of each agent is drawn independently from

some underlying distribution and agents are minimizing their ex-

pected costs. In this setting we also show the same approximation

factor of our mechanisms as in the basic online setting (cf. Corol-

laries 5.4, 5.5, 5.6 and 5.7).

Our main approach for proving the PoA upper bounds is by

applying the smoothness technique of Roughgarden [31] through a

technical lemma that we prove. Regarding the Bayesian setting, we

derive the same bounds by using the Extension Theorem of [31].

While othermechanismsmight bemore obvious to consider, they

do not possess all the properties our mechanism achieves. Consider

for example the mechanism that recomputes the social optimum

upon the arrival of a new task, i.e., it processes the remaining jobs

in a way that minimizes the overall costs of the system, given what

has already been processed before. The computational overhead

of this mechanism for both the service operator and the agents

prevents this mechanism from being deployed in a practical setting
4
.

Moreover, if we consider proportional cost sharing, the cost of an

agent depends on the strategies of agents arriving into the system

after this agent, and it is unclear whether pure equilibria exist.

1.2 Related Work
There is a large body of literature related to dynamic speed scal-

ing. This was initiated by the seminal paper by Yao, Demers and

Shenkers [33], who presented an optimal algorithm to solve dead-

line based speed scaling problems. Their algorithm, which is now

usually referred to as the YDS-algorithm, minimizes the energy

consumption while meeting the deadlines, and it was formally ana-

lyzed by Bansal et al. [14]. The AVR algorithm, on which our work

is partially based, was also first proposed by Yao et al. for the online

4
The fastest algorithm that computes an optimal schedule takes time cubic in the

number of tasks, and each agent would have to run it on every possible combination

of strategies of the upcoming agents to make a decision.

version of the problem, and has a constant competitive ratio [11].

Our results for the multiprocessor setting are somewhat inspired

by the extension of AVR to the multiple machine setting, that also

has a constant competitive ratio [3].

Several other variants of the problem have been studied as

well, e.g. the case when processors have an upper bound on their

speeds [13] or are equipped with a sleep-state [2, 8]. Also different

objectives have been studied, such as throughput maximization [6]

and the combination of energy costs plus flow time [4, 15, 18, 26].

The latter objective resembles some relevance to our setting as the

flow time can be simulated by linear waiting cost functions. We

refer to [1, 24] for two surveys on dynamic speed scaling.

Previous literature regarding scheduling in cloud services has

focused on the problem of maximizing the value of tasks completed

before their deadlines, using a processor with constant speed. Lucier

et al. [27] showed that if there is always some slack to delay a job

and still finish it by its deadline, there is an algorithm that achieves

a constant-factor worst-case guarantee. They also designed a truth-

ful mechanism based on their algorithm. In a different direction,

Chawla et al. [19] studied the case of stochastic job arrivals, and

designed a truthful mechanism with near-optimal performance.

Recently, in an effort to bring theoretical work in cloud scheduling

closer to real-world applications, Babaioff et al. [10] proposed the

Economic Resource Allocation (ERA) model and framework, with

a modular structure that receives requests from agents that spec-

ifies an amount of resources, a time window and a will to pay; a

pluggable algorithm that computes a schedule, and an interface to

communicate with the cloud.

Prior to the work of Antoniadis and Cristi [7], two other pa-

pers investigated speed scaling scheduling from a game theoretic

perspective. Dürr, Jez and Vasquez [23] studied the existence of

pure Nash equilibria under two different offline mechanisms based

on the YDS algorithm. In particular, they showed that charging

the agents proportionally does not necessarily admit a pure Nash

equilibrium whereas charging the marginal costs does, however

at the expense of overcharging the agents. It is unclear if any of

their mechanisms induces a bounded PoA. The same set of authors

also designed a truthful and budget balanced mechanism in which

the scheduler fixes an arbitrary order of the jobs before the agents

declare their waiting cost functions [22]. However, considering a

fixed order for the tasks is a very strong constraint which can lead

to an arbitrarily high PoA [7].

Regarding the underlying offline optimization problem, there ex-

ists a PTAS for minimizing weighted flowtime in a single machine

with energy budget and a (2+ ε)-approximation for the case of mul-

tiple machines [28]. The weighted flowtime can be seen as the sum

of the waiting costs for the case of linear functions. Interestingly, it

remains an open question whether the problem is NP-hard.

Finally, several variants energy-efficiency in a cloud computing

setting have received attention in the autonomous agents and multi-

agent systems community. See [16] for a survey and [20, 32] for

some examples.

