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ABSTRACT
From skipped exercise classes to last-minute cancellation of den-

tist appointments, underutilization of reserved resources abounds.

Likely reasons include uncertainty about the future, further exacer-

bated by present bias. In this paper, we unite resource allocation

and commitment devices through the design of contingent payment

mechanisms, and propose the two-bid penalty- bidding mechanism.

This extends an earlier mechanism proposed by Ma et al. [21], as-

signing the resources based on willingness to accept a no-show

penalty, while also allowing each participant to increase her own

penalty in order to counter present bias. We establish a simple

dominant strategy equilibrium, regardless of an agent’s level of

present bias or degree of “sophistication”. Via simulations, we show

that the proposed mechanism substantially improves utilization

and achieves higher welfare and better equity in comparison with

mechanisms used in practice and mechanisms that optimize welfare

in the absence of present bias.
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1 INTRODUCTION
“It was a disaster,” recalled Matt Juszczak, co-founder of Turnstyle

Cycle and Bootcamp, a fitness company that offers cycling and

bootcamp classes across five studios in the Boston area. “When we

opened our first indoor cycling location in Boston’s Back Bay, we

saw 40 to 50 no-shows and late cancels in an average day— that’s

over 15,000 in a year!”
1
Like many well-known exercise studios,

Turnstyle allowed customers to reserve class spots several days in

∗
The full version of this paper is available at https://arxiv.org/abs/1906.09713.

1
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cancels-your-fitness-business, visited September 1, 2018.
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advance with a first-come-first-serve reservation system. However,

ambitious customers, overestimating the amount of time in their

schedules or their desire to exercise in the future, often snag a spot

only to ultimately cancel last-minute or simply not show up.

Similarly, at the gymnasium of the university to which some

authors of this paper are affiliated, the squash courts used to allow

members to reserve time-slots to play squash up to seven days

ahead of time. Now three days, the gym operators still warn upon a

reservation that “failure to cancel or show-up for your reservation

may lead to loss of reservation privileges.” For other examples,

organizers of free events report to Eventbrite that their no-show

rate can be as high as 50%,
2
and even for prepaid events organized

through Doorkeeper, the fraction of no-shows can be 20%.
3
Studies

of outpatient clinics report that no-shows can range from 23-34%,

with no-shows costing an estimated 14% of daily revenue as well

as impacting efficiency [24].

Common to all these examples is the presence of uncertainty, self-

interest, and down-stream decisions by participants, together with

the interest of the planner (gym manager, event organizer, health

clinic) in a resource being used and not wasted. Beyond revenue

and efficiency motivations, utilization can have positive externality

in and of itself, cycling studio members gaining motivation from

fellow bikers, for example. Complicating the problem is present bias,
often phrased as the constant struggle between our current and

future selves [20, 26]. It is easy to imagine that at the beginning

of the week, someone might prefer a spin class over watching TV

on Friday, reserving a spot, but by the time Friday comes around

preferring to just watch TV.

Recognizing the problem of low utilization, many reservation

systems charge a penalty for no-show. Turnstyle has started to

charge a $20 penalty for missing a class,
4
patients who miss ap-

pointments at hospitals may need to pay a fee,
5
and organizers of

some conferences collect a deposit that is returned only to students

who actually attended talks.
6
These approaches can be viewed as

2
https://www.eventbrite.com/blog/asset/ultimate-way-reduce-no-shows-free-

events/, visited May 6, 2019.

3
https://www.doorkeeper.jp/event-planning/increasing-participants-decreasing-no-

shows?locale=en, visited May 6, 2019.

4
https://kb.turnstylecycle.com/policies/what-is-the-late-cancel-no-show-policy, vis-

ited May 6, 2019.

5
https://huhs.harvard.edu/sites/default/files/HUHS%20Missed%20Appointment%

20Fee%20Appeal%20Form.pdf, visited May 10th, 2018.

6
https://risingstarsasia.org/guidelines.php, visited May 10th, 2019.
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ad-hoc, first-come-first serve schemes, for some choice of no-show

penalty: a penalty that is too small is not effective, whereas a penalty

that is too big will drive away participation in the scheme.

In recent work, Ma et al. [21] model participants’ future value

from using a resource as a random variable, and propose the con-
tingent second price mechanism (CSP). The mechanism elicits from

each participant a bid on the highest no-show penalty she is willing

accept, assigns the resources to the highest bidders, and charges the

highest losing bid as the penalty. The bids provide a good signal for

participants’ reliability, and the CSP mechanism provably optimizes

utilization in dominant strategy equilibrium among a large family

of mechanisms. With present bias, however, charging the highest

losing bid as penalty no longer guarantees truthfulness: a rational

participant always prefers smaller penalties, but a present-biased

participant may favor larger penalties when a stronger commitment

device is more effective in overcoming myopia.

1.1 Our results
In this paper, we unite through contingent payment mechanisms

the allocation of scarce resources under uncertainty, and the design

of commitment devices— techniques that aim to overcome present

bias and to fulfill a plan for desired future behavior.

We generalize the model proposed in Ma et al. [21], decomposing

an agent’s value for a resource into the immediate value and the

future value. The immediate value is a random variable, and the

value experienced at the time of using the resource (modeling for

example the opportunity cost and present pain of going to the gym).