2 MODEL
Consider a cloud computing service with n agents indexed by the

elements i ∈ [n] = {1, . . . ,n}. Agent i arrives at time ai ≥ 0 and
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has a job with workload wi > 0 that needs to be processed. Each

job may be processed in several intervals of time. We assume that

the time is split into time units that represent the minimum length

of time that any job is processed without interruption; therefore

the length of the aforementioned intervals should be multiples of

the time unit.
5

We restrict ourselves to mechanisms where the strategy profile τ
is a set of tuples τi = (Ii ,wi ) for each i ∈ [n], where Ii represents a
union of (disjoint) intervals during which the job of agent i should
be scheduled; naturally, Ii ⊂ [ai ,∞), that is, no interval should

begin before the arrival of agent i’s job.
Then, a mechanism decides on a schedule to process the jobs

by defining a “virtual” speed si (t) for each agent i and time point

t ∈ Ii (we assume si (t) = 0 for t < Ii ). We consider virtual speeds

by allowing more than two jobs to be processed at the same time,

i.e., there can exist i, j ∈ [n] and t such that both si (t) > 0 and

sj (t) > 0. In fact, the jobs do not run in parallel, but at each time

point a single job is processed at the aggregated speed. Since the

outcome of this schedule would be the same as the schedule of

parallel processing at the virtual speeds, we consider the latter in

order to keep the presentation simple. We do require the speeds to

be feasible, meaning that the whole workload of agent i needs to
be fully processed during Ii , i.e.,∫

Ii
si (t) dt = wi .

The energy cost of executing the schedule S in a processor de-

pends on a fixed parameter α > 1 and is given by

E(S) =

∫ ∞

0

©­«
∑
i :t ∈Ii

si (t)
ª®¬
α

dt .

For a given schedule, each agent i ∈ [n] incurs a (waiting) cost
fi (ci ), where ci is the completion time of his job. This function mod-

els the Quality of Service agent i perceives and is non-decreasing

and private.

A service operator determines a mechanism to communicate

with the agents, computes a schedule S based on the strategy profile
τ and requests a payment ϕi (τ ) from each agent i ∈ [n]. We say

that the mechanism is budget balanced if

∑n
i=1

ϕi (τ ) = E(S). Each
agent i seeks to minimize her costs Ci (τ ), which is the sum of her

waiting cost and the payment, i.e.,

Ci (τ ) = fi (ci ) + ϕi (τ ) . (1)

For notational convenience we let C(τ ) =
∑
i Ci (τ ), f (c) =∑

i fi (ci ) and ϕ(τ ) =
∑
i ϕi (τ ), where c = (c1, . . . , cn ) is the vector

of completion times.

IncrAVRMW. Next to somemechanisms that are already described

in the literature, we introduce a new mechanism that we call

IncrAVRMW and it uses the AVR algorithm [33] to decide the sched-

ule and an incremental scheme [29] in order to define the payments.

In the IncrAVRMW mechanism, each agent i ∈ [n] submits the

values τi = (Ii ,wi ) to the service operator upon arrival. The service

operator computes the speed of each agent i according to AVR, i.e.,

5
We remark that time discretization is not really needed in order to show our results.

It is rather a technicality to keep our presentation simple and not to consider zero

length intervals separately.

si (t) =
wi
|Ii |

for t ∈ Ii and si (t) = 0 otherwise, (2)

and the completion time of agent i’s job, i.e. ci , is the end of Ii (by
using the same approach as in [7]).

Moreover, IncrAVRMW initially defines a global ordering π of

the agents. Starting with an empty schedule S0 and considering

the agents one after the other based on the ordering π , the service
operator creates schedule Si by adding agent i’s job the to the

existing schedule Si−1 as described above. Each agent i is charged
the difference between the energy cost of the previous schedule

Si−1 with the i − 1 first agents and the new schedule Si with agent

i included, i.e., ϕi (τ ) = ϕi (τ1, . . . ,τi ) = E(Si ) − E(Si−1).

IncrAVRSW. We further suggest IncrAVRSW which is similar to

IncrAVRMW; the only difference is that the IncrAVRSW restricts

the strategy space of the agents and allows them to declare only

a single interval, i.e. here Ii is a single interval. This restriction

will obviously result in different equilibrium outcomes; it is not

clear if the quality of those equilibria is better or worse with re-

spect to the ones induced by IncrAVRMW; though we could prove

better guarantees for IncrAVRMW. The most important advantage

of IncrAVRSW against IncrAVRMW is the simplicity; agents should

simply communicate a single interval and it is easier from their

perspective to decide which one minimizes their own cost.