The future value is not gained until some future time (consider, for

example the future benefit from better health). We incorporate the

standard quasi-hyperbolic discounting model for time-inconsistent

preferences [20, 26], such that when an agent is making a decision

on whether to use a resource, the future value is discounted by a

present bias factor. Agents may also have different levels of sophisti-

cation in regard to their level of self-awareness, modeled by agents’

belief on their own present bias factor— a naive agent believes she
does not discount the future, a sophisticated agent knows her bias
factor precisely and is able to perfectly forecast her future actions,

and a partially naive agent resides somewhere in between [26, 27].

In period 0, an agent’s private information is the distribution of

the immediate value, the (fixed) future value, and what she believes

to be her present bias factor. A mechanism elicits information from

each agent, assigns each ofm ≥ 1 resources, and may determine

both a base payment that an assigned agent always pays, as well

as a penalty for each assigned agent in the event of a no-show.

In period 1, each assigned agent learns her immediate value, and

with knowledge of the penalty and future value, decides (under the

influence of present bias) whether or not to use the resource.

The two-bid penalty-bidding mechanism (2BPB) works as follows.

In period 0, the mechanism elicits a bid from each agent, repre-

senting the highest penalty she is willing to accept for no show,

and assigns the resources to them highest bidders. To address the

non-monotonicity of agent’s expected utility in the penalty, the

mechanism asks each assigned agent to report a penalty weakly

higher than them + 1
th

bid, representing the actual amount she

would like to be charged in the case of a no-show (thereby operating

also as a commitment device).

Given the option to choose an optimal level of commitment

weakly above the highest losing bid, it is a dominant strategy under

the 2BPB mechanism for each agent to bid her maximum acceptable

no-show penalty, regardless of her immediate value distribution,

future value, level of present bias, or degree of sophistication (Theo-

rem 3.5).While naive agents do not see the value of commitment and

generally do not take any commitment device when offered [5, 6],

the 2BPB mechanism is still able to help reducing the loss of welfare

and utilization due to no show, since a commitment device is de-

signed through the mechanism, and is an integral part of the system.

We also prove that the mechanism satisfies voluntary participation,

and runs without a budget deficit.

We show via simulation that the two-bid penalty bidding mech-

anism not only improves utilization, but also achieves higher social

welfare than the standardm + 1
th
price auction, which is welfare-

optimal for settings without present bias. The mechanism also

outperforms a family of mechanisms widely used in practice, which

assign resources first-come-first-served and charge a fixed no-show

penalty. Moreover, in a population where agents have different

levels of present bias, the more biased agents benefit more than the

less biased agents under two-bid penalty bidding. This results in

better equity compared with the outcome under them + 1
th
price

auction, where the most biased agents gain little or no welfare.

1.2 Related Work
To the best of our knowledge, this current paper is the first to study

resource assignment in the presence of uncertainty and present

bias. The closest related work is on the design of mechanisms to

improve resource utilization where agents have uncertain future

values [21–23]. The proposed mechanisms, however, no longer

have dominant strategy equilibrium for present-biased agents. This

present work builds on Ma et al. [21], generalizing the model to

incorporate present bias, and makes use of two-bid penalty bidding

to align incentives. Crucially, the mechanism does not need any

knowledge about agents’ level of bias or value distributions.

Contingent payments have arisen in the past in the context of

oil drilling license auctions [16], royalties [7, 10], ad auctions [29],

and selling a firm [12]. Payments that are contingent on some

observable world state also play the role of improving revenue as

well as hedging risk [28]. In our model, in contrast, payments are

contingent on agents’ own downstream decisions and serve the

role of commitment devices. In regard to auctions in which actions

take place after the time of contracting, Atakan and Ekmekci [2]

study auctions where the value of taking each action depends on the

collective actions by others, but these actions are taken before rather

than after observing the world state. Courty and Li [9] study the

problem of revenue maximization in selling airline tickets, where

passengers have uncertainty about their value for a trip, and may

decide not to take a trip after realizing their actual values. The type

space considered there is effectively one-dimensional, and present

bias is not considered.

Laibson [20] introduced the quasi-hyperbolic discounting for

modeling time-inconsistent decision making, where in addition to

exponential discounting, all future utilities are discounted by an

additional present bias factor. O’Donoghue and Rabin [26] classify

present-biased agents into naive agents (unaware of present bias)
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and sophisticated agents (fully aware), and find that naive agent

procrastinate immediate-cost activities and do immediate-reward

activities too soon, while sophistication lessens procrastination but

intensifies the doing-too-soon. O’Donoghue and Rabin [27] also

study how the role of choice affects procrastination, and introduce

the idea of a partially naive agent, who is aware of present bias

but underestimates the degree of this bias. Researchers have also

attempted to estimate the present bias factor in the real world,

however, there has not been consensus about this [3, 8, 13] .

Researchers have also examined various kinds of commitment
devices to mitigate present bias. Giné et al. [14], for example, offer

smokers a savings account that forfeits deposits to a charity if the

they fail a urine test for nicotine. By bundling a “want” activity

(listening to one’s favorite audio book) with a “should” activity

(going to the gym), Milkman et al. [25] evaluate the effectiveness

of temptation bundling as a commitment device to tackle two self-

control problems at a time. See also Laibson [20] and Beshears et al.

[4]. In a different setting, Kleinberg and Oren [18] consider how

to modify the sequencing of tasks available to individuals in order

to help a present-biased agent adopt a more optimal sequence of

tasks. This work is later extended to consider sophisticated agents,

the interaction between present bias and sunk-cost bias, and agents

whose present bias factors are uncertain [15, 17, 19]. There are no

uncertain values or costs in these models, and no contention for

limited resources.