We remark that both IncrAVRMW and IncrAVRSW can be used

in both offline and online versions of this problem. In the offline

setting, π can be an arbitrary order of all agents, whereas in the

online setting, π should be defined according to their arrival order.

Remark 2.1. If the agents iteratively (following π ) choose a pure
best response by knowing only the strategies of all agents that

precede them, this would result in a subgame perfect equilibrium.

This is because under both our mechanisms the agents’ cost are not
affected by the choices of the following agents in π . Therefore, a
pure (full information or Bayesian) Nash equilibrium always exists

in our mechanism which is also a subgame perfect equilibrium.

2.1 Preliminaries
Each agent i has a type ti = (ai ,wi , fi ) consisting of her arrival

time, the workload of her job and a private (waiting) cost function

of the completion time of the job. In the full information setting, ti is
fixed for each agent i , and therefore for notational convenience we

drop the dependency on ti . A feasible action of agent i , τi = (Ii , w̄i ),

consists of a union of intervals Ii and the declared workload w̄i . By

τ = (τ1, . . . ,τn ) we denote the strategy profile and τ−i denotes the
strategies of all agents but i . We say that the strategy is feasible if it
satisfies that Ii ⊂ [ai ,∞) and w̄i ≥ wi . The agent may strategically

decide to process her job with some delays or to submit an increased

workload by adding more processing requirements, if she believes

that this could lead to a reduction of her total cost.

We remark that in the IncrAVRMW (and in the IncrAVRSW) mech-

anism, no agent has an incentive to declare a different workload,

so in the rest of the paper we make no difference betweenwi and

w̄i . This is because misreporting it wouldn’t affect the agents that

precede her in π (the arrival order in the online setting) and given

the actions of those agents, her payment increases with w̄i .
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Online Setting. In the online version (still assuming the full infor-

mation setting) each agent i arrives at time ai and needs to decide

on τi while she only has knowledge of the schedule up to ai (or
more realistically, the future load due to arrivals so far). We name

the agents based on their arrival order (resolving ties arbitrarily),

i.e., agent i is the agent with the i’th smallest arrival time. Therefore,

agent i chooses τi by knowing the schedule of agents j < i .
Recall that IncrAVRMW (and IncrAVRSW) uses the arrival order

π . This means that the payment of each agent depends only on the

agents that have already declared their strategies and not on the

agents later in the sequence. Therefore, each agent can compute her

best response upon arrival. Hence, it is immediate that the resulting

strategy profile τ is a (subgame perfect) Nash equilibrium, i.e., for

any agent i and any alternative feasible strategy τ ′i for i , we have

Ci (τ ) ≤ Ci (τ
′
i ,τ−i ) .

Bayesian Setting. In the Bayesian setting, each agent i has a type
space Ti and as before, her type ti ∈ Ti is the tuple ti = (ai ,wi , fi ).
Given ti we denote the first and the second argument of ti by
ai (ti ) and wi (ti ), respectively. A type vector for all agents is t =
(t1, . . . , tn ) ∈ T = ×iTi and by t−i we denote the types of all agents
but i . The type of each agent is drawn from Ti according to some

distribution Fi , which is common knowledge. We assume that the

types ti are independent (but not necessarily identically distributed).
Thus, the type vector is drawn from T according to the product

distribution, F =
∏

i Fi . If F is a mass point, then the game is

equivalent to a full information game.

Each agent is aware only of her own type ti and of the product

distribution F (not the realization of their types). Therefore, agent i
decides a strategy σi (ti ) for every type ti ∈ Ti . σi (ti ) is in general a

mixed strategy drawn from some action spaceAi , i.e., a probability

distribution over pure strategies from Ai . In the special case that

agent i decides a pure strategy, then this is a single value τi (ti ) ∈ Ai .

Let A = ×iAi . By τ (t) = (τ1(t1), . . . ,τn (tn )) we denote the pure
strategies of all agents and as usual τ−i (t) are the strategies of all
agents but i . Similarly we useσ (t) = (σ1(t1), . . . ,σn (tn )) andσ−i (t)
for mixed strategies.