2 PRELIMINARIES
We first introduce the model for the assignment of m homoge-

neous resources, leaving a discussion of the generalization to het-

erogeneous resources to Section 3.1. There is a set of agents N =
{1, . . . , n} and three time periods. In period 0, when resources need

to be assigned, the value of each agent i ∈ N for using a resource

is uncertain, represented by Vi = V
(1)
i +v

(2)
i . The period 1 immedi-

ate value, V (1)
i is a random variable with cumulative distribution

function Fi , whose exact (and potentially negative) value is not

realized until period 1. This models, for example, the opportunity

cost and present pain of going to the gym. The period 2 future value
v
(2)
i ≥ 0 models the expected future benefit for agent i (e.g. the

future benefit from better health), if she uses a resource in period 1.

Agents are present-biased, such that at any point of time, agent i
discounts her utility from all future periods by a factor of βi ∈ [0, 1].

Agents may not be fully aware of this bias, however, and agent i
believes that when making decisions, she will discount her future

utility by a factor of
˜βi ∈ [βi , 1]. An agent with

˜βi = β1 = 1 is

rational and does not discount her future utility. An agent with

˜βi = βi < 1 is said to be sophisticated, and fully aware of the degree
of her present bias. An agent with βi < 1 and

˜βi = 1 is said to be

naive, believing that she will make rational decisions in the future,

and an agent with
˜βi ∈ (βi , 1) is said to be partially naive.

Letθi = (Fi ,v
(2)
i , βi ,

˜βi ) denote agent i’s type, andθ = (θ1, . . . ,θn )

denote a type profile. The tuple
˜θi = (Fi ,v

(2)
i ,

˜βi ) is agent i’s pri-
vate information at period 0, when the assignment of resources is

determined. Each allocated agent privately learns the realization

v
(1)
i of V

(1)
i and then decides whether to use the resource at period

v

fi (v )pi
1 − pi

−ci−∞

(a) The (ci , pi ) model.

v

fi (v )
λi

(b) The exponential model.

Figure 1: Distributions ofV (1)
i under the (ci ,pi ) and the expo-

nential type models.

1. Define V +i ≜ max{Vi , 0}. Following Ma et al. [21], we make the

following assumptions about Fi for each i ∈ N :

(A1) E
[
V +i

]
> 0, which means that a rational agent gets positive

value from using the resource with non-zero probability, thus

the option to use the resource has positive value.

(A2) E
[
V +i

]
< +∞, meaning that agents do not get infinite ex-

pected utility from the option to use the resource, thus would

not be willing to pay an unboundedly large payment for it.

(A3) E [Vi ] < 0, meaning that being forced to always use the re-

source regardless of what happens is not favorable, so that no

agent would accept any unboundedly large no-show penalty

for the right to use a resource.
7

We now provide a few examples of models for agent types.

Example 2.1 ((ci ,pi ) model). The future value for agent i for

using a resource is v
(2)
i = wi > 0, however, she is able to do so

only with probability pi ∈ (0, 1), and at a period 1 opportunity cost

modeled byV
(1)
i = −ci . With probability 1−pi , agent i is unable to

show up to use the resource. This hard constraint can be modeled

as V
(1)
i taking value −∞ with probability 1 − pi . See Figure 1a. We

have E
[
V +i

]
= (wi − ci )pi > 0, and E [Vi ] = −∞ thus assumptions

(A1)-(A3) are satisfied.

Example 2.2 (Exponential model). The opportunity cost for an

agent to use the resource in period one is an exponentially dis-

tributed random variable with parameter λi , (i.e. −V
(1)
i ∼ Exp(λi )).

If the agent used a resource, she gains a future utility of v
(2)
i =

wi > 0. See Figure 1b. The expectation of E
[
V
(1)
i

]
is λ−1

i , thus

E [Vi ] = λ−1

i +wi and (A1)-(A3) are satisfied whenwi < λ−1

i .

2.1 Two-Period Mechanisms
We consider two-period mechanisms, denoted asM = (R,x , s, t ),
and following the timeline suggested by Ma et al. [21]. The mecha-

nisms can, in general, involve both a base payment that an agent

will pay irrespective of her utilization decision as well as a penalty

for no show. The mechanisms are defined for a general message

space R for reports, and with allocation rule x , and with each agent

i facing a base payment si (r ) and a penalty ti (r ).
The timeline for a two-period mechanism is as follows:

Period 0:
• Each agent i reports ri ∈ R to the mechanism based on knowl-

edge of
˜θi .

7
Regardless of the degree of present bias or sophistication, an agent for which (A3) is

violated is willing to accept a 1 billion dollar no-show penalty, (almost) always use the

resource, and get a non-negative utility in expectation.
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• Themechanism allocates the right to use the resources to a subset

of agents, A ⊆ N , with |A| ≤ m, thus xi (r ) = 1 for all i ∈ A and

xi (r ) = 0 for all i < A.
• For each agent i ∈ N , the mechanism determines a base payment

si (r ) that the agent will pay for sure. For each assigned agent

i ∈ A, the mechanism determines an additional penalty ti (r ) that
will be charged for a no show.

Period 1:

• The mechanism collects base payment si (r ) from each agent.

• Each allocated agent i ∈ A privately observes the realized imme-

diate value v
(1)
i , and decides whether to use the resource based

on v
(1)
i , the future value v

(2)
i , and the no-show penalty ti (r ).

• The mechanism collects penalty ti (r ) from any agent i ∈ A who

is a no show.