The cost of agent i (given in Equation (1)), depends on her type

ti and on the strategy profile τ , i.e., we writeCi (ti ;τ ). In a Bayesian

Nash equilibrium, each agent i selects a (mixed) strategy, that they

do not want to deviate from, by knowing only their own type ti ,
F and the strategies of the other agents σ−i . Formally, a strategy

profile σ is a Bayesian Nash equilibrium if for every agent i , type
ti ∈ Ti , and feasible strategy τ ′i for ti ,

Et−i∼F−i
[
Eτ∼σ (t)[Ci (ti ;τ )]

]
≤ Et−i∼F−i

[
Eτ −i∼σ −i (t−i )

[
Ci (ti ; (τ

′
i ,τ−i ))

] ]
.

Multiprocessor Setting. In the multiprocessor setting, we can dis-

tribute the jobs tom processors in order to keep speeds lower and

incur a lower energy consumption. Although a job can be assigned

to more than one processors, we assume that jobs are sequential

and therefore cannot be processed on two different processors at

the same timepoint
6
. The energy cost of a schedule now is the sum

of the energy costs of the individual processors in the schedule.

6
We remark that this assumption is quite general and covers the easier case where the

same job may run in many processors at the same time.

Price of Anarchy. To measure the efficiency of a strategy profile τ
under a mechanismM , we use the total costCM (τ ) = f (c)+ϕM (τ ),7

where we drop the subscript if it is clear from the context. We

quantify the performance ofM by using the Price of Anarchy (PoA)

metric introduced in [25]. We consider as the social optimum the

minimum possible social cost under any feasible schedule.

As mentioned earlier, given a workload vectorw = (w1, . . . ,wn ),

a release vector r = (r1, . . . , rn ) and a deadline vector d = (d1, . . . ,

dn ), the YDS algorithm [33] results in the schedule of minimum

energy cost (see [14] for its formal analysis), where each work-

load wi is scheduled between ri and di (assuming di > ri ). Let
EYDS(r, d,w) be the energy consumption of the YDS algorithm.

Given an arrival vector a ≤ r (where the inequality is pairwise),

note that EYDS(a, d,w) ≤ EYDS(r, d,w). Then the optimum social

cost given a type vector t is

C∗(t) = min

d≥a
(f (d) + EYDS(a, d,w)) .

We will compare C(·) with C∗(·). If NE(t) are the sets of all

(Bayesian) Nash equilibria for the game induced by the type vector

t, we define the Price of Anarchy (PoA) of IncrAVR as follows:

PoA = sup

t

maxτ ∈NE(t)C(τ )

C∗(t)
,

where the supremum is taken over all possible type vectors.

3 ONLINE SETTING
In this section we show that in the online setting the PoA of

IncrAVRMW and IncrAVRSW are at most αα 2
α−1

and

(
αα 2

α−1
)
2

,

respectively, and at least αα for both mechanisms. We note that

the dependency on α is necessary since that there exists an online

instance on which any mechanism has a PoA of at least eα−1/α .
The lower bound instance is inspired by Bansal et al. [12] who

generate an instance for deadline-based speed scaling, on which no

online algorithm can have a competitive ratio better than eα−1/α
for the energy consumption. The complete derivation can be found

in the full version of the paper. We show the upper bounds by using

the well-known smoothness technique of [31]. We start with the

definition of Smooth Games. We note that all the following lemmas

hold for both mechanisms and the proofs differ only at the end.

Definition 3.1. (Smooth Game [31]). A cost-minimization game is

(λ, µ)-smooth with respect to a strategy profile τ∗ and a minimiza-

tion objective C , if for every strategy profile τ ,

n∑
i=1

Ci (τ
∗
i ,τ−i ) ≤ λC(τ∗) + µC(τ ) .

Wewill show that the online game induced by either IncrAVRMW

or IncrAVRSW is (λ, µ)-smooth for

µ ∈ (0, 1) ; λ =
(1 + µ)(

(1 + µ)
1

α−1 − 1

)α−1
. (3)

We start by proving a useful technical lemma.

7
Note that the fi functions depend only on the completion time.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

74



Lemma 3.2. Let y1, . . . ,yn > 0, X > 0 and define Y =
∑n
i=1

yi .
Then for any α > 1, µ ∈ (0, 1) and λ as in Equation (3), we have that

n∑
i=1

(
(yi + X )α − Xα )

≤ λYα + µXα . (4)

Proof. By convexity it holds that (yi + X )α +
(
yj + X

)α
≤(

yi + yj + X
)α
+ Xα

for α > 1, so

n∑
i=1

(
(yi + X )α − Xα )

≤ (Y + X )α − Xα .