Example 2.3 ((m+ 1)th price auction). The standardm+ 1
th
price

auction for assigningm resources can be described as a two-period

mechanism, where the report space is R = R. Ordering agents in
decreasing order of their reports, s.t. r1 ≥ r2 ≥ . . . rn , the allocation
rule is xi (r ) = 1 for all i ≤ m, xi (r ) = 0 for i > m. Each allocated

agent is charged si (r ) = rm+1, and all other payments are zero. The

m + 1
th
price auction does not make use of any penalties.

Example 2.4 (Generalized contingent second price mechanism).
The generalized contingent second price (GCSP) mechanism [21]

for assigningm homogeneous resources collects a single bid from

each agent, allocates the right to use resource to the m highest

bidders, and charges them + 1
th
highest bid, but only if an allocated

agent fails to use the resource. Formally, R = R. Ordering the agents
s.t. r1 ≥ r2 ≥ . . . rn (breaking ties randomly), we have xi (r ) = 1

for i ≤ m, xi (r ) = 0 for i > m, ti (r ) = maxi′<A ri′ , and all other

payments are 0.

We assume risk-neutral, expected-utility maximizing agents,

but with quasi-hyperbolic discounting for future utilities. Each

assigned agent i faces a two part payment (z,y), where z is the

penalty the agent pays in period 1 in the case of no-show, and y is

the base payment the agent always pays in period 1. When period 1

arrives and the agent learns the realized immediate value v
(1)
i , she

discounts the future by βi , and makes decisions as if she will gain

utility v
(1)
i − y + βiv

(2)
i from using the resource, and −y − z from

not using the resource. Based on this, the agent uses the resource if

and only if

v
(1)
i − y + βiv

(2)
i ≥ −y − z ⇔ v

(1)
i ≥ −z − βiv

(2)
i , (1)

breaking ties in favor of using the resource. Let1 {·} be the indicator

function, and define ui (z), the expected utility of the agent when

facing penalty z, as

ui (z) ≜E
[
(V

(1)
i +v

(2)
i )1

{
V
(1)
i ≥ −z − βiv

(2)
i

}]
− zP

[
V
(1)
i < −z − βiv

(2)
i

]
. (2)

The actual expected utility of an allocated agent facing a two-part
payment (z,y) isui (z)−y. Under a two-periodmechanismM, given

report profile r , agent i’s expected utility is xi (r )ui (ti (r )) − si (r ).
An agent believes that she will make decisions as if she has

present-bias factor
˜βi , and will decide to use the resource in period 1

if and only if

v
(1)
i ≥ −z − ˜βiv

(2)
i . (3)

Therefore, an agent’s subjective expected utility given penalty z is

ũi (z) ≜E
[
(V

(1)
i +v

(2)
i )1

{
V
(1)
i ≥ −z − ˜βiv

(2)
i

}]
− zP

[
V
(1)
i < −z − ˜βiv

(2)
i

]
. (4)

We call ũi (z) the subjective expected utility function. For sophisti-
cated agents who are able to perfectly predict their future decisions

(i.e.
˜βi = βi ), ũi (z) and ui (z) coincide.

We assume that if allocated, agents’ decisions in period 1 are

influenced by their present bias, but are otherwise rational. The

interesting question is to study an agent’s incentives regarding

reports in period 0, which are made based on subjective expected

utility ũi (z) − y. For any vector д = (д1, . . . ,дn ), we denote д−i ≜
(д1, . . . ,дi−1,дi+1, . . . ,дn ).

Definition 2.5 (Dominant strategy equilibrium). A two-period

mechanism has a dominant strategy equilibrium (DSE) if for each

agent i ∈ N , for any type θi satisfying (A1)-(A3), there exists a

report r∗i ∈ R s.t.∀ri ∈ R, ∀r−i ∈ R
n−1

, xi (r
∗
i , r−i )ũi (ti (r

∗
i , r−i ))−

si (r
∗
i , r−i ) ≥ xi (ri , r−i )ũi (ti (ri , r−i )) − si (ri , r−i ).

Let r∗ (θ ) = (r∗
1
, . . . , r∗n ) denote a report profile under a DSE

given type profile θ .

Definition 2.6 (Voluntary participation). A two-period mecha-

nism satisfies voluntary participation (VP) if for each agent i ∈ N , for

any type θi satisfying (A1)-(A3), and any report profile r−i ∈ R
n−1

,

xi (r
∗
i , r−i )ũi (ti (r

∗
i , r−i )) − si (r

∗
i , r−i ) ≥ 0.

VP requires that each agent has non-negative subjective expected

utility under her dominant strategy, given that she makes present-

biased but otherwise rational decisions in period 1 if allocated,

regardless of the reports made by the rest of the agents.

The expected revenue of a two-period mechanism M is the

total expected payment made by the agents in the DSE, assuming

present-biased but otherwise rational decisions in period 1:

revM (θ ) ≜
∑
i ∈N

(
si (r
∗) + xi (r )ti (r

∗)P
[
V
(1)
i < −ti (r

∗) − βiv
(2)
i

])
.

Definition 2.7 (No deficit). A two-period mechanism satisfies no
deficit (ND) if, for any type profile θ that satisfies (A1)-(A3), the

expected revenue is non-negative: revM (θ ) ≥ 0.

The utilization achieved by mechanismM is the expected num-

ber of resources used by the assigned agents in the DSE:

utM (θ ) ≜
∑
i ∈N

xi (r
∗)P

[
V
(1)
i ≥ −ti (r

∗) − βiv
(2)
i

]
.