Thus, if we define Z = X/Y , it suffices to show that (1 + Z )α −

(1 + µ)Zα ≤ λ. It is easy to verify that Z ∗ =
(
(1 + µ)

1

α−1 − 1

)−1

maximizes the left-hand side of the previous inequality. Therefore,

λ =

(
1 +

1

(1 + µ)
1

α−1 − 1

)α
−

(1 + µ)(
(1 + µ)

1

α−1 − 1

)α
=

(1 + µ)(
(1 + µ)

1

α−1 − 1

)α−1
. �

In order to keep the presentation simple, we show as an inter-

mediate step that the game (induced by any of the two mecha-

nisms) ignoring the waiting cost functions fi is (λ, µ)-smooth for

the values of Equation (3). Then, we use that result to show that

the original game (considering both the waiting costs and the en-

ergy charges) is (λ, µ)-smooth. Recall that for any feasible strategy

profile τ = (τ1, . . . ,τn ), agent i has to pay for the energy

ϕi (τ ) =

∫
Ii

©­«©­«
∑

j≤i :t ∈Ij

sj
ª®¬
α

−
©­«

∑
j<i :t ∈Ij

sj
ª®¬
α ª®¬ dt , (5)

where sj = w j/|Ij |.

Lemma 3.3. For any pair of feasible strategy profiles τ , τ∗ and λ, µ
as in Equation (3), it holds that

n∑
i=1

ϕi (τ
∗
i ,τ−i ) ≤ λϕ(τ∗) + µϕ(τ ) .

Proof. For any strategy profiles τ and τ∗, we have that

n∑
i=1

ϕi (τ
∗
i ,τ−i ) =

n∑
i=1

∫
I ∗i

©­«©­«s∗i +
∑

j<i :t ∈Ij

sj
ª®¬
α

−
©­«

∑
j<i :t ∈Ij

sj
ª®¬
α ª®¬ dt

≤

∫ ∞

0

∑
i :t ∈I ∗i

©­«©­«s∗i +
∑
j :t ∈Ij

sj
ª®¬
α

−
©­«

∑
j :t ∈Ij

sj
ª®¬
α ª®¬ dt ,

where the inequality comes from the fact that the function (y +
x)α − xα is non-decreasing in x , when α > 1. Now we can apply

Lemma 3.2 for values of λ, µ according to Equation (3) to obtain

n∑
i=1

ϕi (τ
∗
i ,τ−i ) ≤

∫ ∞

0

©­«λ ©­«
∑
i :t ∈I ∗i

s∗i
ª®¬
α

+ µ
©­«

∑
j :t ∈Ij

sj
ª®¬
α ª®¬ dt

= λϕ(τ∗) + µϕ(τ ) . �

Smoothness for the original game follows easily from Lemma 3.3.

Lemma 3.4. For any pair of feasible strategy profiles τ , τ∗ and λ, µ
as in Equation (3),

n∑
i=1

Ci (τ
∗
i ,τ−i ) ≤ λC(τ∗) + µC(τ ) .

Proof. For any strategy profiles τ and τ∗, it holds that

n∑
i=1

Ci (τ
∗
i ,τ−i ) =

n∑
i=1

fi (c
∗
i ) +

n∑
i=1

ϕi (τ
∗
i ,τ−i )

≤ f (c∗) + λϕ(τ∗) + µϕ(τ )

≤ λf (c∗) + µ f (c) + λϕ(τ∗) + µϕ(τ )

= λC(τ∗) + µC(τ ) ,

where the first inequality is due to Lemma 3.3 for the λ, µ of Equa-

tion (3) and the second inequality holds because λ > 1 forα > 1. �

We are now ready to show the two bounds on the PoA.

Theorem 3.5. The online game induced by IncrAVRMW has PoA
≤ αα 2

α−1.

Proof. Let τ be any Nash equilibrium and S∗ be the schedule
that minimizes the social cost. Let I∗i be the union of intervals at

which agent i’s job is processed under S∗. Note that this means that

for any two agents i, j , I∗i and I
∗
j are disjoint (in any schedule a single

job is processed at each time unit) and for any t ∈ I∗i , the speed is

wi/|I
∗
i | (the energy cost function is convex and therefore minimized

if the workload is equally distributed along I∗i ). For τ
∗
i = (I∗i ,wi ),

the minimum social cost is given by C(τ∗).
By the definition of Nash equilibrium and smoothness, we have

C(τ ) =
n∑
i=1

Ci (τ ) ≤
n∑
i=1

Ci (τ
∗
i ,τ−i ) ≤ λC(τ∗) + µC(τ ) .

By rearranging the terms we get PoA ≤ λ/(1 − µ). Since we

proved smoothness (Lemma 3.4) for λ, µ given in Equation (3), the

ratio λ/(1 − µ) is minimized for µ = 2

α−1

α − 1, which gives

PoA ≤
1

(21/α − 1)α
≤ αα 2

α−1 . �

Theorem 3.6. The online game induced by IncrAVRSW has PoA
≤ α2α

2
2α−2.

Proof. Let τ be any Nash equilibrium and τ∗ be the feasible

strategy profile resulting in the optimum schedule (this is, τ∗ ∈

arg minτ ′(f (τ ′) + EYDS(τ
′))). Then the minimum social cost is

C∗ = f (τ∗) + EYDS(τ
∗). The key difference from the proof of Theo-

rem 3.5 is thatC(τ∗) is not the social optimum, because the optimal

scheduling may not process each job in a single interval. We rather

need to use the competitive ratio of the AVR algorithm [11, 33] and

get EIncrAVRSW
(τ∗) = EAVR(τ

∗) ≤ αα 2
α−1EYDS(τ

∗). As before,

C(τ ) =
n∑
i=1

Ci (τ ) ≤
n∑
i=1

Ci (τ
∗
i ,τ−i ) ≤ λC(τ∗) + µC(τ )

≤ λ(f (c∗) + αα 2
α−1EYDS(τ

∗)) + µC(τ ) ≤ αα 2
α−1λC∗ + µC(τ ) .

Similar to the proof of Theorem 3.5, we get PoA ≤ α2α
2

2α−2 . �
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Next, we complement our results by proving a lower bound on

the PoA that is not very far from our results by constructing an

instance where the PoA is at least αα . This instance is inspired by

the instance used to prove the lower bound on the competitive ratio

of AVR in [11]. We give the proof of the following theorem in the

full version of the paper.

Theorem 3.7. The online game induced by either IncrAVRMW or
IncrAVRSW has PoA ≥ αα .

4 MULTIPROCESSOR CASE
In the following let AVR(m) and OPT(m) denote the multiprocessor

AVR algorithm onm processors (or its expended energy) as well

as the corresponding optimal algorithm (and its expended energy).

Both algorithms are formally defined and analyzed in [3].

In this section we define and analyze the PoA of a mechanism

Greedy(m) induced by a simple greedy extension of AVR(1) to the

multiprocessor setting. The mechanism induced by Greedy(m) is

an extension of IncrAVR for both the single and the multi-window

setting. In particular the strategy space and the volume of each job

in each interval are the same, and therefore, also the charging with

respect to the waiting cost. The only difference is that a greedy algo-

rithm distributes this processing volume to the processors in each

interval, which affects the energy consumption and the charging

of the agents. More precisely, let T = ∪i {t |t is start or endpoint of
some interval in Ii }, and let t1 < t2 < · · · < tv be the distinct points

in T . T partitions the time-horizon into intervals Dk := [tk , tk+1
).

By definition, AVR(1) schedules exactly

wk
i := si · |Dk | = wi · |Dk |/|Ii |

amount of volume fromwi in interval Dk ⊆ Ii .

Algorithm Greedy(m): Upon arrival of a job i , and for each

interval Dk ⊆ Ii assign the volumewk
i to the processor ℓ

that currently has the least load.

Note that Greedy(m) is defined for both the single and the multi-

window multiprocessor setting and that during execution of the

algorithm T may grow due to new job arrivals. Some interval Dk
may then get partitioned into subintervals. This does not change

the assignment of jobs to processors:wk
i will just be split into two

parts assigned to the newly created intervals, still on processor ℓ.

We define the set of Averaging Algorithms for the problem, as

those that assign the same amount of workload of each job to each

interval as AVR(1). Both Greedy(m) and AVR(m) are averaging

algorithms in the single window and the multi window setting.

Definition 4.1. A scheduling algorithm A belongs to the class of

Averaging Algorithms, if and only if for every job i and interval

Dk ⊆ Ii ,A assigns workloadwk
i := si · |Dk | of i to Dk . Any feasible

schedule with this property is called an Averaging Schedule.

In Subsection 4.2 we prove that Greedy(m) achieves a constant

competitive ratio with respect to energy. More formally, we prove

the following theorem.

Theorem 4.2. Greedy(m) obtains a competitive ratio of 2
3α−1αα+

2
2α . Furthermore for any instance Greedy(m) has an energy consump-
tion that is upper bounded by 2

2α times the energy consumption of
the optimal averaging schedule.