The expected social welfare achieved by mechanismM is the

total expected value derived by agents from using the resources:

swM (θ ) ≜
∑
i ∈N

xi (r
∗)E

[
(V

(1)
i +v

(2)
i )1

{
V
(1)
i ≥ −ti (r

∗) − βiv
(2)
i

}]
.

Our objective is to design mechanisms that maximize expected

social welfare. We do not consider monetary transfers as part of

the social welfare function. The reason ti (r
∗) appears in swM (θ )is

that it affects decisions of the allocated agents in period 1.
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3 THE TWO-BID PENALTY BIDDING
MECHANISM

In this section, we introduce the two-bid penalty bidding mech-

anism, and prove that agents have simple dominant strategies,

regardless of their value distributions, levels of present bias, or

degrees of sophistication.

Definition 3.1 (Two-bid penalty bidding mechanism (2BPB)). The
two-bid penalty bidding mechanism collects bids

¯b = ( ¯bi , . . . , ¯bn )
from agents in period 0, and reorders agents s.t.

¯b1 ≥ ¯b2 ≥ · · · ≥ ¯bn
(breaking ties randomly).

• Allocation rule: xi (b) = 1 for i ≤ m, xi (b) = 0 for i > m.

• Payment rule: the mechanism announces
¯bm+1, elicits a second

bid bi ≥
¯bm+1 from each assigned agent i ≤ m, and sets ti (b) =

bi . ti (b) = 0 for all i > m, and si (b) = 0 for all i ∈ N .

The 2BPB mechanism first asks agents to bid on the maximum

penalties they are willing to accept for the option to use the re-

source for free, and assigns the resources to the highest bidders.

The mechanism then asks each assigned agent to bid a penalty that

is weakly higher than them + 1
th

bid, representing the amount she

would like to be charged in case of a no-show.
8

To establish the dominant strategy equilibrium under the mech-

anism, we first prove some useful properties of ũi (z).

Lemma 3.2. Given an agent with any type θi that satisfies (A1)-
(A3), the agent’s subjective expected utility ũi (z) as a function of the
penalty z satisfies:
(i) ũi (0) ≥ 0, and limz→+∞ ũi (z) ≤ E [Vi ].
(ii) ũi (z) is right continuous and upper semi-continuous.

Proof. We first prove part (i). ũi (0) ≥ 0 holds given (4) and the

fact that
˜βi ≤ 1 andwi ≥ 0. For the limit as z → +∞, observe that:

ũi (z)

=E
[
(V

(1)
i + ˜βiv

(2)
i )1

{
(V

(1)
i + ˜βiv

(2)
i ) ≥ −z

}]
+

(1 − ˜βi )v
(2)
i P

[
(V

(1)
i + ˜βiv

(2)
i ) ≥ −z

]
− zP

[
(V

(1)
i + ˜βiv

(2)
i ) < −z

]

=E
[
max{V

(1)
i +

˜βiv
(2)
i ,−z}

]
+ (1− ˜βi )v

(2)
i P

[
(V

(1)
i +

˜βiv
(2)
i ) ≥−z

]
.

(5)

By the monotone convergence theorem, as z → +∞, the first

term of (5) converges to E
[
V
(1)
i + ˜βiv

(2)
i

]
= E

[
V
(1)
i

]
+ ˜βiv

(2)
i . The

second term is upper bounded by (1 − ˜βi )v
(2)
i , therefore we get

limz→+∞ ũi (z) ≤ E
[
V
(1)
i

]
+v

(2)
i = E [Vi ].

For (ii), max{V
(1)
i + ˜βiv

(2)
i , −z} is continuous in z, therefore

its expectation E
[
max{V

(1)
i + ˜βiv

(2)
i , −z}

]
is also continuous in

z. P
[
(V

(1)
i + ˜βiv

(2)
i ) ≥ −z

]
is right continuous, implying the right

continuity of ũi (z). The upper semi-continuity (i.e. limz↑z∗ ũi (z) ≤

ũi (z
∗) for all z∗ ≥ 0) holds because of the fact that (1− ˜βi )v

(2)
i ≥ 0,

and that P
[
(V

(1)
i + ˜βiv

(2)
i ) ≥ −z

]
is upper semi-continuous. □

8
Instead of using two rounds of bidding, we may also consider a direct revelation mech-

anism, where agents report their private information
˜θi , with which the mechanism

determines the assignment and the contingent payments.

Ma et al. [21] had earlier proved that for a rational agent without

present bias, her expected utility as a function of the penalty is con-

tinuous, convex, andmonotonically decreasing. These properties no

longer hold for present-biased agents, since a higher penalty may

incentivize an agent to use the resource more optimally, resulting

in a higher expected utility.

For any penalty z, we define Ũi (z) as agent i’s highest subjective
expected utility for the best choice of penalty, assuming this penalty

must be at least z:

Ũi (z) = sup

z′≥z
ũi (z

′). (6)

The following lemma proves the continuity and monotonicity of

Ũi (z), together with the existence of a zero-crossing for Ũi (z). This
zero-crossing point is the maximum penalty an agent will accept,

in the case that this agent can choose to be charged any penalty

weakly larger than this penalty.

Lemma 3.3. Given any agent with type θi that satisfies (A1)-(A3),
the agent’s subjective expected utility Ũi (z) as a function of the mini-
mum penalty z satisfies:
(i) Ũi (z) is continuous and monotonically decreasing in z.
(ii) There exists a zero-crossing z0

i s.t. Ũi (z
0

i ) = 0 and Ũi (z) < 0 for
all z > z0

i .