Aided by Theorem 4.2 we adapt the proofs of Section 3 in or-

der to prove that the mechanism induced by Greedy(m) attains a

constant PoA. We note that the reason for attaining different PoA

for the two settings is that in the single window setting YDS is

not necessarily an averaging schedule and we lose another factor

2
α−1αα + 1 compared to YDS . Otherwise the proofs are identical.

Theorem 4.3. The online game induced by Greedy(m) has PoA≤
2

3α−1αα in the multi-window setting.

Theorem 4.4. The online game induced by Greedy(m) has PoA≤
2

4α−2α2α + 2
3α−1αα in the single window setting.

4.1 PoA of the Induced Mechanism
Let x j,k, ℓ be an indicator variable that is 1 if job j is assigned to

processor ℓ in interval Dk , and 0 otherwise. As before, we denote

sj =
w j
|Ij |

and s∗i =
w∗
i

|I ∗i |
. Similar to Equation (5), in any strategy

profile τ agent i is charged a payment of

ϕi (τ ) =
∑

k :Dk ⊆Ii

|Dk |

m∑
ℓ=1

©­«©­«
∑
j≤i

sj · x j,k, ℓ
ª®¬
α

−
©­«
∑
j<i

sj · x j,k, ℓ
ª®¬
α ª®¬ .

Note that for each job j and interval Dk there is exactly one proces-

sor ℓ on which j is executed and the indicator variable x j,k, ℓ = 1.

We therefore can prove Lemma 3.3 for the multiprocessor setting

as well, which we repeat here for the sake of completeness.

Lemma 4.5. For any pair of strategy profiles τ and τ∗ and for any
λ, µ as in Equation (3),

∑n
i=1

Ci (τ
∗
i ,τ−i ) ≤ λC(τ∗) + µC(τ ) .

Proof sketch. Since Lemma 3.4 is identical to the single proces-

sor case, it suffices to prove that

∑n
i=1

ϕi (τ
∗
i ,τ−i ) ≤ λϕ(τ∗)+ µϕ(τ )

holds. The analysis is essentially the same as in the single processor

case, but slightly more involved since a job can be assigned to any

ofm processors at each point in time. �

Theorems 4.3 and 4.4 can now be proven along the lines of The-

orems 3.5 and 3.6, by taking into account the different competitive

ratio of Greedy(m).

4.2 The Competitive Ratio of Greedy(m)
In this subsection we prove Theorem 4.2. The details regarding

AVR(m) can be found in [3]. We use the following lemma.

Lemma 4.6 ([3]). AVR(m) is (2α−1αα +1)-competitive with respect
to energy.

We will make use of the following two lemmata.

Lemma 4.7. For any feasible schedule there exists an equivalent8

schedule where in every interval Dk , every job i is scheduled in at
most two different processors.

Proof sketch. Consider some feasible schedule S where this

is not the case for some interval Dk . Then one can rearrange the

execution times of the jobs within Dk , “filling” the processors from

left to right with the execution time of one job at a time. One can

show that because S is feasible, the total execution of a job will

8
Equivalent in the sense that the total energy consumption does not change and neither

does the individual energy consumption or the resulting waiting cost. Furthermore if

the initial schedule is an averaging one, then so is the resulting schedule.
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only split amongst two consecutive processors and that the total

energy consumption or the fact that S is an averaging schedule are

not affected by this transformation. �

Lemma 4.8. For any input instance L there exists an Averaging
Schedule, in which each job appears on at most one processor in each
interval Dk , with energy consumption no more than 2

α times the
energy consumed by the best (with respect to energy consumption)
averaging schedule in L.

Proof sketch. One can transform any schedule that does not

satisfy the property into one that does, while increasing the energy

consumption by at most a factor 2
α
. W.l.o.g. we assume that each

job runs at only one speed level within Dk , since if this is not the

case we could process the job at the same timepoints on its average

(for Dk ) speed and improve the energy consumption. Consider a

job j that runs in two processors within Dk (see Lemma 4.7). One

can then “pack” the processing from one processor to the other

one while at most doubling the speed. By repeating this for all jobs,

each job appears on only one processor in Dk and each job speed

has at most doubled; the lemma follows. �

Lemma 4.8 together with Lemma 4.6 bounds the competitive ra-

tio on the algorithm that always finds the best Averaging Schedule,

with the extra restriction that each job can appear in at most one

processor per interval. The reason why we would like to restrict

Averaging Schedules further to only allow one processor per job

and interval, is that it will help us keep the smoothness analysis

simple. This additional constraint makes the problem computation-

ally harder, yet we are able to reside to a simple, greedy algorithm

which returns schedules that are close enough to the best Averaging

Schedule without this constraint.