Proof. For part (i), the monotonicity of Ũi (z) is obvious, and
the continuity of Ũi (z) is implied by the right continuity of ũi (z)
as shown in Lemma 3.2.

For part (ii), Lemma 3.2 and assumption (A3) imply limz→∞ ũi (z) ≤
E [Vi ] < 0. Therefore, there exists Z ∈ R s.t. ũi (z) < 0 for all z ≥ Z .
As a result, Ũi (z) < 0 holds for all z ≥ Z , and the monotonicity and

continuity of Ũi (z) then imply that the following supreme exists:

z0

i ≜ sup{z ∈ R | Ũi (z) ≥ 0},

and that we must have Ũi (z
0

i ) = 0 and Ũi (z) < 0 for all z > z0

i . □

The following example illustrates the expected utility functions

of an agent with (ci ,pi ) type (see Example 2.1), and shows that

there may not exist a DSE under the CSP mechanism.

Example 3.4 (Expected utility of (ci ,pi ) type agents). Consider a
sophisticated agent whose type follow the (ci ,pi ) model, who is

assigned a resource and charged no-show penalty z. With prob-

ability 1 − pi , the agent is not able to use the resource, and has

to pay the penalty. With probability pi , the agent is able to use

the resource at a cost of ci , but will use the resource if and only if

βiwi − ci ≥ −z ⇔ z ≥ ci − βiwi . Therefore, the agent’s expected

utility as a function of the no-show penalty is of the form:

ui (z) =

{
−z, if z < ci − βiwi ,

(wi − ci )pi − (1 − pi )z, if z ≥ ci − βiwi ,

and ũi (z) = ui (z) holds since the agent is sophisticated. Figure 2a
illustrates ũi (z) for an agent with ci−βiwi > 0. Intuitively, ci−βiwi
is the minimum penalty the agent needs to be charged so that she

will use the resource when she is able to. When z < ci − βiwi , the

agent ends up always paying the penalty, which is too small to

incentivize utilization. Ũi (z) of this agent is as shown in Figure 2b.

The maximum penalty the agent is willing to accept is z0

i = (wi −

ci )pi/(1 − pi ).
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z

ũi (z )

ci− ˜βiwi

z0

i

(a) ũi (z ).

z

Ũi (z )

ci− ˜βiwi z0

i

(b) Ũi (z ).

Figure 2: Subjective expected utility functions of a sophisti-
cated agent with (ci ,pi ) type, with ci − ˜βiwi > 0.

There is no dominant strategy for this agent under the CSP

mechanism. Consider the assignment of a single resource. If the

highest bid among the rest of the agents satisfies maxi′,i bi′ ∈

[ci − ˜βiwi , z
0

i ), the agent gets positive utility from bidding bi =

z0

i , getting allocated and charged penalty maxi′,i bi′ . However, if

maxi′,i bi′ < ci − ˜βiwi , bidding bi = z0

i results in negative utility—

the agent will be allocated, but charged a penalty that is too small

to overcome her present bias. In this case, the agent is better off

bidding bi = 0 and get zero utility. □

We now state and prove the main theorem of this paper.

Theorem 3.5 (Dominant strategy eqilibrium). Assuming
(A1)-(A3), under the two-bid penalty bidding mechanism, it is a domi-
nant strategy for each agent i ∈ N to bid ¯b∗i = z0

i . If agent i is assigned
a resource and given a minimum penalty z, it is then a dominant
strategy to bid b∗i = arg maxz≥z ũi (z). Moreover, the mechanism
satisfies voluntary participation and no deficit.

Proof. We first consider an agent who is assigned a resource

and asked by the mechanism to bid an amount that is at least z. The
right continuity of ũi (z) (see Lemma 3.2) implies that the highest

utility Ũi (z) when the agent can choose any penalty weakly higher

than z is achieved at arg maxz≥z ũi (z). Since whichever amount an

agent bids asbi will be the penalty she is charged by the mechanism,

it is a dominant strategy to bid b∗i = arg maxz≥z ũi (z).

Given that an assigned agent will get expected utility Ũi (z) when

she is asked to choose a penalty bi that is weakly above z, Ũi (z) is
effectively her expected utility function in the first round of bidding.

With the monotonicity of Ũi (z) and the fact that the minimum

penalty is determined by them + 1
th

highest bid, it is standard that

an agent bids in DSE the highest “minimum penalty to choose from”

that she is willing to accept, which is z0

i . □

The following example shows that the 2BPB mechanism can

achieve better social welfare and utilization than them + 1
th

price

auction by assigning to a “better” agent and charging a proper

penalty as the commitment device.

Example 3.6. Consider the allocation of one resource to two

sophisticated agents with (ci ,pi ) types, where c1 = 10, p1 = 0.8,

w1 = 16, β1 = ˜β1 = 0.5 and c2 = 6, p2 = 0.5,w2 = 10, β2 = ˜β2 = 0.8.

When z < c1−β1w1 = 2, agent 1 never uses the resource. On the

other hand, c2−β2w2 < 0 means that agent 2 uses the resource with

probability p2 while facing any non-negative penalty. ui (z) = ũi (z)
for i = 1, 2 since both agents are sophisticated, and the subjective

expected utility functions of the two agents are as shown in Figure 3.

Under the second price auction, agents bid in DSE b∗
1,SP

=

ũ1 (0) = 0 and b∗
2,SP

= ũ2 (0) = (w2 − c2)p2 = 2, the values of

z

ũi (z )

z0

2
z0

1

ũ1 (z )
ũ2 (z )

Figure 3: Expected utility of two agents in Example 3.6.

the option to use the resource without any penalty (the free op-

tion to use the resource has no value to agent 1 since she knows

that she will never show up). Agent 2 gets assigned the resource

and charged no penalty, achieving social welfare (w2 − c2)p2 = 2

and utilization p2 = 0.5. Under the 2BPB mechanism, the agents

bid in DSE
¯b∗
1
= z0

1
= (w1 − c1)p1/(1 − p1) = 24, and

¯b∗
2
= z0

2
=

(w2 − c2)p2/(1 −p2) = 4. Agent 1 is therefore assigned and will bid

b∗
1
= 4 when asked to choose a penalty weakly above

¯b∗
2
= 4, since

ũ1 (z) is decreasing in z for z ≥ c1− ˜β1w1 = 2. The 2BPB mechanism

achieves social welfare (w1 − c1)p1 = 4.8 and utilization p1 = 0.8,

both are higher than those under the second price auction. □

3.1 Discussion
For fully rational agents with

˜βi = βi = 1, ũi (z) is monotonically

decreasing in z, and ũi (z) = Ũi (z) for all z ∈ R. In this case, the

equilibrium outcome under the 2BPB mechanism coincides with

that under them + 1
th
-price generalization of the CSP mechanism.

Since ũi (z) is what an agent considers while bidding, in period 0

a naive agent will bid as if she was rational. In period 1, however,

present bias will take effect, and the naive agent may make sub-

optimal decisions. The actual expected utility a naive agent gets

from participating in them+1
th
price CSP or the 2BPBmechanisms,

therefore, may be negative, despite the fact that she is willing to

participate and believes she will get non-negative expected utility.

For two agents i and i ′ who are identical except that
˜βi > ˜βi′ ,

we can prove that ũi (z) ≥ ũi′ (z) holds for all z ≥ 0. As a result,

z0

i ≥ z0

i′ . This implies that an agent who believes that she is less

present-biased (i.e. with higher
˜βi ) will bid higher under both the

2BPB mechanism and them+ 1
th
price auction. See Proposition B.1

in Appendix B.1 of the full version of this paper.

For rational agents without present bias, the CSP mechanism

optimizes utilization among a large family of mechanisms with a

set of desirable properties [21]. The 2BPB mechanism, however,

does not provably optimize utilization for present-biased agents.

The reason is that the actual present bias factor does not affect

a naive agent’s bid, and it is still possible for a very biased naive

agent to be assigned but rarely show up (see Examples B.2 and B.3

in Appendix B of the full version of this paper).

The 2BPB mechanism can also be generalized for assigning

multiple heterogeneous resources, where each agent i ∈ N has

a random value Vi,a = V
(1)
i,a + v

(2)
i,a for using each resource a ∈ M .

ũi,a (z) and Ũi,a (z) can be defined similarly to (4) and (6). The

2BPB mechanism can be generalized through the use of a mini-

mum Walrasian equilibrium price mechanism, which computes

the assignment and the minimum penalty each agent faces using

{Ũi,a (z)}i ∈N ,a∈M [1, 11, 21]. As a second step, each assigned agent

is asked to report a weakly higher penalty that she wants to be

charged by the mechanism.
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Figure 4: Average social welfare and utilization for naive
agents with exponential types.

4 SIMULATION RESULTS
In this section, we adopt the exponential model (Example 2.2) and

compare in simulation the social welfare and utilization achieved

by different mechanisms and benchmarks. Additional simulation

results assuming other type models are presented in Appendix A of

the full version of this paper. For the exponential model, E [Vi ] =
−λ−1

i +wi , where λ
−1

i is the expected period 1 opportunity cost for

using the resource. We consider a type distribution with wi and

λ−1

i,a uniformly distributed as λ−1

i ∼ U[0, L] and wi ∼ U[0, λ−1

i ].

wi < λ−1

i holds almost surely thus (A1)-(A3) are satisfied. The

results are not sensitive to the choices of L in defining this type

distribution, and we fix L = 20 for the rest of this section.

4.1 Varying Resource Scarcity
Fixing the number of resources at five, we study the impact of

varying the scarcity of the resource, by varying the number of

agents from 2 to 30. We define the first best as the highest achievable
welfare (or utilization) assuming full knowledge of agent types, and

without violating voluntary participation or no deficit. The first-
come-first-serve with fixed penalty mechanism (FCFS) assumes a

random order of arrival, with the effect of assigning to a random

subset of at mostm agents who are willing to accept the penalty.

We consider three levels of penalties for FCFS: 5, 2.5 and 0, where 5

is equal to the expectation of the future valuewi .

Naive Agents. For naive agents with
˜βi = 1 and present bias

factor distribution βi ∼ U[0, 1], the average social welfare and

utilization over 100,000 randomly generated profiles are as shown

in Figure 4.When the number of agents is small, the outcomes under

2BPB, them + 1
th

price auction, and the FCFS without penalty are

similar, since all three effectively assign the resources to all agents,

without charging any penalty. As the number of agents increases,

the 2BPB mechanism achieves higher welfare and substantially

0 10 20 30

# of agents

0

5

10

15

20

S
o
c
ia

l 
W

e
lf
a
re First Best

2BPB

m+1th Auction

FCFS w/ Penalty 5

FCFS w/ Penalty 2.5

FCFS w/o Penalty

(a) Social welfare.