Lemma 4.9. The energy consumption of Greedy(m) is not more
than 2

α times the optimal energy consumption attainable by an
Averaging Schedule which runs each job in at most one processor per
interval, for any input instance.

Proof. Consider some input instance L and some interval Dk .

Let xi,k, ℓ be an indicator variable denoting whether job i is assigned
to processor ℓ in interval Dk . It is known [9] that Greedy(m) is

a 2-competitive algorithm with respect to the Lp -norm of loads

assigned to the processors:

©­«
m∑
ℓ=1

©­«
∑

i :xi,k, ℓ=1

wk
i
ª®¬
α ª®¬

1

α

.

The lemma directly follows by the definition of the competitive

ratio and raising to the power α . �

So in total, for any instance L, Greedy(m) returns an Averaging

Schedule with an energy consumption within a factor 2
α
of that of

the optimal Averaging Schedule for L that is constrained to at most

one processor per job per interval (Lemma 4.9). In turn the optimal

Averaging Schedule for L constrained to at most one processor

per job per interval is within another factor 2
α
from the optimal

averaging schedule (and therefore also a factor 2
α
from AVR(m))

(Lemma 4.8). Finally, AVR(m) is within a (2α−1αα + 1)-factor from

the optimal energy consumption attainable for L (Lemma 4.6).

Remark 4.10. We note that a better PoA can be obtained by parti-

tioning the jobs into pieces in an intricate way, so that considering

these pieces as independent jobs and releasing them in a specific

order, would result in AVR(m) producing a feasible schedule for

the original job set, and furthermore, each piece being assigned to

exactly one processor. This results in a slightly better PoA, but we

defer this more involved derivation to the full version of the paper.

5 BAYESIAN SETTING
In this section we study the Bayesian setting. In order to keep the

presentation simple, we show the PoA upper bound for the single

processor case and give the result of the multiprocessor case as a

corollary at the end. We first show that the Bayesian game (induced

be either IncrAVRMW or IncrAVRSW) also satisfies the smoothness

property, and then by using the Extension Theorem [31] we derive

the same PoA bounds for this more general setting. We remark that

the total cost is a cost-dominated minimization objective, meaning

that it is always at most as large as the sum of agents’ costs. In

particular, C(t;τ ) =
∑
i Ci (ti ;τ ) and we will use this fact in the

Extension Theorem. We first restate the definition of Smooth Game.

Definition 5.1. (Smooth Game [31])
A cost-minimization game is (λ, µ)-smooth with respect to a strat-

egy profile τ∗ : T → A if for all type vectors t, q ∈ T and any

strategy profile τ feasible for q,
n∑
i=1

Ci (ti ; (τ
∗
i (t),τ−i )) ≤ λC(t;τ∗(t)) + µC(q;τ ) . (6)

Next, we show that the game induced by the IncrAVRmechanism

is (λ, µ)-smooth for the λ and µ given by Lemma 3.2.

Lemma 5.2. IncrAVRMW and IncrAVRSW are (λ, µ)-smooth for the
λ and µ given in Equation (3).

The proof of Lemma 5.2, in the full version, follows the proof

of Lemma 3.3 by carefully considering the agents’ types. Finally,

by using the Extension Theorem [31] and the values of λ and µ of

Theorem 3.5, we derive the same bounds as in the online case.

Theorem 5.3. (Extension Theorem [31])

If a game is (λ, µ)-smooth with respect to an optimal choice function
for a cost-dominated minimization objective C , then the PoA of the
Bayesian setting with respect to C is at most λ/(1 − µ).

The Extension Theorem gives a bound of λ/(1 − µ) with respect

to the cost function C . In the case of IncrAVRMW, minimization of

C results in the social optimum. However, for IncrAVRSW this is

not the case and similarly to the proof of Theorem 3.6 we need to

multiply the PoA bound by an extra factor of αα 2
α−1

. We can also

apply the analysis to the multiprocessor case.

Corollary 5.4. The Bayesian game induced by IncrAVRMW has
PoA ≤ αα 2

α−1.

Corollary 5.5. The Bayesian game induced by IncrAVRSW has
PoA ≤ α2α

2
2α−2.

Corollary 5.6. The Bayesian game induced by Greedy(m) with
multi-window strategies in themultiprocessor case has PoA ≤ 2

3α−1αα .

Corollary 5.7. The Bayesian game induced by Greedy(m) in
with single window strategies the multiprocessor case has PoA ≤

2
4α−2α2α + 2

3α−1αα .
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