0 10 20 30

# of agents

0

1

2

3

4

5

U
ti
liz

a
ti
o
n

First Best

2BPB

m+1th Auction

FCFS w/ Penalty 5

FCFS w/ Penalty 2.5

FCFS w/o Penalty

(b) Utilization.

Figure 5: Average social welfare and utilization for sophisti-
cated agents with exponential types.

higher utilization than them + 1
th

price auction (which optimizes

welfare for rational agents without present bias), and does this

without charging any payments from agents who do show up.

The 2BPB mechanism achieves higher welfare and utilization for

economies of any size, and does not require any prior knowledge

about the number of agents or their bias level or value distributions.

The FCFS mechanism, by comparison, requires careful adjustments

of the fixed penalty level. A smaller penalty works fine when the

number of agents is small but fails to keep up as the economy

becomesmore competitive. A larger penalty outperforms them+1
th

price auction for larger economies, but deters participation and

leaves resources unallocated when the number of agents is small.

Sophisticated Agents. Consider sophisticated agents with ˜βi = βi
and present bias factor distribution βi ∼ U[0, 1]. As the number of

agents vary from 2 to 30, the average welfare and utilization over

100,000 randomly generated economies are as shown in Figure 5.

As with the setting with naive agents, we can see that the 2BPB

mechanism achieves higher welfare and utilization than them+ 1
th

price auction, and that the performance of FCFS is very sensitive

to the fixed penalty and the competitiveness of the economy. The

m + 1
th

price auction achieves higher welfare and utilization for

sophisticates, in comparison to the setting with naive agents. This is

because sophisticated agents are able to adjust their bids depending

on their present bias level, and avoid the situation where a naive

agent bids too much, gets assigned, but rarely show up.

In Appendix A.1 of the full paper, we present additional simula-

tion results assuming all agents are fully rational or partially naive.

The outcome for partially naive agents is between the outcome

for fully naive agents and fully sophisticated agents. For rational

agents, the 2BPB mechanism achieves slightly worse welfare than

them+ 1
th
price auction, which is provably optimal for this setting.

The 2BPB mechanism, however, still achieves higher utilization and

also a significantly better outcome than the FCFS benchmarks.
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Figure 6: Average welfare and usage for naive agents with
exponential types, fixing bias factor βi = i/n.

4.2 Agents with Different Degrees of Bias
In this section, we study the different outcomes for agents with

different degrees of present bias. We assume the same type distri-

bution as in the previous section, but fix the present-bias factor of

each agent i at βi = i/n, where n is the total number of agents—

the smaller an agent’s index, the more present-biased an agent.

Naive Agents. We first consider the scenario where all agents are

naive. Fixing n = 30, for 1 million randomly generated economies,

the average per economy welfare and usage (i.e. the probability of

being assigned and showing up) of each agent is as shown in Figure 6.
Note that naive agents behave in period 0 as if they were rational,

thus all agents bid in the same way despite their different degrees

of bias, and therefore are assigned with the same probability.

Figure 6a shows that the less biased agents get substantially

higher welfare than the more biased agents under them + 1
th

price

auction. By contrast, the 2BPB mechanism helps agents who are

more biased to achieve substantially higher welfare than the out-

come under them + 1
th

price auction, and at the same time slightly

reducing the welfare for the least biased agents. This is because the

least biased agents are able to make close to optimal decisions in

period 1 by themselves, and charging a penalty sometimes leads to

suboptimal utilization decisions.

From Figure 6b, we see that all agents have higher average us-

age under the 2BPB mechanism, and agents who are more biased

achieve a higher gain in comparison with them + 1
th

price auction.

Overall, the outcome under the 2BPB mechanism is subtantially

more equitable for agents with all levels of bias. It is also worth

noting that while naive agents do not see the value of commitment

and do not take any commitment device when offered [5, 6], the

2BPB mechanism is still able to help, since a commitment device

is designed through the mechanism, and it is not an option to not

accept a commitment.
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Figure 7: Average welfare and usage for sophisticated agents
with exponential types, fixing bias factor βi = i/n.

Sophisticated Agents. With fully sophisticated agents, the aver-

agewelfare and usage are as shown in Figure 7. The first observation

is that under them + 1
th
price auction, the welfare and usage for

the most biased agents are effectively zero, while the least biased

agents achieve better welfare and utilization than the first-best

outcome. This is because the more biased agents bid lower and get

assigned with lower probability. The 2BPB mechanism is not able

to achieve the same level of welfare for all agents, but achieves

large improvements for the more biased population compared to

them + 1
th

price auction, and also higher welfare and better equity

than the FCFS benchmarks.

5 CONCLUSION
We propose the two-bid penalty-bidding mechanism for resource

allocation in the presence of uncertain future values and present

bias. We prove the existence of a simple dominant strategy equilib-

rium, regardless of an agent’s value distribution, level of present

bias, or degree of sophistication. Simulation results show that the

mechanism improves utilization and achieves higher welfare and

better equity in comparison with mechanisms broadly used in prac-

tice, as well as mechanisms that are welfare-optimal for settings

without present bias.

In future work, it will be interesting to conduct empirical studies

to better understand behavior in settings such as exercise studios

and events, with the goal of separating the effect on utilization of

uncertainty from that of present bias. Another interesting direction

is to generalize the model to allow for more than two time periods,

where agents may arrive asynchronously, when uncertainty unfolds

over time, and where resources can be re-allocated.
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